Sources, Influencing Factors, and Pollution Process of Inorganic Nitrogen in Shallow Groundwater of a Typical Agricultural Area in Northeast China
Abstract
:1. Introduction
2. Study Area
2.1. Geographic Location and Climate
2.2. Geology and Hydrology Characteristics
3. Materials and Methods
3.1. Pollution Source Investigation
3.2. Sampling and Analysis
3.3. Statistical Methods and Graphical Representation
3.4. Statistical Methods and Graphical Representation
4. Results
4.1. Distribution of Potential Nitrogen Sources
4.2. Distribution of NH4+ and NO3− in Different Well Depths and Land Use Types
4.3. Multivariate Statistical Analysis
4.3.1. Factor Analysis
4.3.2. Correspondence Analysis (CA)
4.4. Spatial Distribution of Nitrogen Concentration in Groundwater
4.5. Distribution of TN Concentration in Topsoil
5. Discussion
5.1. Nitrogen Source Appointments
5.2. Governing Factors Determining the Nitrogen Distribution in Groundwater
5.3. Formation Process of Inorganic Nitrogen in Groundwater
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Denk, T.R.A.; Mohn, J.; Decock, C.; Lewicka-Szczebak, D.; Harris, E.; Butterbach-Bahl, K.; Kiese, R.; Wolf, B. The nitrogen cycle: A review of isotope effects and isotope modeling approaches. Soil Biol. Biochem. 2017, 105, 121–137. [Google Scholar] [CrossRef] [Green Version]
- Galal-Gorchev, H. WHO guidelines for drinking-water quality. Water Supply 1993, 11, 1–16. [Google Scholar]
- Johnson, P.T.J.; Townsend, A.R.; Cleveland, C.C.; Glibert, P.M.; Howarth, R.W.; Mckenzie, V.J.; Rejmankova, E.; Ward, M.H. Linking environmental nutrient enrichment and disease emergence in humans and wildlife. Ecol. Appl. 2010, 20, 16–29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Townsend, A.R.; Howarth, R.W.; Bazzaz, F.A.; Booth, M.S.; Cleveland, C.C.; Collinge, S.K.; Dobson, A.P.; Epstein, P.R.; Holland, E.A.; Keeney, D.R.; et al. Human Health Effects Changing Nitrogen Cycle. Front. Ecol. Environ. 2003, 1, 240–246. [Google Scholar] [CrossRef]
- Wakida, F.T.; Lerner, D.N. Non-agricultural sources of groundwater nitrate: A review and case study. Water Res. 2005, 39, 3–16. [Google Scholar] [CrossRef]
- Wang, W.; Song, X.; Ma, Y. Identification of nitrate source using isotopic and geochemical data in the lower reaches of the Yellow River irrigation district (China). Environ. Earth Sci. 2016, 75, 1–13. [Google Scholar] [CrossRef]
- Du, Y.; Ma, T.; Deng, Y.; Shen, S.; Lu, Z. Sources and fate of high levels of ammonium in surface water and shallow groundwater of the Jianghan Plain, Central China. Environ. Sci. Process. Impacts 2017, 19, 161–172. [Google Scholar] [CrossRef]
- Liu, C.; Yu, D.; Wang, Y.; Chen, G.; Tang, P.; Huang, S. A novel control strategy for the partial nitrification and anammox process (PN/A) of immobilized particles: Using salinity as a factor. Bioresour. Technol. 2020, 302, 122864. [Google Scholar] [CrossRef]
- Pandey, C.B.; Kumar, U.; Kaviraj, M.; Minick, K.J.; Mishra, A.K.; Singh, J.S. DNRA: A short-circuit in biological N-cycling to conserve nitrogen in terrestrial ecosystems. Sci. Total Environ. 2020, 738, 139710. [Google Scholar] [CrossRef]
- Peng, T.; Feng, C.; Hu, W.; Chen, N.; He, Q.; Dong, S.; Xu, Y.; Gao, Y.; Li, M. Treatment of nitrate-contaminated groundwater by heterotrophic denitrification coupled with electro-autotrophic denitrifying packed bed reactor. Biochem. Eng. J. 2018, 134, 12–21. [Google Scholar] [CrossRef]
- Rivett, M.O.; Buss, S.R.; Morgan, P.; Smith, J.W.N.; Bemment, C.D. Nitrate attenuation in groundwater: A review of biogeochemical controlling processes. Water Res. 2008, 42, 4215–4232. [Google Scholar] [CrossRef] [PubMed]
- Babiker, I.S.; Mohamed, M.A.A.; Terao, H.; Kato, K.; Ohta, K. Assessment of groundwater contamination by nitrate leaching from intensive vegetable cultivation using geographical information system. Environ. Int. 2004, 29, 1009–1017. [Google Scholar] [CrossRef]
- Pastén-Zapata, E.; Ledesma-Ruiz, R.; Harter, T.; Ramírez, A.I.; Mahlknecht, J. Assessment of sources and fate of nitrate in shallow groundwater of an agricultural area by using a multi-tracer approach. Sci. Total Environ. 2014, 470–471, 855–864. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Li, Y.; Li, Y.; Liu, F.; Liu, X.; Gong, D.; Ma, Q.; Li, W.; Wu, J. Intensive rice agriculture deteriorates the quality of shallow groundwater in a typical agricultural catchment in subtropical central China. Environ. Sci. Pollut. Res. 2015, 22, 13278–13290. [Google Scholar] [CrossRef]
- Murgulet, D.; Tick, G.R. Understanding the sources and fate of nitrate in a highly developed aquifer system. J. Contam. Hydrol. 2013, 155, 69–81. [Google Scholar] [CrossRef] [PubMed]
- Katz, B.G.; Eberts, S.M.; Kauffman, L.J. Using Cl/Br ratios and other indicators to assess potential impacts on groundwater quality from septic systems: A review and examples from principal aquifers in the United States. J. Hydrol. 2011, 397, 151–166. [Google Scholar] [CrossRef]
- Panno, S.V.; Hackley, K.C.; Hwang, H.H.; Greenberg, S.E.; Krapac, I.G.; Landsberger, S.; O’Kelly, D.J. Characterization and identification of Na-Cl sources in ground water. Ground Water 2006, 44, 176–187. [Google Scholar] [CrossRef]
- Xue, D.; Botte, J.; De Baets, B.; Accoe, F.; Nestler, A.; Taylor, P.; Van Cleemput, O.; Berglund, M.; Boeckx, P. Present limitations and future prospects of stable isotope methods for nitrate source identification in surface- and groundwater. Water Res. 2009, 43, 1159–1170. [Google Scholar] [CrossRef]
- Kendall, C. Tracing Nitrogen Sources and Cycling in Catchments; Elsevier B.V.: Amsterdam, The Netherlands, 1998; Volume 23, pp. 441–442. [Google Scholar] [CrossRef]
- Xue, D.; De Baets, B.; Van Cleemput, O.; Hennessy, C.; Berglund, M.; Boeckx, P. Use of a Bayesian isotope mixing model to estimate proportional contributions of multiple nitrate sources in surface water. Environ. Pollut. 2012, 161, 43–49. [Google Scholar] [CrossRef]
- Moore, J.W.; Semmens, B.X. Incorporating uncertainty and prior information into stable isotope mixing models. Ecol. Lett. 2008, 11, 470–480. [Google Scholar] [CrossRef]
- Parnell, A.C.; Inger, R.; Bearhop, S.; Jackson, A.L. Source partitioning using stable isotopes: Coping with too much variation. PLoS ONE 2010, 5, e9672. [Google Scholar] [CrossRef] [PubMed]
- Nakagawa, K.; Amano, H.; Takao, Y.; Hosono, T.; Berndtsson, R. On the use of coprostanol to identify source of nitrate pollution in groundwater. J. Hydrol. 2017, 550, 663–668. [Google Scholar] [CrossRef] [Green Version]
- Huang, J.; Xu, J.; Liu, X.; Liu, J.; Ramsankaran, R.; Wang, L.; Su, W. Geospatial based assessment of spatial variation of groundwater nitrate nitrogen in Shandong intensive farming regions of China. Sens. Lett. 2012, 10, 491–500. [Google Scholar] [CrossRef]
- Delgado, J.A.; Ascough, J.C.; Lighthart, N.; Neer, D. Potential use of a new nitrogen trading tool to assess nitrogen management practices to protect groundwater quality. Comput. Electron. Agric. 2020, 169, 105195. [Google Scholar] [CrossRef]
- Anornu, G.; Gibrilla, A.; Adomako, D. Tracking nitrate sources in groundwater and associated health risk for rural communities in the White Volta River basin of Ghana using isotopic approach (δ15N, δ18O-NO3 and 3H). Sci. Total Environ. 2017, 603–604, 687–698. [Google Scholar] [CrossRef]
- Kim, H.; Kaown, D.; Mayer, B.; Lee, J.Y.; Hyun, Y.; Lee, K.K. Identifying the sources of nitrate contamination of groundwater in an agricultural area (Haean basin, Korea) using isotope and microbial community analyses. Sci. Total Environ. 2015, 533, 566–575. [Google Scholar] [CrossRef]
- Liu, F.; Zhao, Z.; Yang, L.; Ma, Y.; Xu, Y.; Gong, L.; Liu, H. Geochemical characterization of shallow groundwater using multivariate statistical analysis and geochemical modeling in an irrigated region along the upper Yellow River, Northwestern China. J. Geochemical Explor. 2020, 215, 106565. [Google Scholar] [CrossRef]
- Liu, F.; Qian, H.; Shi, Z.; Wang, H. Long-term monitoring of hydrochemical characteristics and nitrogen pollution in the groundwater of Yinchuan area, Yinchuan basin of northwest China. Environ. Earth Sci. 2019, 78, 1–15. [Google Scholar] [CrossRef]
- Lambrakis, N.; Antonakos, A.; Panagopoulos, G. The use of multicomponent statistical analysis in hydrogeological environmental research. Water Res. 2004, 38, 1862–1872. [Google Scholar] [CrossRef]
- Matiatos, I. Nitrate source identification in groundwater of multiple land-use areas by combining isotopes and multivariate statistical analysis: A case study of Asopos basin (Central Greece). Sci. Total Environ. 2016, 541, 802–814. [Google Scholar] [CrossRef]
- Arauzo, M.; Martínez-Bastida, J.J. Environmental factors affecting diffuse nitrate pollution in the major aquifers of central Spain: Groundwater vulnerability vs. groundwater pollution. Environ. Earth Sci. 2015, 73, 8271–8286. [Google Scholar] [CrossRef] [Green Version]
- Ma, H.W.; Li, X.; Cui, J.; Yang, Z. A preliminary study on the Organic and Inorganic pollution of groundwater in Jiansanjiang Farm in Sanjiang Plain. Geol. Resour. 2014, 23, 38–41. (In Chinese) [Google Scholar]
- Lu, L.; Cheng, H.; Pu, X.; Liu, X.; Cheng, Q. Nitrate behaviors and source apportionment in an aquatic system from a watershed with intensive agricultural activities. Environ. Sci. Process. Impacts 2015, 17, 131–144. [Google Scholar] [CrossRef] [PubMed]
- Lockhart, K.M.; King, A.M.; Harter, T. Identifying sources of groundwater nitrate contamination in a large alluvial groundwater basin with highly diversified intensive agricultural production. J. Contam. Hydrol. 2013, 151, 140–154. [Google Scholar] [CrossRef] [PubMed]
- Andrade, A.I.A.S.S.; Stigter, T.Y. Multi-method assessment of nitrate and pesticide contamination in shallow alluvial groundwater as a function of hydrogeological setting and land use. Agric. Water Manag. 2009, 96, 1751–1765. [Google Scholar] [CrossRef]
- Nacry, P.; Bouguyon, E.; Gojon, A. Nitrogen acquisition by roots: Physiological and developmental mechanisms ensuring plant adaptation to a fluctuating resource. Plant Soil 2013, 370, 1–29. [Google Scholar] [CrossRef] [Green Version]
- Shan, L.; He, Y.; Chen, J.; Huang, Q.; Wang, H. Ammonia volatilization from a Chinese cabbage field under different nitrogen treatments in the Taihu Lake Basin, China. J. Environ. Sci. 2015, 38, 14–23. (In Chinese) [Google Scholar] [CrossRef]
- Brauns, B.; Bjerg, P.L.; Song, X.; Jakobsen, R. Field scale interaction and nutrient exchange between surface water and shallow groundwater in the Baiyang Lake region, North China Plain. J. Environ. Sci. 2015, 45, 60–75. (In Chinese) [Google Scholar] [CrossRef] [Green Version]
Average Value | Median Value | Minimum Value | Maximum Value | Standard Deviation | |
---|---|---|---|---|---|
NH4+-N (mg/L) | 0.31 | 0.20 | 0.00 | 2.50 | 0.44 |
NO3−-N (mg/L) | 1.8 | 0.3 | 0.2 | 11.6 | 2.8 |
NO3−-N (mg/L) | 0.015 | 0.006 | 0.001 | 0.215 | 0.033 |
EC (µs/cm) | 325.4 | 244.5 | 83.6 | 1296.0 | 223.3 |
DO (mg/L) | 3.94 | 3.52 | 1.52 | 9.85 | 1.69 |
Eh (mv) | 30.1 | 24.6 | −108.6 | 162.6 | 76.1 |
pH | 6.97 | 6.92 | 6.03 | 7.61 | 0.30 |
Categories | Significance Level (p) | Differences between Categories (Confidence Interval of 95%) | ||
---|---|---|---|---|
NH4+ | Land use type | CR a vs. P b | 0.001 | P > CR |
CR vs. W c | 0.421 | not significantly different | ||
CR vs. DR d | 0.044 | DR > R | ||
P vs. W | 0.002 | P > W | ||
P vs. DR | 0.302 | not significantly different | ||
W vs. DR | 0.108 | not significantly different | ||
Well depth | WU20 vs. WO20 | 0.004 | WO20 > WU20 | |
NO3− | Land use type | CR vs. P | 0.000 | CR > P |
CR vs. W | 0.508 | not significantly different | ||
CR vs. DR | 0.003 | CR > DR | ||
P vs. W | 0.004 | W > P | ||
P vs. DR | 0.134 | not significantly different | ||
W vs. DR | 0.037 | W > DR | ||
Well depth | WU20 vs. WO20 | 0.005 | WU20 > WO20 |
Quantitative Variables | Value | Qualitative Variables | Value | |
---|---|---|---|---|
NH4+ | The actual value of analysis | Land use type | Concentrated residential land, warehouse, vegetable field | 2 |
NO3− | Paddy field, decentralized residential land, livestock farm | 1 | ||
NO2− | Water richness of aquifer | Water-rich | 2 | |
Eh | Relatively water-rich | 1 | ||
DO | Landform pattern | Alluvial plain | 2 | |
EC | First terrace | 1 |
Well Depth | Water Depth | Eh | DO | EC | NH4+ | NO3− | NO2− | Land Use Type | Water Richness | Landform Pattern | |
---|---|---|---|---|---|---|---|---|---|---|---|
Well depth | 1.000 | 0.296 | −0.335 | 0.184 | −0.354 | 0.143 | −0.368 | −0.212 | −0.379 | −0.037 | −0.032 |
Water depth | 1.000 | −0.227 | 0.063 | −0.267 | 0.191 | −0.291 | −0.157 | −0.196 | −0.572 | −0.254 | |
Eh | 1.000 | −0.030 | 0.384 | −0.597 | 0.605 | 0.313 | 0.335 | 0.200 | 0.236 | ||
DO | 1.000 | 0.025 | −0.052 | 0.089 | −0.063 | 0.010 | −0.158 | 0.039 | |||
EC | 1.000 | −0.157 | 0.592 | 0.264 | 0.305 | 0.246 | 0.207 | ||||
NH4+ | 1.000 | −0.381 | −0.193 | −0.239 | −0.111 | −0.237 | |||||
NO3− | 1.000 | 0.572 | 0.479 | 0.169 | 0.001 | ||||||
NO2− | 1.000 | 0.311 | 0.181 | 0.045 | |||||||
Land use type | 1.000 | 0.299 | −0.006 | ||||||||
Water richness | 1.000 | 0.353 | |||||||||
Landform pattern | 1.000 |
Variables | Principal Factors | ||
---|---|---|---|
PC1 | PC2 | PC3 | |
NO3− | 0.855 | 0.038 | 0.261 |
Land use type | 0.671 | 0.104 | −0.034 |
Well depth | −0.660 | −0.073 | 0.254 |
NO2− | 0.636 | 0.028 | 0.037 |
Eh | 0.622 | 0.230 | 0.475 |
EC | 0.609 | 0.248 | 0.103 |
Landform pattern | 0.160 | 0.817 | −0.137 |
Water richness | −0.112 | 0.712 | 0.370 |
Water depth | −0.288 | −0.705 | 0.113 |
NH4+ | −0.358 | −0.214 | −0.644 |
DO | −0.122 | −0.200 | 0.638 |
Eigenvalue | 3.043 | 1.892 | 1.362 |
Cumulative % of variance | 27.667% | 44.864% | 57.244% |
Variables | Categories | Value |
---|---|---|
NH4+-N | <0.20 mg/L | AN1 |
≥0.20 and <0.50 mg/L | AN2 | |
≥0.5 mg/L | AN3 | |
NO3−-N | <1.0 mg/L | NN1 |
≥1.0 and <5.0 mg/L | NN2 | |
≥5.0 mg/L | NN3 | |
Eh | <0 mv | Reducing environment |
≥0 mv | Oxidizing environment | |
Well depth | ≤20 m | WU20 |
>20 m | WO20 | |
Land use type | Concentrated residential land, paddy field, warehouse, decentralized residential land, vegetable field, livestock farm |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Du, X.; Feng, J.; Fang, M.; Ye, X. Sources, Influencing Factors, and Pollution Process of Inorganic Nitrogen in Shallow Groundwater of a Typical Agricultural Area in Northeast China. Water 2020, 12, 3292. https://doi.org/10.3390/w12113292
Du X, Feng J, Fang M, Ye X. Sources, Influencing Factors, and Pollution Process of Inorganic Nitrogen in Shallow Groundwater of a Typical Agricultural Area in Northeast China. Water. 2020; 12(11):3292. https://doi.org/10.3390/w12113292
Chicago/Turabian StyleDu, Xinqiang, Jing Feng, Min Fang, and Xueyan Ye. 2020. "Sources, Influencing Factors, and Pollution Process of Inorganic Nitrogen in Shallow Groundwater of a Typical Agricultural Area in Northeast China" Water 12, no. 11: 3292. https://doi.org/10.3390/w12113292
APA StyleDu, X., Feng, J., Fang, M., & Ye, X. (2020). Sources, Influencing Factors, and Pollution Process of Inorganic Nitrogen in Shallow Groundwater of a Typical Agricultural Area in Northeast China. Water, 12(11), 3292. https://doi.org/10.3390/w12113292