Developing a Reliability Index of Low Impact Development for Urban Areas
Abstract
:1. Introduction
2. Methodologies
2.1. Overview
2.2. Generation of Synthetic Rainfall Data
2.3. Low Impact Development (LID) Scenarios
2.4. Simulation of Water Quality Using SWMM
2.5. Distance Measure Method
2.6. Development and Calculation Procedure of Reliability Index
2.7. Study Area
2.8. Modeling Approach and Scenario
3. Estimation of Reliability Index Factors
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- IPCC. Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; IPCC: Geneva, Switzerland, 2014; p. 151. [Google Scholar]
- Hirabayashi, Y.; Mahendran, R.; Koirala, S.; Konoshima, L.; Yamazaki, D.; Watanabe, S.; Kim, H.; Kanae, S. Global flood risk under climate change. Nat. Clim. Change 2013, 3, 816–821. [Google Scholar] [CrossRef]
- Rajapaksa, D.; Zhu, M.; Lee, B.; Hoang, V.N.; Wilson, C.; Managi, S. The impact of flood dynamics on property values. Land Use Policy 2017, 3, 317–325. [Google Scholar] [CrossRef]
- Alves, A.; Gersonius, B.; Kapelan, Z.; Vojinovic, Z.; Sanchez, A. Assessing the co-benefits of green-blue-grey infrastructure for sustainable urban flood risk management. J. Environ. Manag. 2019, 239, 244–254. [Google Scholar] [CrossRef] [PubMed]
- Ferguson, C.R.; Fenner, R.A. The potential for natural flood management to maintain free discharge at urban drainage outfalls. J. Flood Risk Manag. 2020, e2617. [Google Scholar] [CrossRef]
- Ebenstein, A. The consequences of industrialization: Evidence from water pollution and digestive cancers in China. Rev. Econ. Stat. 2012, 94, 186–201. [Google Scholar] [CrossRef] [Green Version]
- Elliott, A.H.; Trowsdale, S.A. A review of models for low impact urban stormwater drainage. Environ. Modell. Softw. 2007, 22, 394–405. [Google Scholar] [CrossRef]
- USEPA. Low Impact Development (LID), A Literature Review. USEPA Office of Water (4203), EPA-841-B-00-005, Washington, DC 20460. Available online: http://www.epa.gov/nps/lid/lidlit.html (accessed on 11 October 2019).
- Montalto, F.; Behr, C.; Alfredo, K.; Wolf, M.; Arye, M.; Walsh, M. Rapid Assessment of the Cost-Effectiveness of Low Impact Development for CSO Control. Landsc. Urban Plan. 2007, 82, 117–131. [Google Scholar] [CrossRef]
- National Stormwater Calculator User’s Guide; EPA/600/R-13/085; United States Environmental Protection Agency: Washington, DC, USA, 2013.
- Bouziotas, D.; van Duuren, D.; van Alphen, H.J.; Frijns, J.; Nikolopoulos, D.; Makropoulos, C. Towards circular water neighborhoods: Simulation-based decision support for integrated decentralized urban water systems. Water 2019, 11, 1227. [Google Scholar] [CrossRef] [Green Version]
- Madonsela, B.; Koop, S.; Van Leeuwen, K.; Carden, K. Evaluation of water governance processes required to transition towards water sensitive urban design—An indicator assessment approach for the City of Cape Town. Water 2019, 11, 292. [Google Scholar] [CrossRef] [Green Version]
- Fan, M.; Shibata, H.; Chen, L. Spatial priority conservation areas for water yield ecosystem service under climate changes in Teshio Watershed, Northernmost Japan. J. Water Clim. Chang. 2020, 11, 106–129. [Google Scholar] [CrossRef]
- Department of Environmental Resources. Programs, & Planning Division. In Low-Impact Development: An Integrated Design Approach; Department of Environmental Resource Programs and Planning Division: Prince George’s County, MD, USA, 1999. [Google Scholar]
- Wang, J.L.; Che, W.; Yi, H.X. Low impact development for urban stormwater and flood control and utilization. China Water Wastewater 2009, 16, 14. [Google Scholar]
- Zimmer, C.A.; Heathcote, I.W.; Whiteley, H.R.; Schroter, H. Low-Impact-Development Practices for Stormwater: Implications for Urban Hydrology. Can. Water Resour. J. 2007, 32, 193–212. [Google Scholar] [CrossRef]
- Hyland, S.E. Analysis of Sinkhole Susceptibility and Karst Distribution in the Northern Shenandoah Valley, Virginia: Implications for Low Impact Development (LID) Site Suitability Models. Ph.D. Thesis, Virginia Polytechnic Institute, Blacksburg, VA, USA, 2005. [Google Scholar]
- Dietz, M.E. Low impact development practices: A review of current research and recommendations for future directions. Water Air Soil Pollut. 2007, 186, 351–363. [Google Scholar] [CrossRef]
- Sadeghi, K.M.; Kharaghani, S.; Tam, W.; Gaerlan, N.; Loáiciga, H. Avalon green alley network: Low impact development (LID). In Proceedings of the World Environmental and Water Resources Congress, Los Angeles, CA, USA, 22–26 May 2016; pp. 205–214, Demonstration Project in Los Angeles. [Google Scholar]
- Ahiablame, L.M.; Engel, B.A.; Chaubey, I. Effectiveness of low impact development practices: Literature review and suggestions for future research. Water Air Soil Pollut. 2012, 223, 4253–4273. [Google Scholar] [CrossRef]
- Newman, G.; Sohn, W.M.; Li, M.H. Performance evaluation of low impact development: Groundwater infiltration in a drought prone landscape in Conroe, Texas. Landsc. Archit. Front. 2014, 2, 122–134. [Google Scholar]
- Guerra, H.B.; Kim, Y. Understanding the performance and applicability of low impact development structures under varying infiltration rates. KSCE J. Civ. Eng. 2020, 24, 1430–1438. [Google Scholar] [CrossRef]
- Ahiablame, L.M.; Engel, B.A.; Chaubey, I. Effectiveness of low impact development practices in two urbanized watersheds: Retrofitting with rain Barrel/Cistern and porous pavement. J. Environ. Manag. 2013, 119, 151–161. [Google Scholar] [CrossRef]
- Joksimovic, D.; Alam, Z. Cost efficiency of low impact development (LID) stormwater management practices. Procedia Eng. 2014, 89, 734–741. [Google Scholar] [CrossRef] [Green Version]
- Alfredo, K.; Montalto, F.; Goldstein, A. Observed and modeled performances of prototype green roof test plots subjected to simulated low- and high-intensity precipitations in a laboratory experiment. J. Hydrol. Eng. 2010, 15, 444–457. [Google Scholar] [CrossRef]
- Martin-Mikle, C.J.; de Beurs, K.M.; Julian, J.P.; Mayer, P.M. Identifying priority sites for low impact development (LID) in a mixed-use watershed. Landsc. Urban Plan. 2015, 140, 29–41. [Google Scholar] [CrossRef] [Green Version]
- Hatt, B.E.; Fletcher, T.D.; Deletic, A. Hydraulic and pollutant removal performance of fine media stormwater filtration systems. Environ. Sci. Technol. 2008, 42, 2535–2541. [Google Scholar] [CrossRef]
- Dietz, M.E.; Clausen, J.C. Stormwater runoff and export changes with development in a traditional and low impact subdivision. J. Environ. Manag. 2008, 87, 560–566. [Google Scholar] [CrossRef]
- Ahiablame, L.; Shakya, R. Modeling flood reduction effects of low impact development at a watershed scale. J. Environ. Manag. 2016, 171, 81–91. [Google Scholar] [CrossRef]
- Aerts, J.C.J.H.; Botzen, W.J.; Clarke, K.C.; Cutter, S.L.; Hall, J.W.; Merz, B.; Michel-Kerjan, E.; Mysiak, J.; Surminski, S.; Kunreuther, H. Integrating human behaviour dynamics into flood disaster risk assessment. Nat. Clim. Chang. 2018, 8, 193–199. [Google Scholar] [CrossRef] [Green Version]
- Schumann, G.J.; Brakenridge, G.R.; Kettner, A.J.; Kashif, R.; Niebuhr, E. Assisting flood disaster response with Earth observation data and products: A critical assessment. Remote Sens. 2018, 10, 1230. [Google Scholar] [CrossRef] [Green Version]
- Park, J.A. Risk Evaluation and Uncertainty Analysis in Urban Sewer System. Master’s Thesis, Daejin University, Pocheon, Korea, 2009. [Google Scholar]
- Campana, P.E.; Quan, S.J.; Robbio, F.I.; Lundblad, A.; Zhang, Y.; Ma, T.; Karlsson, B.; Yan, J. Optimization of a residential district with special consideration on energy and water reliability. Appl. Energy 2017, 194, 751–764. [Google Scholar] [CrossRef]
- Kowalski, D.; Kowalska, B.; Bławucki, T.; Suchorab, P.; Gaska, K. Impact assessment of distribution network layout on the reliability of water delivery. Water 2019, 11, 480. [Google Scholar] [CrossRef] [Green Version]
- Kumar, R.; Musuuza, J.L.; Van Loon, A.F.; Teuling, A.J.; Barthel, R.; Ten Broek, J.; Mai, J.; Samaniego, L.; Attinger, S. Multiscale Evaluation of the standardized precipitation index as a groundwater drought indicator. Hydrol. Earth Syst. Sci. 2016, 20, 1117–1131. [Google Scholar] [CrossRef] [Green Version]
- Sadeghfam, S.; Ehsanitabar, A.; Khatibi, R.; Daneshfaraz, R. Investigating ‘risk’ of groundwater drought occurrences by using reliability analysis. Ecol. Indic. 2018, 40, 170–184. [Google Scholar] [CrossRef]
- Lee, G.M. Water supply performance assessment of multipurpose dams using sustainability index. J. Korea Water Resour. Assoc. 2014, 47, 411–420. [Google Scholar] [CrossRef]
- Gouri, R.L.; Srinivas, V.V. A fuzzy approach to reliability based design of storm water drain network. Stoch. Environ. Res. Risk Assess. 2017, 31, 1091–1106. [Google Scholar] [CrossRef]
- Dauji, S. Reliability analysis for water supply distribution and storm water drainage systems: State of the art review. Clim. Chang. Environ. Sustain. 2019, 7, 3–13. [Google Scholar] [CrossRef]
- Lee, J.H. Development of a reliability estimation method for the storm sewer network. J. Korean Soc. Hazard Mitig. 2012, 12, 225–230. [Google Scholar] [CrossRef]
- Lee, J.H.; Park, M.J. A reliability evaluation method of storm sewer networks for excessive rainfall events. J. Korean Soc. Hazard Mitig. 2012, 12, 195–201. [Google Scholar]
- Lee, E.H.; Kim, J.H. Development of a reliability index considering flood damage for urban drainage systems. KSCE J. Civ. Eng. 2019, 23, 1872–1880. [Google Scholar] [CrossRef]
- Rossman, L.A.; Huber, W. Storm Water Management Model Reference Manual Volume I—Hydrology (Revised); United States Environmental Protection Agency: Cincinnati, OH, USA, 2016.
- Rossman, L.A.; Huber, W. Storm Water Management Model Reference Manual Volume II—Hydraulics; United States Environmental Protection Agency: Washington, DC, USA, 2017; 190p.
- USEPA. Storm Water Management Model User’s Manual Version 5.0; United States Environmental Protection Agency: Washington, DC, USA, 2010.
- Ministry of the Environment. Study on Appropriate Treatment & Management of the Public Sewage Treatment Works Entering the Industrial Wastewater; Ministry of the Environment: Sejong, Korea, 2011; Volume 50.
- Huff, F.A. Time distribution of rainfall in heavy storms. Water Resour. Res. 1967, 3, 1007–1019. [Google Scholar] [CrossRef]
- Korea Precipitation Frequency Data Server. Available online: www.k-idf.re.kr (accessed on 21 October 2020).
- Yoo, C.S.; and Na, W.Y. Analysis of a conventional Huff model at Seoul station and proposal of an improvisation method. J. Korean Soc. Hazard. Mitig 2019, 19, 43–55. [Google Scholar] [CrossRef]
- Rossman, L.A.; Huber, W.C. Storm Water Management Model Reference Manual Volume III—Water Quality; US Environmental Protection Agency: Wahshington, DC, USA; Office of Research and Development, National; Risk Book Company Management Laboratory: Cincinnati, OH, USA, 2016.
- Holzbauer-Schweitzer, B. Evaluating low impact development best management practices as an alternative to traditional urban stormwater management. Master’s Thesis, University of Oklahoma, Norman, OK, USA, 2016. [Google Scholar]
- Garsdal, H.; Mark, O.; Dørge, J.; Jepsen, S.E. Mousetrap: Modelling of water quality processes and the interaction of sediments and pollutants in sewers. Water Sci. Technol. 1995, 31, 33–41. [Google Scholar] [CrossRef]
- National Institute of Environment Research. Total Amount of Water Pollution Control Technology Guidelines; National Institute of Environment Research: Incheon, Korea, 2014.
- National Institute of Environment Research. Evaluation of Pollutants Reduction for Control of the Total Amount of Water Pollution; National Institute of Environment Research: Incheon, Korea, 2015.
- The Ministry of Environment of Korea. Sewage System Monitoring and Modeling Guidelines during Rainfall; Korea Environment Corporation: Incheon, Korea, 2018.
- Yeon, J.S.; Jang, Y.S.; Lee, J.H.; Shin, H.S.; Kim, E.S. Analysis of stormwater runoff characteristics for spatial distribution of LID element techniques Using SWMM. J. Korea Acad. Ind. Coop. Soc. 2014, 15, 3983–3989. [Google Scholar]
- Yeon, J.S. Estimation of Optimal Design Runoff Depth at Low Impact Development (LID) Facilities. Master’s Thesis, Department of Civil Engineering, Sun Moon University, Chungcheongnam-do, Korea, 2015. [Google Scholar]
- Seoul Metropolitan Government. Report on Design and Expansion of Daerim 3; Seoul Metropolitan Government: Seoul, Korea, 2010; pp. 54–58.
- Seoul Information Communication Plaza Data Server. Available online: http://opengov.seoul.go.kr (accessed on 24 August 2020).
- The Government of New York. Sustainable Stormwater Management Plan. Progress Report. Server. Available online: http://www.nyc.gov/html/planyc/downloads/pdf/publications/sustainable_stormwater_mgmt_plan_progress_report_october_2012.pdf (accessed on 24 August 2020).
Frequency | 30 Years | 50 Years | 70 Years | 80 Years | 100 Years | |
---|---|---|---|---|---|---|
Duration | ||||||
30 min | 55.2 | 58.8 | 61.1 | 61.8 | 63.4 | |
60 min | 85.7 | 91.5 | 95.2 | 96.6 | 99.0 |
Layer | Parameter | Unit | Permeable Pavement | Green Roof | Infiltration Trench |
---|---|---|---|---|---|
Surface | Berm Height | mm | 25.0 | 25.0 | 0.0 |
Vegetation Volume Fraction | - | 0.0 | 0.0 | 0.0 | |
Surface Roughness | - | 0.0 | 0.0 | 0.2 | |
Surface Slope | percent | 1.0 | 0.0 | 0.4 | |
Soil | Thickness | mm | 0.0 | 150.0 | - |
Porosity | - | 0.5 | 0.6 | - | |
Field Capacity | - | 0.2 | 0.3 | - | |
Wilting Point | - | 0.1 | 0.0 | - | |
Conductivity | mm/h | 0.5 | 64.0 | - | |
Conductivity Slope | - | 10.0 | 5.0 | - | |
Suction Head | mm | 3.5 | 75.0 | - | |
Storage | Thickness | mm | 300.0 | 25.0 | 36.0 |
Void Ratio | - | 0.7 | 0.7 | 0.4 | |
Seepage Rate | mm/h | 1.0 | 0.0 | 0.2 | |
Pavement | Thickness | mm | 150.0 | - | - |
Void Ratio | - | 0.2 | - | - | |
Impervious Surface Fraction | - | 0.0 | - | - | |
Permeability | mm/h | 500.0 | - | - | |
Underdrain | Flow Coefficient | - | 0.3 | 50.0 | 0.0 |
Flow Exponent | - | 0.5 | 0.5 | 0.5 | |
Offset Height | mm | 100.0 | 0.0 | 0.0 | |
Drainage Mat | Thickness | mm | - | 1.0 | - |
Void Fraction | - | - | 0.5 | - |
No. | Parameter | Unit | Residential Area |
---|---|---|---|
1 | BOD | Max.Buildup (kg/km2) | 3.14 |
Rate Constant (1/day) | 0.32 | ||
2 | TSS | Max.Buildup (kg/km2) | 27.08 |
Rate Constant (1/day) | 0.28 |
Category | Specification |
---|---|
Address | Dorimcheon-ro 21, Gwanak-gu, Seoul, Republic of Korea |
Area (ha) | 20.6 |
Number of nodes/links (EA) | 34/34 |
Number of outlets (EA) | 1 |
Watershed direction | The Dorim Stream of Korea |
Pumping facilities | 250 HP × 3 Pump (112 m3/min) |
Pumping draining capacity(m3/min) | 336 |
Scenario No. | Description (Combination of Facility) | Analysis Type | |
---|---|---|---|
1 | OG | Original Subcatchment Conditions | No LID |
2 | PP | Permeable Pavements (A = 1200 m2) | After LID (Type A) |
3 | GR | Green Roof (A = 1200 m2) | |
4 | IT | Infiltration Trench (A = 1200 m2) | |
5 | PP + GR | Permeable Pavements (A = 600 m2), Green Roof (A = 600 m2) | After LIDs (Type B) |
6 | PP + IT | Permeable Pavements (A = 600 m2), Infiltration Trench (A = 600 m2) | |
7 | GR + IT | Green Roof (A = 600 m2), Infiltration Trench (A = 600 m2) | |
8 | PP + GR + IT | Permeable Pavements (A = 400 m2), Green Roof (A = 400 m2), Infiltration Trench (A = 400 m2) |
Flood Volume (Vi) (m3) | |||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Duration | Scenario 1 (OG) | Scenario 2 (PP) | Scenario 3 (GR) | Scenario 4 (IT) | Scenario 5 (PP + GR) | Scenario 6 (PP + IT) | Scenario 7 (GR + IT) | Scenario 8 (PP + GR + IT) | |||||||||
Frequency | 30 min | 60 min | 30 min | 60 min | 30 min | 60 min | 30 min | 60 min | 30 min | 60 min | 30 min | 60 min | 30 min | 60 min | 30 min | 60 min | |
30 years | 4 | 0 | 4 | 0 | 4 | 0 | 4 | 0 | 4 | 0 | 4 | 0 | 4 | 0 | 4 | 0 | |
50 years | 22 | 0 | 18 | 0 | 18 | 0 | 18 | 0 | 18 | 0 | 18 | 0 | 18 | 0 | 18 | 0 | |
70 years | 98 | 271 | 49 | 39 | 49 | 42 | 56 | 102 | 49 | 39 | 54 | 82 | 54 | 84 | 53 | 61 | |
80 years | 136 | 468 | 87 | 277 | 87 | 280 | 97 | 318 | 87 | 280 | 95 | 311 | 95 | 312 | 96 | 301 | |
100 years | 230 | 734 | 181 | 578 | 179 | 582 | 188 | 623 | 180 | 578 | 185 | 602 | 185 | 604 | 183 | 600 | |
Maximum Runoff Volume per minute (Ri × A) (m3) | |||||||||||||||||
Duration | Scenario 1 (OG) | Scenario 2 (PP) | Scenario 3 (GR) | Scenario 4 (IT) | Scenario 5 (PP + GR) | Scenario 6 (PP + IT) | Scenario 7 (GR + IT) | Scenario 8 (PP + GR + IT) | |||||||||
Frequency | 30 min | 60 min | 30 min | 60 min | 30 min | 60 min | 30 min | 60 min | 30 min | 60 min | 30 min | 60 min | 30 min | 60 min | 30 min | 60 min | |
30 years | 934.8 | 728.9 | 934.8 | 728.9 | 934.8 | 728.9 | 934.8 | 728.9 | 934.8 | 728.9 | 934.8 | 728.9 | 934.8 | 728.9 | 934.8 | 728.9 | |
50 years | 994.5 | 778.3 | 994.5 | 778.3 | 994.5 | 778.3 | 994.5 | 778.3 | 994.5 | 778.3 | 994.5 | 778.3 | 994.5 | 778.3 | 994.5 | 778.3 | |
70 years | 1034 | 809.2 | 1034 | 809.2 | 1034 | 809.2 | 1034 | 809.2 | 1034 | 809.2 | 1034 | 809.2 | 1034 | 809.2 | 1034 | 809.2 | |
80 years | 1046 | 821.5 | 1046 | 821.5 | 1046 | 821.5 | 1046 | 821.5 | 1046 | 821.5 | 1046 | 821.5 | 1046 | 821.5 | 1046 | 821.5 | |
100 years | 1073 | 842.1 | 1073 | 842.1 | 1073 | 842.1 | 1073 | 842.1 | 1073 | 842.1 | 1073 | 842.1 | 1073 | 842.1 | 1073 | 842.1 | |
Vi/(Ri × A) | |||||||||||||||||
Duration | Scenario 1 (OG) | Scenario 2 (PP) | Scenario 3 (GR) | Scenario 4 (IT) | Scenario 5 (PP + GR) | Scenario 6 (PP + IT) | Scenario 7 (GR + IT) | Scenario 8 (PP + GR + IT) | |||||||||
Frequency | 30 min | 60 min | 30 min | 60 min | 30 min | 60 min | 30 min | 60 min | 30 min | 60 min | 30 min | 60 min | 30 min | 60 min | 30 min | 60 min | |
30 years | 0.004 | 0.000 | 0.004 | 0.000 | 0.004 | 0.000 | 0.004 | 0.000 | 0.004 | 0.000 | 0.004 | 0.000 | 0.004 | 0.000 | 0.004 | 0.000 | |
50 years | 0.022 | 0.000 | 0.018 | 0.000 | 0.018 | 0.000 | 0.018 | 0.000 | 0.018 | 0.000 | 0.018 | 0.000 | 0.018 | 0.000 | 0.018 | 0.000 | |
70 years | 0.095 | 0.335 | 0.047 | 0.048 | 0.047 | 0.052 | 0.054 | 0.126 | 0.047 | 0.048 | 0.052 | 0.101 | 0.052 | 0.104 | 0.051 | 0.075 | |
80 years | 0.130 | 0.570 | 0.083 | 0.337 | 0.083 | 0.341 | 0.093 | 0.387 | 0.083 | 0.341 | 0.091 | 0.379 | 0.091 | 0.380 | 0.092 | 0.366 | |
100 years | 0.214 | 0.872 | 0.169 | 0.686 | 0.167 | 0.691 | 0.175 | 0.740 | 0.168 | 0.686 | 0.172 | 0.715 | 0.172 | 0.717 | 0.171 | 0.712 | |
{Vi/(Ri × A)}2 | |||||||||||||||||
Duration | Scenario 1 (OG) | Scenario 2 (PP) | Scenario 3 (GR) | Scenario 4 (IT) | Scenario 5 (PP + GR) | Scenario 6 (PP + IT) | Scenario 7 (GR + IT) | Scenario 8 (PP + GR + IT) | |||||||||
Frequency | 30 min | 60 min | 30 min | 60 min | 30 min | 60 min | 30 min | 60 min | 30 min | 60 min | 30 min | 60 min | 30 min | 60 min | 30 min | 60 min | |
30 years | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | |
50 years | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | |
70 years | 0.009 | 0.112 | 0.002 | 0.002 | 0.002 | 0.003 | 0.003 | 0.016 | 0.002 | 0.002 | 0.003 | 0.010 | 0.003 | 0.011 | 0.003 | 0.006 | |
80 years | 0.017 | 0.325 | 0.007 | 0.114 | 0.007 | 0.116 | 0.009 | 0.150 | 0.007 | 0.116 | 0.008 | 0.143 | 0.008 | 0.144 | 0.008 | 0.134 | |
100 years | 0.046 | 0.760 | 0.028 | 0.471 | 0.028 | 0.478 | 0.031 | 0.547 | 0.028 | 0.471 | 0.030 | 0.511 | 0.030 | 0.514 | 0.029 | 0.508 | |
Mean | 0.127 | 0.062 | 0.063 | 0.076 | 0.063 | 0.071 | 0.071 | 0.069 | |||||||||
SD | 0.232 | 0.140 | 0.142 | 0.163 | 0.140 | 0.153 | 0.153 | 0.152 | |||||||||
RV | 0.873 | 0.937 | 0.937 | 0.924 | 0.937 | 0.929 | 0.929 | 0.931 |
Flood Nodes (Ni) | |||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Duration | Scenario 1 (OG) | Scenario 2 (PP) | Scenario 3 (GR) | Scenario 4 (IT) | Scenario 5 (PP + GR) | Scenario 6 (PP + IT) | Scenario 7 (GR + IT) | Scenario 8 (PP + GR + IT) | |||||||||
Frequency | 30 min | 60 min | 30 min | 60 min | 30 min | 60 min | 30 min | 60 min | 30 min | 60 min | 30 min | 60 min | 30 min | 60 min | 30 min | 60 min | |
30 years | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | |
50 years | 3 | 0 | 2 | 0 | 2 | 0 | 2 | 0 | 2 | 0 | 2 | 0 | 2 | 0 | 2 | 0 | |
70 years | 8 | 10 | 7 | 2 | 7 | 2 | 7 | 6 | 7 | 2 | 7 | 5 | 7 | 6 | 7 | 4 | |
80 years | 10 | 14 | 8 | 11 | 8 | 10 | 9 | 11 | 8 | 10 | 8 | 9 | 8 | 10 | 9 | 10 | |
100 years | 9 | 14 | 10 | 16 | 10 | 15 | 11 | 10 | 10 | 15 | 10 | 13 | 10 | 14 | 10 | 16 | |
Total amount of rainfall (NT) | |||||||||||||||||
34 at all durations and frequencies | |||||||||||||||||
Ni/NT | |||||||||||||||||
Duration | Scenario 1 (OG) | Scenario 2 (PP) | Scenario 3 (GR) | Scenario 4 (IT) | Scenario 5 (PP + GR) | Scenario 6 (PP + IT) | Scenario 7 (GR + IT) | Scenario 8 (PP + GR + IT) | |||||||||
Frequency | 30 min | 60 min | 30 min | 60 min | 30 min | 60 min | 30 min | 60 min | 30 min | 60 min | 30 min | 60 min | 30 min | 60 min | 30 min | 60 min | |
30 years | 0.029 | 0.000 | 0.029 | 0.000 | 0.029 | 0.000 | 0.029 | 0.000 | 0.029 | 0.000 | 0.029 | 0.000 | 0.029 | 0.000 | 0.029 | 0.000 | |
50 years | 0.088 | 0.000 | 0.059 | 0.000 | 0.059 | 0.000 | 0.059 | 0.000 | 0.059 | 0.000 | 0.059 | 0.000 | 0.059 | 0.000 | 0.059 | 0.000 | |
70 years | 0.235 | 0.294 | 0.206 | 0.059 | 0.206 | 0.059 | 0.206 | 0.176 | 0.206 | 0.059 | 0.206 | 0.147 | 0.206 | 0.176 | 0.206 | 0.118 | |
80 years | 0.294 | 0.412 | 0.235 | 0.324 | 0.235 | 0.294 | 0.265 | 0.324 | 0.235 | 0.294 | 0.235 | 0.265 | 0.235 | 0.294 | 0.265 | 0.294 | |
100 years | 0.265 | 0.412 | 0.294 | 0.471 | 0.294 | 0.441 | 0.324 | 0.294 | 0.294 | 0.441 | 0.294 | 0.382 | 0.294 | 0.412 | 0.294 | 0.471 | |
(Ni/NT)2 | |||||||||||||||||
Duration | Scenario 1 (OG) | Scenario 2 (PP) | Scenario 3 (GR) | Scenario 4 (IT) | Scenario 5 (PP + GR) | Scenario 6 (PP + IT) | Scenario 7 (GR + IT) | Scenario 8 (PP + GR + IT) | |||||||||
Frequency | 30 min | 60 min | 30 min | 60 min | 30 min | 60 min | 30 min | 60 min | 30 min | 60 min | 30 min | 60 min | 30 min | 60 min | 30 min | 60 min | |
30 years | 0.001 | 0.000 | 0.001 | 0.000 | 0.001 | 0.000 | 0.001 | 0.000 | 0.001 | 0.000 | 0.001 | 0.000 | 0.001 | 0.000 | 0.001 | 0.000 | |
50 years | 0.008 | 0.000 | 0.003 | 0.000 | 0.003 | 0.000 | 0.003 | 0.000 | 0.003 | 0.000 | 0.003 | 0.000 | 0.003 | 0.000 | 0.003 | 0.000 | |
70 years | 0.055 | 0.087 | 0.042 | 0.003 | 0.042 | 0.003 | 0.042 | 0.031 | 0.042 | 0.003 | 0.042 | 0.022 | 0.042 | 0.031 | 0.042 | 0.014 | |
80 years | 0.087 | 0.170 | 0.055 | 0.105 | 0.055 | 0.087 | 0.070 | 0.105 | 0.055 | 0.087 | 0.055 | 0.070 | 0.055 | 0.087 | 0.070 | 0.087 | |
100 years | 0.070 | 0.170 | 0.087 | 0.221 | 0.087 | 0.195 | 0.105 | 0.087 | 0.087 | 0.195 | 0.087 | 0.146 | 0.087 | 0.170 | 0.087 | 0.221 | |
Mean | 0.065 | 0.052 | 0.047 | 0.044 | 0.047 | 0.043 | 0.048 | 0.053 | |||||||||
SD | 0.062 | 0.067 | 0.060 | 0.042 | 0.060 | 0.046 | 0.052 | 0.066 | |||||||||
RN | 0.935 | 0.948 | 0.953 | 0.956 | 0.953 | 0.957 | 0.952 | 0.947 |
BOD Pollutant Loads in Outfall (OB) (kg) | |||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Duration | Scenario 1 (OG) | Scenario 2 (PP) | Scenario 3 (GR) | Scenario 4 (IT) | Scenario 5 (PP + GR) | Scenario 6 (PP + IT) | Scenario 7 (GR + IT) | Scenario 8 (PP + GR + IT) | |||||||||
Frequency | 30 min | 60 min | 30 min | 60 min | 30 min | 60 min | 30 min | 60 min | 30 min | 60 min | 30 min | 60 min | 30 min | 60 min | 30 min | 60 min | |
30 years | 0.020 | 0.017 | 0.016 | 0.014 | 0.016 | 0.014 | 0.015 | 0.014 | 0.016 | 0.014 | 0.015 | 0.014 | 0.015 | 0.014 | 0.015 | 0.014 | |
50 years | 0.020 | 0.017 | 0.016 | 0.014 | 0.016 | 0.014 | 0.016 | 0.014 | 0.016 | 0.014 | 0.016 | 0.014 | 0.016 | 0.014 | 0.016 | 0.014 | |
70 years | 0.021 | 0.017 | 0.016 | 0.014 | 0.016 | 0.014 | 0.016 | 0.014 | 0.016 | 0.014 | 0.016 | 0.014 | 0.016 | 0.014 | 0.016 | 0.014 | |
80 years | 0.021 | 0.017 | 0.016 | 0.014 | 0.016 | 0.014 | 0.016 | 0.014 | 0.016 | 0.014 | 0.016 | 0.014 | 0.016 | 0.014 | 0.016 | 0.014 | |
100 years | 0.021 | 0.017 | 0.016 | 0.014 | 0.016 | 0.014 | 0.016 | 0.014 | 0.016 | 0.014 | 0.016 | 0.014 | 0.016 | 0.014 | 0.016 | 0.014 | |
BOD Pollutant Loads in the Total Subcatchment (LB) (kg) | |||||||||||||||||
Duration | Scenario 1 (OG) | Scenario 2 (PP) | Scenario 3 (GR) | Scenario 4 (IT) | Scenario 5 (PP + GR) | Scenario 6 (PP + IT) | Scenario 7 (GR + IT) | Scenario 8 (PP + GR + IT) | |||||||||
Frequency | 30 min | 60 min | 30 min | 60 min | 30 min | 60 min | 30 min | 60 min | 30 min | 60 min | 30 min | 60 min | 30 min | 60 min | 30 min | 60 min | |
30 years | 0.026 | 0.029 | 0.026 | 0.029 | 0.026 | 0.029 | 0.026 | 0.029 | 0.026 | 0.029 | 0.026 | 0.029 | 0.026 | 0.029 | 0.026 | 0.029 | |
50 years | 0.033 | 0.030 | 0.033 | 0.030 | 0.033 | 0.030 | 0.033 | 0.030 | 0.033 | 0.030 | 0.033 | 0.030 | 0.033 | 0.030 | 0.033 | 0.030 | |
70 years | 0.033 | 0.028 | 0.033 | 0.028 | 0.033 | 0.028 | 0.033 | 0.028 | 0.033 | 0.028 | 0.033 | 0.028 | 0.033 | 0.028 | 0.033 | 0.028 | |
80 years | 0.032 | 0.028 | 0.032 | 0.028 | 0.032 | 0.028 | 0.032 | 0.028 | 0.032 | 0.028 | 0.032 | 0.028 | 0.032 | 0.028 | 0.032 | 0.028 | |
100 years | 0.031 | 0.026 | 0.031 | 0.026 | 0.031 | 0.026 | 0.031 | 0.026 | 0.031 | 0.026 | 0.031 | 0.026 | 0.031 | 0.026 | 0.031 | 0.026 | |
OB/LB | |||||||||||||||||
Duration | Scenario 1 (OG) | Scenario 2 (PP) | Scenario 3 (GR) | Scenario 4 (IT) | Scenario 5 (PP + GR) | Scenario 6 (PP + IT) | Scenario 7 (GR + IT) | Scenario 8 (PP + GR + IT) | |||||||||
Frequency | 30 min | 60 min | 30 min | 60 min | 30 min | 60 min | 30 min | 60 min | 30 min | 60 min | 30 min | 60 min | 30 min | 60 min | 30 min | 60 min | |
30 years | 0.770 | 0.583 | 0.616 | 0.480 | 0.616 | 0.480 | 0.577 | 0.480 | 0.616 | 0.480 | 0.577 | 0.480 | 0.577 | 0.480 | 0.577 | 0.480 | |
50 years | 0.604 | 0.569 | 0.483 | 0.469 | 0.483 | 0.469 | 0.483 | 0.469 | 0.483 | 0.469 | 0.483 | 0.469 | 0.483 | 0.469 | 0.483 | 0.469 | |
70 years | 0.644 | 0.606 | 0.490 | 0.499 | 0.490 | 0.499 | 0.490 | 0.499 | 0.490 | 0.499 | 0.490 | 0.499 | 0.490 | 0.499 | 0.490 | 0.499 | |
80 years | 0.660 | 0.617 | 0.503 | 0.508 | 0.503 | 0.508 | 0.503 | 0.508 | 0.503 | 0.508 | 0.503 | 0.508 | 0.503 | 0.508 | 0.503 | 0.508 | |
100 years | 0.676 | 0.645 | 0.515 | 0.531 | 0.515 | 0.531 | 0.515 | 0.531 | 0.515 | 0.531 | 0.515 | 0.531 | 0.515 | 0.531 | 0.515 | 0.531 | |
(OB/LB)2 | |||||||||||||||||
Duration | Scenario 1 (OG) | Scenario 2 (PP) | Scenario 3 (GR) | Scenario 4 (IT) | Scenario 5 (PP + GR) | Scenario 6 (PP + IT) | Scenario 7 (GR + IT) | Scenario 8 (PP + GR + IT) | |||||||||
Frequency | 30 min | 60 min | 30 min | 60 min | 30 min | 60 min | 30 min | 60 min | 30 min | 60 min | 30 min | 60 min | 30 min | 60 min | 30 min | 60 min | |
30 years | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | |
50 years | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | |
70 years | 0.009 | 0.112 | 0.002 | 0.002 | 0.002 | 0.003 | 0.003 | 0.016 | 0.002 | 0.002 | 0.003 | 0.010 | 0.003 | 0.011 | 0.003 | 0.006 | |
80 years | 0.017 | 0.325 | 0.007 | 0.114 | 0.007 | 0.116 | 0.009 | 0.150 | 0.007 | 0.116 | 0.008 | 0.143 | 0.008 | 0.144 | 0.008 | 0.134 | |
100 years | 0.046 | 0.760 | 0.028 | 0.471 | 0.028 | 0.478 | 0.031 | 0.547 | 0.028 | 0.471 | 0.030 | 0.511 | 0.030 | 0.514 | 0.029 | 0.508 | |
Mean | 0.127 | 0.062 | 0.063 | 0.076 | 0.063 | 0.071 | 0.071 | 0.069 | |||||||||
SD | 0.232 | 0.140 | 0.142 | 0.163 | 0.140 | 0.153 | 0.153 | 0.152 | |||||||||
RB | 0.798 | 0.838 | 0.838 | 0.840 | 0.838 | 0.840 | 0.840 | 0.840 |
TSS Pollutant Loads in Outfall (OT) (kg) | |||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Duration | Scenario 1 (OG) | Scenario 2 (PP) | Scenario 3 (GR) | Scenario 4 (IT) | Scenario 5 (PP + GR) | Scenario 6 (PP + IT) | Scenario 7 (GR + IT) | Scenario 8 (PP + GR + IT) | |||||||||
Frequency | 30 min | 60 min | 30 min | 60 min | 30 min | 60 min | 30 min | 60 min | 30 min | 60 min | 30 min | 60 min | 30 min | 60 min | 30 min | 60 min | |
30 years | 0.160 | 0.151 | 0.128 | 0.135 | 0.128 | 0.135 | 0.127 | 0.135 | 0.128 | 0.135 | 0.127 | 0.135 | 0.127 | 0.135 | 0.128 | 0.136 | |
50 years | 0.158 | 0.149 | 0.127 | 0.132 | 0.127 | 0.132 | 0.127 | 0.132 | 0.127 | 0.132 | 0.127 | 0.132 | 0.128 | 0.132 | 0.127 | 0.133 | |
70 years | 0.160 | 0.148 | 0.127 | 0.130 | 0.127 | 0.130 | 0.126 | 0.131 | 0.127 | 0.130 | 0.127 | 0.131 | 0.127 | 0.131 | 0.126 | 0.130 | |
80 years | 0.160 | 0.148 | 0.125 | 0.130 | 0.126 | 0.130 | 0.126 | 0.130 | 0.126 | 0.130 | 0.126 | 0.131 | 0.126 | 0.131 | 0.126 | 0.131 | |
100 years | 0.159 | 0.146 | 0.126 | 0.129 | 0.126 | 0.129 | 0.126 | 0.129 | 0.126 | 0.129 | 0.126 | 0.129 | 0.126 | 0.129 | 0.126 | 0.129 | |
TSS Pollutant Loads in the Total Subcatchment (LT) (kg) | |||||||||||||||||
Duration | Scenario 1 (OG) | Scenario 2 (PP) | Scenario 3 (GR) | Scenario 4 (IT) | Scenario 5 (PP + GR) | Scenario 6 (PP + IT) | Scenario 7 (GR + IT) | Scenario 8 (PP + GR + IT) | |||||||||
Frequency | 30 min | 60 min | 30 min | 60 min | 30 min | 60 min | 30 min | 60 min | 30 min | 60 min | 30 min | 60 min | 30 min | 60 min | 30 min | 60 min | |
30 years | 0.215 | 0.224 | 0.215 | 0.224 | 0.215 | 0.224 | 0.215 | 0.224 | 0.215 | 0.224 | 0.215 | 0.224 | 0.215 | 0.224 | 0.215 | 0.224 | |
50 years | 0.243 | 0.231 | 0.243 | 0.231 | 0.243 | 0.231 | 0.243 | 0.231 | 0.243 | 0.231 | 0.243 | 0.231 | 0.243 | 0.231 | 0.243 | 0.231 | |
70 years | 0.244 | 0.223 | 0.244 | 0.223 | 0.244 | 0.223 | 0.244 | 0.223 | 0.244 | 0.223 | 0.244 | 0.223 | 0.244 | 0.223 | 0.244 | 0.223 | |
80 years | 0.240 | 0.220 | 0.240 | 0.220 | 0.240 | 0.220 | 0.240 | 0.220 | 0.240 | 0.220 | 0.240 | 0.220 | 0.240 | 0.220 | 0.240 | 0.220 | |
100 years | 0.232 | 0.210 | 0.232 | 0.210 | 0.232 | 0.210 | 0.232 | 0.210 | 0.232 | 0.210 | 0.232 | 0.210 | 0.232 | 0.210 | 0.232 | 0.210 | |
OT/LT | |||||||||||||||||
Duration | Scenario 1 (OG) | Scenario 2 (PP) | Scenario 3 (GR) | Scenario 4 (IT) | Scenario 5 (PP + GR) | Scenario 6 (PP + IT) | Scenario 7 (GR + IT) | Scenario 8 (PP + GR + IT) | |||||||||
Frequency | 30 min | 60 min | 30 min | 60 min | 30 min | 60 min | 30 min | 60 min | 30 min | 60 min | 30 min | 60 min | 30 min | 60 min | 30 min | 60 min | |
30 years | 0.745 | 0.673 | 0.596 | 0.601 | 0.596 | 0.601 | 0.591 | 0.601 | 0.596 | 0.601 | 0.591 | 0.601 | 0.591 | 0.601 | 0.596 | 0.606 | |
50 years | 0.651 | 0.646 | 0.523 | 0.572 | 0.523 | 0.572 | 0.523 | 0.572 | 0.523 | 0.572 | 0.523 | 0.572 | 0.527 | 0.572 | 0.523 | 0.576 | |
70 years | 0.655 | 0.663 | 0.520 | 0.583 | 0.520 | 0.583 | 0.516 | 0.587 | 0.520 | 0.583 | 0.520 | 0.587 | 0.520 | 0.587 | 0.516 | 0.583 | |
80 years | 0.668 | 0.674 | 0.522 | 0.592 | 0.526 | 0.592 | 0.526 | 0.592 | 0.526 | 0.592 | 0.526 | 0.597 | 0.526 | 0.597 | 0.526 | 0.597 | |
100 years | 0.685 | 0.695 | 0.542 | 0.615 | 0.542 | 0.615 | 0.542 | 0.615 | 0.542 | 0.615 | 0.542 | 0.615 | 0.542 | 0.615 | 0.542 | 0.615 | |
(OT/LT)2 | |||||||||||||||||
Duration | Scenario 1 (OG) | Scenario 2 (PP) | Scenario 3 (GR) | Scenario 4 (IT) | Scenario 5 (PP + GR) | Scenario 6 (PP + IT) | Scenario 7 (GR + IT) | Scenario 8 (PP + GR + IT) | |||||||||
Frequency | 30 min | 60 min | 30 min | 60 min | 30 min | 60 min | 30 min | 60 min | 30 min | 60 min | 30 min | 60 min | 30 min | 60 min | 30 min | 60 min | |
30 years | 0.555 | 0.453 | 0.355 | 0.362 | 0.355 | 0.362 | 0.349 | 0.362 | 0.355 | 0.362 | 0.349 | 0.362 | 0.349 | 0.362 | 0.355 | 0.367 | |
50 years | 0.423 | 0.417 | 0.274 | 0.327 | 0.274 | 0.327 | 0.274 | 0.327 | 0.274 | 0.327 | 0.274 | 0.327 | 0.278 | 0.327 | 0.274 | 0.332 | |
70 years | 0.429 | 0.440 | 0.270 | 0.339 | 0.270 | 0.339 | 0.266 | 0.345 | 0.270 | 0.339 | 0.270 | 0.345 | 0.270 | 0.345 | 0.266 | 0.339 | |
80 years | 0.446 | 0.455 | 0.272 | 0.351 | 0.277 | 0.351 | 0.277 | 0.351 | 0.277 | 0.351 | 0.277 | 0.356 | 0.277 | 0.356 | 0.277 | 0.356 | |
100 years | 0.469 | 0.484 | 0.294 | 0.378 | 0.294 | 0.378 | 0.294 | 0.378 | 0.294 | 0.378 | 0.294 | 0.378 | 0.294 | 0.378 | 0.294 | 0.378 | |
Mean | 0.457 | 0.322 | 0.323 | 0.322 | 0.323 | 0.323 | 0.324 | 0.324 | |||||||||
SD | 0.038 | 0.039 | 0.038 | 0.039 | 0.038 | 0.039 | 0.038 | 0.040 | |||||||||
RT | 0.786 | 0.821 | 0.820 | 0.821 | 0.820 | 0.820 | 0.820 | 0.820 |
Result | Scenario 1 (OG) | Scenario 2 (PP) | Scenario 3 (GR) | Scenario 4 (IT) | Scenario 5 (PP + GR) | Scenario 6 (PP + IT) | Scenario 7 (GR + IT) | Scenario 8 (PP + GR + IT) |
---|---|---|---|---|---|---|---|---|
RV | 0.8731 | 0.9375 | 0.9366 | 0.9244 | 0.9373 | 0.9294 | 0.9290 | 0.9312 |
RN | 0.9354 | 0.9482 | 0.9527 | 0.9556 | 0.9527 | 0.9574 | 0.9524 | 0.9475 |
RB | 0.7977 | 0.8384 | 0.8384 | 0.8399 | 0.8384 | 0.8399 | 0.8399 | 0.8399 |
RT | 0.7862 | 0.8205 | 0.8204 | 0.8205 | 0.8204 | 0.8202 | 0.8201 | 0.8201 |
RFQD | 0.8993 | 0.9426 | 0.9441 | 0.9380 | 0.9444 | 0.9417 | 0.9395 | 0.9388 |
RWQD | 0.7919 | 0.8292 | 0.8292 | 0.8299 | 0.8292 | 0.8298 | 0.8297 | 0.8297 |
RLSD | 0.8365 | 0.8726 | 0.8729 | 0.8720 | 0.8730 | 0.8728 | 0.8722 | 0.8720 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, Y.H.; Lee, J.H.; Lee, E.H. Developing a Reliability Index of Low Impact Development for Urban Areas. Water 2020, 12, 2961. https://doi.org/10.3390/w12112961
Song YH, Lee JH, Lee EH. Developing a Reliability Index of Low Impact Development for Urban Areas. Water. 2020; 12(11):2961. https://doi.org/10.3390/w12112961
Chicago/Turabian StyleSong, Yang Ho, Jung Ho Lee, and Eui Hoon Lee. 2020. "Developing a Reliability Index of Low Impact Development for Urban Areas" Water 12, no. 11: 2961. https://doi.org/10.3390/w12112961
APA StyleSong, Y. H., Lee, J. H., & Lee, E. H. (2020). Developing a Reliability Index of Low Impact Development for Urban Areas. Water, 12(11), 2961. https://doi.org/10.3390/w12112961