Interaction among Controlling Factors on Riverine DIN Export in Small Mountainous Rivers of Taiwan: Inseparable Human-Landscape System
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. DIN Sampling and Streamflow Simulation
2.3. Export Estimation
2.4. Variation Partitioning: PCA, RDA and pRDA
3. Results
3.1. Riverine DIN Concentration and Export
3.2. Scatterplot Matrix
3.3. PCA of Environmental Variables
3.4. Variance Partitioning—RDA and pRDA
4. Discussion
4.1. Characteristics of DIN Concentrations and Exports in Taiwan
4.2. Influences of Main Variables and Their Interactive Effects on DIN Export
4.2.1. Climatic Control
4.2.2. The Consideration of Landscape and Buffer Zone
4.2.3. Human Disturbance
4.2.4. Interactive Effects among Variables
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Aber, J.; McDowell, W.; Nadelhoffer, K.; Magill, A.; Berntson, G.; Kamakea, M.; McNulty, S.; Currie, W.; Rustad, L.; Fernandez, I. Nitrogen saturation in temperate forest ecosystems: Hypotheses revisited. Bioscience 1998, 48, 921–934. [Google Scholar] [CrossRef]
- Galloway, J.N.; Dentener, F.J.; Capone, D.G.; Boyer, E.W.; Howarth, R.W.; Seitzinger, S.P.; Asner, G.P.; Cleveland, C.C.; Green, P.; Holland, E.A. Nitrogen cycles: Past, present, and future. Biogeochemistry 2004, 70, 153–226. [Google Scholar] [CrossRef]
- Seitzinger, S.P.; Mayorga, E.; Bouwman, A.F.; Kroeze, C.; Beusen, A.H.W.; Billen, G.; Van Drecht, G.; Dumont, E.; Fekete, B.M.; Garnier, J.; et al. Global river nutrient export: A scenario analysis of past and future trends. Glob. Biogeochem. Cycle 2010, 24, GB0A08. [Google Scholar] [CrossRef] [Green Version]
- Rockström, J.; Steffen, W.; Noone, K.; Persson, Å.; Chapin, F.S.; Lambin, E.F.; Lenton, T.M.; Scheffer, M.; Folke, C.; Schellnhuber, H.J. A safe operating space for humanity. Nature 2009, 461, 472–475. [Google Scholar] [CrossRef] [PubMed]
- Tørseth, K.; Aas, W.; Breivik, K.; Fjæraa, A.M.; Fiebig, M.; Hjellbrekke, A.-G.; Lund Myhre, C.; Solberg, S.; Yttri, K.E. Introduction to the European Monitoring and Evaluation Programme (EMEP) and observed atmospheric composition change during 1972–2009. Atmos. Chem. Phys. 2012, 12, 5447–5481. [Google Scholar] [CrossRef] [Green Version]
- Vet, R.; Artz, R.S.; Carou, S.; Shaw, M.; Ro, C.-U.; Aas, W.; Baker, A.; Bowersox, V.C.; Dentener, F.; Galy-Lacaux, C. A global assessment of precipitation chemistry and deposition of sulfur, nitrogen, sea salt, base cations, organic acids, acidity and pH, and phosphorus. Atmos. Environ. 2014, 93, 3–100. [Google Scholar] [CrossRef]
- Chang, K.-H.; Jeng, F.-T.; Tsai, Y.-L.; Lin, P.-L. Modeling of long-range transport on Taiwan’s acid deposition under different weather conditions. Atmos. Environ. 2000, 34, 3281–3295. [Google Scholar] [CrossRef]
- Conley, D.J.; Paerl, H.W.; Howarth, R.W.; Boesch, D.F.; Seitzinger, S.P.; Havens, K.E.; Lancelot, C.; Likens, G.E. Controlling eutrophication: Nitrogen and phosphorus. Science 2009, 323, 1014–1015. [Google Scholar] [CrossRef]
- Howarth, R.; Swaney, D.; Billen, G.; Garnier, J.; Hong, B.; Humborg, C.; Johnes, P.; Mörth, C.-M.; Marino, R. Nitrogen fluxes from the landscape are controlled by net anthropogenic nitrogen inputs and by climate. Front. Ecol. Environ. 2012, 10, 37–43. [Google Scholar] [CrossRef] [Green Version]
- Chang, C.T.; Huang, J.C.; Wang, L.; Shih, Y.T.; Lin, T.C. Shifts in stream hydrochemistry in responses to typhoon and non-typhoon precipitation. Biogeosciences 2018, 15, 2379–2391. [Google Scholar] [CrossRef] [Green Version]
- Huang, J.-C.; Lee, T.-Y.; Kao, S.-J.; Hsu, S.-C.; Lin, H.-J.; Peng, T.-R. Land use effect and hydrological control on nitrate yield in subtropical mountainous watersheds. Hydrol. Earth Syst. Sci. 2012, 16, 699. [Google Scholar] [CrossRef] [Green Version]
- Huang, J.-C.; Lee, T.-Y.; Lin, T.-C.; Hein, T.; Lee, L.-C.; Shih, Y.-T.; Kao, S.-J.; Shiah, F.-K.; Lin, N.-H. Effects of different N sources on riverine DIN export and retention in a subtropical high-standing island, Taiwan. Biogeosciences 2016, 13, 1787. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, T.-Y.; Huang, J.-C.; Kao, S.-J.; Tung, C.-P. Temporal variation of nitrate and phosphate transport in headwater catchments: The hydrological controls and land use alteration. Biogeosciences 2013, 10, 2617–2632. [Google Scholar] [CrossRef] [Green Version]
- Sliva, L.; Williams, D.D. Buffer zone versus whole catchment approaches to studying land use impact on river water quality. Water Res. 2001, 35, 3462–3472. [Google Scholar] [CrossRef]
- Pajares, S.; Bohannan, B.J. Ecology of nitrogen fixing, nitrifying, and denitrifying microorganisms in tropical forest soils. Front. Microbiol. 2016, 7, 1045. [Google Scholar] [CrossRef] [Green Version]
- Howarth, R.W. An assessment of human influences on fluxes of nitrogen from the terrestrial landscape to the estuaries and continental shelves of the North Atlantic Ocean. Nutr. Cycl. Agroecosyst. 1998, 52, 213–223. [Google Scholar] [CrossRef]
- Graham, M.H. Confronting multicollinearity in ecological multiple regression. Ecology 2003, 84, 2809–2815. [Google Scholar] [CrossRef] [Green Version]
- Ter Braak, C.J. CANOCO-a FORTRAN Program. for Canonical Community Ordination by [Partial][Etrended][Canonical] Correspondence Analysis, Principal Components Analysis and Redundancy Analysis (Version 2.1); Wageningen University: Wageningen, The Netherlands, 1988. [Google Scholar]
- Borcard, D.; Legendre, P.; Drapeau, P. Partialling out the spatial component of ecological variation. Ecology 1992, 73, 1045–1055. [Google Scholar] [CrossRef] [Green Version]
- Chang, C.-T.; Wang, S.-F.; Vadeboncoeur, M.A.; Lin, T.-C. Relating vegetation dynamics to temperature and precipitation at monthly and annual timescales in Taiwan using MODIS vegetation indices. Int. J. Remote Sens. 2014, 35, 598–620. [Google Scholar] [CrossRef]
- Parajka, J.; Viglione, A.; Rogger, M.; Salinas, J.L.; Sivapalan, M.; Blöschl, G. Comparative assessment of predictions in ungauged basins–Part 1: Runoff-hydrograph studies. Hydrol. Earth Syst. Sci. 2013, 17, 1783–1795. [Google Scholar] [CrossRef] [Green Version]
- Huang, J.-C.; Kao, S.-J.; Lin, C.-Y.; Chang, P.-L.; Lee, T.-Y.; Li, M.-H. Effect of subsampling tropical cyclone rainfall on flood hydrograph response in a subtropical mountainous catchment. J. Hydrol. 2011, 409, 248–261. [Google Scholar] [CrossRef]
- Nash, J.E.; Sutcliffe, J.V. River flow forecasting through conceptual models part I—A discussion of principles. J. Hydrol. 1970, 10, 282–290. [Google Scholar] [CrossRef]
- Appling, A.P.; Leon, M.C.; McDowell, W.H. Reducing bias and quantifying uncertainty in watershed flux estimates: The R package loadflex. Ecosphere 2015, 6, 1–25. [Google Scholar] [CrossRef]
- Porterfield, G. Computation of Fluvial-Sediment Discharge; US Government Printing Office: Washington, DC, USA, 1972. [Google Scholar] [CrossRef]
- Robertson, D.M.; Roerish, E.D. Influence of various water quality sampling strategies on load estimates for small streams. Water Resour. Res. 1999, 35, 3747–3759. [Google Scholar] [CrossRef]
- Ferguson, R. River loads underestimated by rating curves. Water Resour. Res. 1986, 22, 74–76. [Google Scholar] [CrossRef]
- Varanka, S.; Luoto, M. Environmental determinants of water quality in boreal rivers based on partitioning methods. River Res. Appl. 2012, 28, 1034–1046. [Google Scholar] [CrossRef]
- Liu, Q. Variation partitioning by partial redundancy analysis (RDA). Environmetrics 1997, 8, 75–85. [Google Scholar] [CrossRef]
- Nava-López, M.Z.; Diemont, S.A.; Hall, M.; Ávila-Akerberg, V. Riparian buffer zone and whole watershed influences on river water Quality: Implications for ecosystem services near megacities. Environ. Process. 2016, 3, 277–305. [Google Scholar] [CrossRef]
- Johnson, R.K.; Furse, M.T.; Hering, D.; Sandin, L. Ecological relationships between stream communities and spatial scale: Implications for designing catchment-level monitoring programmes. Freshw. Biol. 2007, 52, 939–958. [Google Scholar] [CrossRef]
- Jolliffe, I.T.; Cadima, J. Principal component analysis: A review and recent developments. Philos. Trans. R. Soc. A 2016, 374, 20150202. [Google Scholar] [CrossRef]
- Hotelling, H. Analysis of a complex of statistical variables into principal components. J. Educ. Psychol. 1933, 24, 417. [Google Scholar] [CrossRef]
- Sutter, J.M.; Kalivas, J.H. Comparison of forward selection, backward elimination, and generalized simulated annealing for variable selection. Microchem. J. 1993, 47, 60–66. [Google Scholar] [CrossRef]
- Uriarte, M.; Yackulic, C.B.; Lim, Y.; Arce-Nazario, J.A. Influence of land use on water quality in a tropical landscape: A multi-scale analysis. Landsc. Ecol. 2011, 26, 1151. [Google Scholar] [CrossRef] [Green Version]
- Nielsen, A.; Trolle, D.; Søndergaard, M.; Lauridsen, T.L.; Bjerring, R.; Olesen, J.E.; Jeppesen, E. Watershed land use effects on lake water quality in Denmark. Ecol. Appl. 2012, 22, 1187–1200. [Google Scholar] [CrossRef] [PubMed]
- Xiao, R.; Wang, G.; Zhang, Q.; Zhang, Z. Multi-scale analysis of relationship between landscape pattern and urban river water quality in different seasons. Sci. Rep. 2016, 6, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- legendre, P.; legendre, L. Chapter 9—Ordination in reduced space. In Developments in Environmental Modelling; Legendre, P., Legendre, L., Eds.; Elsevier: Amsterdam, The Netherlands, 2012; Volume 24, pp. 425–520. [Google Scholar]
- Legendre, P.; Oksanen, J.; ter Braak, C.J. Testing the significance of canonical axes in redundancy analysis. Methods Ecol. Evol. 2011, 2, 269–277. [Google Scholar] [CrossRef]
- Groffman, P.M.; Law, N.L.; Belt, K.T.; Band, L.E.; Fisher, G.T. Nitrogen fluxes and retention in urban watershed ecosystems. Ecosystems 2004, 7, 393–403. [Google Scholar] [CrossRef]
- Halbfaß, S.; Gebel, M.; Bürger, S. Modelling of long term nitrogen retention in surface waters. Adv. Geosci. 2010, 27, 145–148. [Google Scholar] [CrossRef] [Green Version]
- Lee, T.-Y.; Shih, Y.-T.; Huang, J.-C.; Kao, S.-J.; Shiah, F.-K.; Liu, K.-K. Speciation and dynamics of dissolved inorganic nitrogen export in the Danshui River, Taiwan. Biogeosciences Discuss. 2014, 11, 5307–5321. [Google Scholar] [CrossRef] [Green Version]
- He, B.; Kanae, S.; Oki, T.; Hirabayashi, Y.; Yamashiki, Y.; Takara, K. Assessment of global nitrogen pollution in rivers using an integrated biogeochemical modeling framework. Water Res. 2011, 45, 2573–2586. [Google Scholar] [CrossRef]
- Ohowa, B.; Mwashote, B.; Shimbira, W. Dissolved inorganic nutrient fluxes from two seasonal rivers into Gazi Bay, Kenya. Estuar. Coast. Shelf Sci. 1997, 45, 189–195. [Google Scholar] [CrossRef]
- Chang, C.-T.; Wang, L.-J.; Huang, J.-C.; Liu, C.-P.; Wang, C.-P.; Lin, N.-H.; Wang, L.; Lin, T.-C. Precipitation controls on nutrient budgets in subtropical and tropical forests and the implications under changing climate. Adv. Water Resour. 2017, 103, 44–50. [Google Scholar] [CrossRef] [Green Version]
- Chang, C.; Hamburg, S.; Hwong, J.; Lin, N.; Hsueh, M.; Chen, M.; Lin, T.-C. Impacts of tropical cyclones on hydrochemistry of a subtropical forest. Hydrol. Earth Syst. Sci. 2013, 17, 3815. [Google Scholar] [CrossRef] [Green Version]
- Likens, G.E. Biogeochemistry of a Forested Ecosystem; Springer: Berlin/Heidelberg, Germany, 2013. [Google Scholar] [CrossRef]
- Goodale, C.L.; Thomas, S.A.; Fredriksen, G.; Elliott, E.M.; Flinn, K.M.; Butler, T.J.; Walter, M.T. Unusual seasonal patterns and inferred processes of nitrogen retention in forested headwaters of the Upper Susquehanna River. Biogeochemistry 2009, 93, 197–218. [Google Scholar] [CrossRef]
- Ohte, N. Implications of seasonal variation in nitrate export from forested ecosystems: A review from the hydrological perspective of ecosystem dynamics. Ecol. Res. 2012, 27, 657–665. [Google Scholar] [CrossRef]
- Lladó, S.; López-Mondéjar, R.; Baldrian, P. Forest Soil Bacteria: Diversity, Involvement in Ecosystem Processes, and Response to Global Change. Microbiol. Mol. Biol. Rev. 2017, 81, e00063–16. [Google Scholar] [CrossRef] [Green Version]
- Richards, C.; Johnson, L.B.; Host, G.E. Landscape-scale influences on stream habitats and biota. Can. J. Fish. Aquat. Sci. 1996, 53, 295–311. [Google Scholar] [CrossRef]
- Johnson, L.; Richards, C.; Host, G.; Arthur, J. Landscape influences on water chemistry in Midwestern stream ecosystems. Freshw. Biol. 1997, 37, 193–208. [Google Scholar] [CrossRef]
- Craig, L.S.; Palmer, M.A.; Richardson, D.C.; Filoso, S.; Bernhardt, E.S.; Bledsoe, B.P.; Doyle, M.W.; Groffman, P.M.; Hassett, B.A.; Kaushal, S.S. Stream restoration strategies for reducing river nitrogen loads. Front. Ecol. Environ. 2008, 6, 529–538. [Google Scholar] [CrossRef] [Green Version]
- Kaushal, S.S.; Groffman, P.M.; Mayer, P.M.; Striz, E.; Gold, A.J. Effects of stream restoration on denitrification in an urbanizing watershed. Ecol. Appl. 2008, 18, 789–804. [Google Scholar] [CrossRef] [Green Version]
- Gergel, S.E.; Turner, M.G.; Kratz, T.K. Dissolved organic carbon as an indicator of the scale of watershed influence on lakes and rivers. Ecol. Appl. 1999, 9, 1377–1390. [Google Scholar] [CrossRef]
- Hunsaker, C.T.; Levine, D.A. Hierarchical approaches to the study of water quality in rivers. Bioscience 1995, 45, 193–203. [Google Scholar] [CrossRef]
- Meynendonckx, J.; Heuvelmans, G.; Muys, B.; Feyen, J. Effects of watershed and riparian zone characteristics on nutrient concentrations in the River Scheldt Basin. Hydrol. Earth Syst. Sci. 2006, 10, 913–922. [Google Scholar] [CrossRef] [Green Version]
- Tong, S.T.; Chen, W. Modeling the relationship between land use and surface water quality. J. Environ. Manag. 2002, 66, 377–393. [Google Scholar] [CrossRef] [PubMed]
- Basnyat, P.; Teeter, L.D.; Flynn, K.M.; Lockaby, B.G. Relationships between landscape characteristics and nonpoint source pollution inputs to coastal estuaries. Environ. Manag. 1999, 23, 539–549. [Google Scholar] [CrossRef]
- Chang, M.; McCullough, J.D.; Granillo, A.B. Effects of land use and topography on some water quality variables in forested east Texas 1. J. Am. Water Resour. Assoc. 1983, 19, 191–196. [Google Scholar] [CrossRef]
- Shih, Y.-T.; Lee, T.-Y.; Huang, J.-C.; Kao, S.-J. Apportioning riverine DIN load to export coefficients of land uses in an urbanized watershed. Sci. Total Environ. 2016, 560, 1–11. [Google Scholar] [CrossRef]
- Hough-Snee, N.; Roper, B.; Wheaton, J.; Lokteff, R. Riparian vegetation communities of the American Pacific Northwest are tied to multi-scale environmental filters. River Res. Appl. 2015, 31, 1151–1165. [Google Scholar] [CrossRef]
- Aschonitis, V.; Feld, C.; Castaldelli, G.; Turin, P.; Visonà, E.; Fano, E.A. Environmental stressor gradients hierarchically regulate macrozoobenthic community turnover in lotic systems of Northern Italy. Hydrobiologia 2016, 765, 131–147. [Google Scholar] [CrossRef]
- Aber, J.D.; Nadelhoffer, K.J.; Steudler, P.; Melillo, J.M. Nitrogen saturation in northern forest ecosystems. Bioscience 1989, 39, 378–286. [Google Scholar] [CrossRef]
- Howarth, R.W.; Sharpley, A.; Walker, D. Sources of nutrient pollution to coastal waters in the United States: Implications for achieving coastal water quality goals. Estuaries 2002, 25, 656–676. [Google Scholar] [CrossRef]
- Huang, H.; Chen, D.; Zhang, B.; Zeng, L.; Dahlgren, R.A. Modeling and forecasting riverine dissolved inorganic nitrogen export using anthropogenic nitrogen inputs, hydroclimate, and land-use change. J. Hydrol. 2014, 517, 95–104. [Google Scholar] [CrossRef] [Green Version]
Dimension | Variables | Abbre. | Definition |
---|---|---|---|
Climatic Factors | Rainfall (mm) | RDry | Rainfall in dry season of the year |
RWet | Rainfall in wet season of the year | ||
Streamflow (mm) | SFDry | Discharge rate in dry season of the year | |
SFWet | Discharge rate in wet season of the year | ||
Temperature (°C) | T | The degree of hotness or coldness of environment | |
Landscape Settings | Channel length (km) | CL | Total length of the stream channel |
Longest channel length (km) | LCL | The length of the longest stream channel in watershed | |
Relief | Rel | The difference between the highest and lowest elevations in watershed | |
Area (km2) | A | Drainage area of watershed | |
Slope (%) | SLP100 | The average slope in the 100 m buffer zone | |
SLP200 | The average slope in the 200 m buffer zone | ||
SLP500 | The average slope in the 500 m buffer zone | ||
SLP1000 | The average slope in the 1000 m buffer zone | ||
SLP2000 | The average slope in the 2000 m buffer zone | ||
SLP | The average slope in watershed | ||
Drainage density(km−1) | DD | Total channel length over drainage area | |
L/G (m) | The ratio of median flow path length to median flow path gradient | ||
Human Disturbances | Population density (population km−2) | PD100 | Population density in the 100 m buffer zone |
PD200 | Population density in the 200 m buffer zone | ||
PD500 | Population density in the 500 m buffer zone | ||
PD1000 | Population density in the 1000 m buffer zone | ||
PD2000 | Population density in the 2000 m buffer zone | ||
PD | Population density in watershed | ||
Buildup (%) | BD100 | The percentage of buildup area in the 100 m buffer zone | |
BD200 | The percentage of buildup area in the 200 m buffer zone | ||
BD500 | The percentage of buildup area in the 500 m buffer zone | ||
BD1000 | The percentage of buildup area in the 1000 m buffer zone | ||
BD2000 | The percentage of buildup area in the 2000 m buffer zone | ||
BD | The percentage of the buildup area in watershed | ||
Agriculture (%) | AGR100 | The percentage of agriculture in the 100 m buffer zone | |
AGR200 | The percentage of agriculture in the 200 m buffer zone | ||
AGR500 | The percentage of agriculture in the 500 m buffer zone | ||
AGR1000 | The percentage of agriculture in the 1000 m buffer zone | ||
AGR2000 | The percentage of agriculture in the 2000 m buffer zone | ||
AGR | The percentage of the agriculture in the watershed |
Environmental Factor | Covariable | λNO3− | λNH4+ | ||
---|---|---|---|---|---|
Wet | Dry | Wet | Dry | ||
Unexplained variable | 0.27 | 0.14 | 0.31 | 0.21 | |
CLH | None | 0.73 | 0.86 | 0.69 | 0.79 |
C | L&H | 0.31 | 0.27 | 0.03 | 0.02 |
L&H | C | 0.44 | 0.27 | 0.68 | 0.77 |
L | C&H | 0.00 | 0.00 | 0.05 | 0.00 |
C&H | L | 0.41 | 0.74 | 0.06 | 0.18 |
H | C&L | 0.07 | 0.09 | 0.02 | 0.13 |
C&L | H | 0.31 | 0.2 | 0.08 | 0.02 |
Annual | Dry Season | Wet Season | ||||
---|---|---|---|---|---|---|
Conc. | Flux | Conc. | Flux | Conc. | Flux | |
NO3− | ||||||
Mean (±SD) | 0.98 (±0.59) | 1936 (±1363) | 0.79 (±0.51) | 429 (±520) | 1.03 (±0.66) | 1507 (±1085) |
Min‒Max | 0.26−2.79 | 212−5801 | 0.14−2.19 | 7−2917 | 0.25−3.58 | 158−4908 |
NH4+ | ||||||
Mean (±SD) | 0.56 (±0.96) | 977 (±1456) | 0.95 (±1.73) | 333 (±551) | 0.48 (±0.81) | 644 (±950) |
Min‒Max | 0.01−4.59 | 9−5757 | 0.01−9.13 | 1−2372 | 0.01−3.81 | 7−3942 |
DIN | ||||||
Mean (±SD) | 1.66 (±1.69) | 3100 (±2827) | 1.82 (±2.07) | 798 (±982) | 1.66 (±1.74) | 2303 (±2041) |
Min‒Max | 0.28−8.91 | 227−10,229 | 0.16−9.74 | 8−4730 | 0.28−10.45 | 185−7527 |
Species | NO3− | NH4+ | ||||
---|---|---|---|---|---|---|
Annual | Wet | Dry | Annual | Wet | Dry | |
λ1 | λ1 | λ1 | λ1 | λ1 | λ1 | |
Climatic | ||||||
Streamflow (mm) | 0.52 ** | 0.28 ** | 0.59 ** | 0.05 ** | 0.01 ns | 0.02 ns |
Landscape setting | ||||||
Slope (%) | 0.15 ** | 0.32 ** | 0.12 ** | 0.56 ** | 0.64 ** | 0.61 ** |
Human disturbance | ||||||
Agri. (%) | 0.11 ** | 0.31 ** | 0.01 ns | 0.44 ** | 0.47 ** | 0.53 ** |
Buildup_100 m (%) | 0.18 ** | 0.19 ** | 0.57 ** | 0.33 ** | 0.32 ** | 0.46 ** |
Buildup (%) | 0.16 ** | 0.26 ** | 0.21 ** | 0.57 ** | 0.58 ** | 0.73 ** |
Total inertial | 0.74 | 0.73 | 0.86 | 0.68 | 0.69 | 0.79 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, W.-S.; Huang, J.-C.; Chang, C.-T.; Chan, S.-C.; Liou, Y.-S.; Liao, C.-S.; Lee, L.-C.; Lee, J.-Y.; Shih, Y.-T.; Lu, M.-C.; et al. Interaction among Controlling Factors on Riverine DIN Export in Small Mountainous Rivers of Taiwan: Inseparable Human-Landscape System. Water 2020, 12, 2981. https://doi.org/10.3390/w12112981
Lee W-S, Huang J-C, Chang C-T, Chan S-C, Liou Y-S, Liao C-S, Lee L-C, Lee J-Y, Shih Y-T, Lu M-C, et al. Interaction among Controlling Factors on Riverine DIN Export in Small Mountainous Rivers of Taiwan: Inseparable Human-Landscape System. Water. 2020; 12(11):2981. https://doi.org/10.3390/w12112981
Chicago/Turabian StyleLee, Wen-Shiuan, Jr-Chuan Huang, Chung-Te Chang, Shih-Chien Chan, Ying-San Liou, Chien-Sen Liao, Li-Chin Lee, Jun-Yi Lee, Yu-Ting Shih, Meng-Chang Lu, and et al. 2020. "Interaction among Controlling Factors on Riverine DIN Export in Small Mountainous Rivers of Taiwan: Inseparable Human-Landscape System" Water 12, no. 11: 2981. https://doi.org/10.3390/w12112981
APA StyleLee, W. -S., Huang, J. -C., Chang, C. -T., Chan, S. -C., Liou, Y. -S., Liao, C. -S., Lee, L. -C., Lee, J. -Y., Shih, Y. -T., Lu, M. -C., & Chen, P. -H. (2020). Interaction among Controlling Factors on Riverine DIN Export in Small Mountainous Rivers of Taiwan: Inseparable Human-Landscape System. Water, 12(11), 2981. https://doi.org/10.3390/w12112981