A Review on Mariculture Effluent: Characterization and Management Tools
Abstract
:1. Introduction
2. Types of Mariculture Systems
3. Mariculture Effluents: Composition, Waste-Load, and Environmental Impacts
3.1. Composition
3.1.1. Organic Matter and Nutrients
3.1.2. Chemicals
3.2. Waste Load
3.3. Environmental Impacts
4. Transport and Transformation Processes of Mariculture Effluent
4.1. Transport and Transformation Processes in the Water Column
4.2. Transport and Transformation Processes at the Seabed Sediments
5. Regulatory Mixing Zones
5.1. Concepts of Regulatory Mixing Zones
- (a)
- The RMZ applies only to the point-source discharge of effluent to a surface waterbody.
- (b)
- The RMZ contains the initial mixing process in a restricted area and is thus subject to the highest concentration of the effluent that could potentially exceed the EQSs therein. However, the water quality deterioration in the RMZ does not impair the integrity of the water body as a whole, and there is no lethality to organisms passing through the mixing zone.
- (c)
- The objective of the RMZ is to manage the load and water quality of effluent discharge and achieve the highest attainable level of ambient water quality or the minimum environmental impact from dilution and mixing.
5.2. Characteristics of Regulatory Mixing Zones
6. Environmental Standards of Mariculture Effluent
6.1. Emission Limit Values (ELVs) of Mariculture Effluent
6.2. Environmental Quality Standards (EQSs) of Regulatory Mixing Zones (Receiving Environment)
6.2.1. Water Quality Standards
6.2.2. Sediment Quality Standards
6.3. Techniques for Environmental Monitoring
7. Water Quality Modelling of Mariculture Discharges
7.1. Near-Field Models
7.2. Far-Field Models
7.3. Coupled Near- and Far-Field Model
7.4. Modelling Techniques for Ecological Carrying Capacity and Environmental Impact Assessment
8. Conclusions & Recommendations
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Gentry, R.R.; Froehlich, H.E.; Grimm, D.; Kareiva, P.; Parke, M.; Rust, M.; Gaines, S.D.; Halpern, B.S. Mapping the global potential for marine aquaculture. Nat. Ecol. Evol. 2017, 1, 1317–1324. [Google Scholar] [CrossRef] [PubMed]
- Froehlich, H.E.; Gentry, R.R.; Halpern, B.S. Global change in marine aquaculture production potential under climate change. Nat. Ecol. Evol. 2018, 2, 1745–1750. [Google Scholar] [CrossRef] [PubMed]
- Clavelle, T.; Lester, S.E.; Gentry, R.; Froehlich, H.E. Interactions and management for the future of marine aquaculture and capture fisheries. Fish Fish. 2019, 20, 368–388. [Google Scholar] [CrossRef]
- Kluger, L.C.; Filgueira, R. Thinking outside the box: Embracing social complexity in aquaculture carrying capacity estimations. ICES J. Mar. Sci. 2020. [Google Scholar] [CrossRef]
- Bambaranda, B.V.A.S.M.; Tsusaka, T.W.; Chirapart, A.; Salin, K.R.; Sasaki, N. Capacity of Caulerpa lentillifera in the Removal of Fish Culture Effluent in a Recirculating Aquaculture System. Processes 2019, 7, 440. [Google Scholar] [CrossRef] [Green Version]
- Joesting, H.M.; Blaylock, R.; Biber, P.; Ray, A. The use of marine aquaculture solid waste for nursery production of the salt marsh plants Spartina alterniflora and Juncus roemerianus. Aquac. Rep. 2016, 3, 108–114. [Google Scholar] [CrossRef] [Green Version]
- Bannister, R.J.; Johnsen, I.A.; Hansen, P.K.; Kutti, T.; Asplin, L. Near- and far-field dispersal modelling of organic waste from Atlantic salmon aquaculture in fjord systems. ICES J. Mar. Sci. 2016, 73, 2408–2419. [Google Scholar] [CrossRef] [Green Version]
- Pusceddu, A.; Fraschetti, S.; Mirto, S.; Holmer, M.; Danovaro, R. Effects of intensive mariculture on sediment biochemistry. Ecol. Appl. 2007, 17, 1366–1378. [Google Scholar] [CrossRef]
- Carballeira, C.; Cebro, A.; Villares, R.; Carballeira, A. Assessing changes in the toxicity of effluents from intensive marine fish farms over time by using a battery of bioassays. Environ. Sci. Pollut. Res. 2018, 25, 12739–12748. [Google Scholar] [CrossRef]
- Department of Agriculture, Forestry and Fisheries. Environmental Integrity Framework for Marine; Enviro-Fish Africa (Pty.) Ltd.: Eastern Cape, South Africa, 2012. [Google Scholar]
- Primavera, J.H. Overcoming the impacts of aquaculture on the coastal zone. Ocean Coast. Manag. 2006, 49, 531–545. [Google Scholar] [CrossRef]
- Crab, R.; Avnimelech, Y.; Defoirdt, T.; Bossier, P.; Verstraete, W. Nitrogen removal techniques in aquaculture for a sustainable production. Aquaculture 2007, 270, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Yucel-Gier, G.; Eronat, C.; Sayin, E. The Impact of Marine Aquaculture on the Environment; the Importance of Site Selection and Carrying Capacity. Agric. Sci. 2019, 10, 259–266. [Google Scholar] [CrossRef] [Green Version]
- Neori, A.; Shpigel, M.; Ben-Ezra, D. A sustainable integrated system for culture of fish, seaweed and abalone. Aquaculture 2000, 186, 279–291. [Google Scholar] [CrossRef]
- Ferreira, J.G.; Hawkins, A.J.; Monteiro, P.; Moore, H.; Edwards, A.; Goven, R.; Lourenco, P.; Mellor, A.; Nunes, J.P.; Ramos, L.; et al. SMILE Sustainable Mariculture in Northern Irish Lough Ecosystems; Department of Agriculture and Rural Development for Northern Ireland: Belfast, UK, 2007.
- Boyd, C.E.; D’Abramo, L.R.; Glencross, B.D.; Huyben, D.C.; Juarez, L.M.; Lockwood, G.S.; McNevin, A.A.; Tacon, A.G.J.; Teletchea, F.; Tomasso, J.R., Jr.; et al. Achieving sustainable aquaculture: Historical and current perspectives and future needs and challenges. J. World Aquac. Soc. 2020, 51, 578–633. [Google Scholar] [CrossRef]
- Zheng, W.; Shi, H.; Chen, S.; Zhu, M. Benefit and cost analysis of mariculture based on ecosystem services. Ecol. Econ. 2009, 68, 1626–1632. [Google Scholar] [CrossRef]
- Troell, M.; Joyce, A.; Chopin, T.; Neori, A.; Buschmann, A.H.; Fang, J.-G. Ecological engineering in aquaculture—Potential for integrated multi-trophic aquaculture (IMTA) in marine offshore systems. Aquaculture. 2009, 297, 1–9. [Google Scholar] [CrossRef]
- Barrington, K.; Chopin, T.; Robinson, S. Integrated Multi-Trophic Aquaculture (Imta) in Marine Temperate Waters; FAO Fisheries and Aquaculture Technical Paper; FAO: Rome, Italy, 2009; Volume 529, pp. 7–46. [Google Scholar]
- Ndiaye, N.A.; Maiguizo-Diagne, H.; Diadhiou, H.D.; Ndiaye, W.N.; Diedhiou, F.; Cournac, L.; Gaye, M.L.; Fall, S.; Brehmer, P. Methanogenic and fertilizing potential of aquaculture waste: Towards freshwater farms energy self-sufficiency in the framework of blue growth. Rev. Aquac. 2019, 12, 1435–1444. [Google Scholar] [CrossRef]
- Kapetsky, J.M.; Aguilar-Manjarrez, J.; Jenness, J. A Global Assessment of Offshore Mariculture Potential from a Spatial Perspective; FAO Fisheries and Aquaculture Technical Paper; FAO: Rome, Italy, 2013; Volume 549, p. I. [Google Scholar]
- Soe, M.; Nguyen, M.R.; Wattoo, S.A. Regional Review on Livelihood Opportunities Related to Mariculture Development; FAO Fisheries Proceedings; FAO: Rome, Italy, 2008. [Google Scholar]
- Aguilar-Manjarrez, J.; Lovatelli, A. Technical Workshop on Marine Cage Culture in the Islamic Republic of Iran; FAO Aquaculture Newsletter; FAO: Rome, Italy, 2017; Volume 56, p. 22. [Google Scholar]
- Price, C.; Black, K.D.; Hargrave, B.T.; Morris, J.A. Marine cage culture and the environment: Effects on water quality and primary production. Aquac. Environ. Interact. 2015, 6, 151–174. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Y.; Zhang, J.; Liu, Y.; Sun, K.; Zhang, C.; Wu, W.; Teng, F. Numerical assessment of the environmental impacts of deep sea cage culture in the Yellow Sea, China. Sci. Total Environ. 2020, 706, 135752. [Google Scholar] [CrossRef]
- Qi, Z.; Shi, R.; Yu, Z.; Han, T.; Li, C.; Xu, S.; Xu, S.; Liang, Q.; Yu, W.; Lin, H. Nutrient release from fish cage aquaculture and mitigation strategies in Daya Bay, southern China. Mar. Pollut. Bull. 2019, 146, 399–407. [Google Scholar] [CrossRef]
- FAO. FAO Yearbook of Fishery and Aquaculture Statistics; FAO: Rome, Italy, 2019; pp. 22–29. [Google Scholar]
- Turcios, A.E.; Papenbrock, J. Sustainable treatment of aquaculture effluents—What can we learn from the past for the future? Sustainability 2014, 6, 836–856. [Google Scholar] [CrossRef] [Green Version]
- Silva, C.; Yanez, E.; Martin-Diaz, M.L.; Riba, I.; DelValls, T.A. Integrated ecotoxicological assessment of marine sediments affected by land-based marine fish farm effluents: Physicochemical, acute toxicity and benthic community analyses. Ecotoxicology 2013, 22, 996–1011. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Zhang, Y.; Juck, D.; Fortin, N.; Greer, C.W. Impact of Intensive Land-Based Fish Culture in Qingdao, China, on the Bacterial Communities in Surrounding Marine Waters and Sediments. Evid. Based Complementary Altern. Med. 2011, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Weston, D.P. Ecological effects of the use of chemicals in aquaculture. In Use of Chemicals in Aquaculture in Asia; Aquaculture Department, Southeast Asian Fisheries Development Center: Iloilo, Philippines, 1996. [Google Scholar]
- Rico, A.; Satapornvanit, K.; Haque, M.M.; Min, J.; Nguyen, P.T.; Telfer, T.C.; van den Brink, P.J. Use of chemicals and biological products in Asian aquaculture and their potential environmental risks: A critical review. Rev. Aquac. 2012, 4, 75–93. [Google Scholar] [CrossRef]
- Tornero, V.; Hanke, G. Chemical contaminants entering the marine environment from sea-based sources: A review with a focus on European seas. Mar. Pollut. Bull. 2016, 112, 17–38. [Google Scholar] [CrossRef] [PubMed]
- Amara, I.; Miled, W.; Ben Slama, R.; Ladhari, N. Antifouling processes and toxicity effects of antifouling paints on marine environment. A review. Environ. Toxicol. Pharmacol. 2018, 57, 115–130. [Google Scholar] [CrossRef] [PubMed]
- Cao, J.S.; Wang, C.; Fang, F.; Lin, J.X. Removal of heavy metal Cu(II) in simulated aquaculture wastewater by modified palygorskite. Environ. Pollut. 2016, 219, 924–931. [Google Scholar] [CrossRef] [PubMed]
- Squadrone, S.; Brizio, P.; Stella, C.; Prearo, M.; Pastorino, P.; Serracca, L.; Ercolini, C.; Abete, M.C. Presence of trace metals in aquaculture marine ecosystems of the northwestern Mediterranean Sea (Italy). Environ. Pollut. 2016, 215, 77–83. [Google Scholar] [CrossRef]
- Montojo, U.M.; Baldoza, B.J.S.; Perelonia, K.B.S.; Cambia, F.D.; Garcia, L.C. Estimation of Nutrient Load from Aquaculture Farms in Manila Bay, Philippines. Philipp. J. Fish. 2020, 27, 30–39. [Google Scholar] [CrossRef]
- Enduta, A.; Jusoh, A.; Ali, N.; Wan Nik, W.B. Nutrient removal from aquaculture wastewater by vegetable production in aquaponics recirculation system. Desalin. Water Treat. 2011, 32, 422–430. [Google Scholar] [CrossRef]
- Islam, M.S. Nitrogen and phosphorus budget in coastal and marine cage aquaculture and impacts of effluent loading on ecosystem: Review and analysis towards model development. Mar. Pollut. Bull. 2005, 50, 48–61. [Google Scholar] [CrossRef] [PubMed]
- Sara, G.; Lo Martire, M.; Sanfilippo, M.; Pulicano, G.; Cortese, G.; Mazzola, A.; Manganaro, A.; Pusceddu, A. Impacts of marine aquaculture at large spatial scales: Evidences from N and P catchment loading and phytoplankton biomass. Mar. Environ. Res. 2011, 71, 317–324. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahrendt, K.; Sterr, H.; Krost, P.; Windhorst, W.; Schultz, M. Potential, constrains and solutions for marine aquaculture in Kiel Bay & Fjord. J. Coast. Conserv. 2017, 22, 115–130. [Google Scholar]
- Cai, H.; Sun, Y. Management of marine cage aquaculture. Environmental carrying capacity method based on dry feed conversion rate. Environ. Sci. Pollut. Res. Int. 2007, 14, 463–469. [Google Scholar]
- Piedecausa, M.A.; Aguado-Giménez, F.; Cerezo-Valverde, J.; Hernández-Llorente, M.D.; García-García, B. Simulating the temporal pattern of waste production in farmed gilthead seabream (Sparus aurata), European seabass (Dicentrarchus labrax) and Atlantic bluefin tuna (Thunnus thynnus). Ecol. Model. 2010, 221, 634–640. [Google Scholar] [CrossRef]
- Goncalves Ferreira, C.S.; Nunes, B.A.; de Melo Henriques-Almeida, J.M.; Guilhermino, L. Acute toxicity of oxytetracycline and florfenicol to the microalgae Tetraselmis chuii and to the crustacean Artemia parthenogenetica. Ecotoxicol. Environ. Saf. 2007, 67, 452–458. [Google Scholar] [CrossRef]
- Durso, L.; Cook, K. Impacts of antibiotic use in agriculture: What are the benefits and risks? Curr. Opin. Microbiol. 2014, 19C, 37–44. [Google Scholar] [CrossRef]
- Kemp, W.M.; Testa, J.M.; Conley, D.J.; Gilbert, D.; Hagy, J.D. Temporal response of coastal hypoxia to nutrient loading and physical controls. Biogeosciences 2009, 6, 2985–3008. [Google Scholar] [CrossRef] [Green Version]
- Ballester-Moltó, M.; Sanchez-Jerez, P.; Aguado-Giménez, F. Consumption of particulate wastes derived from cage fish farming by aggregated wild fish. An experimental approach. Mar. Environ. Res. 2017, 130, 166–173. [Google Scholar]
- Martinez-Porchas, M.; Martinez-Cordova, L.R. World Aquaculture: Environmental Impacts and Troubleshooting Alternatives. Sci. World J. 2012, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Fabi, G.; Manoukian, S.; Spagnolo, A. Impact of an open-sea suspended mussel culture on macrobenthic community (Western Adriatic Sea). Aquaculture 2009, 289, 54–63. [Google Scholar] [CrossRef]
- Zhang, W.; Liu, X.; Cheng, H.; Zeng, E.Y.; Hu, Y. Heavy metal pollution in sediments of a typical mariculture zone in South China. Mar. Pollut. Bull. 2012, 64, 712–720. [Google Scholar] [CrossRef] [PubMed]
- Parsaian, M.; Shokri, M.R.; Pazooki, J. The response of benthic foraminifera to aquaculture and industrial pollution: A case study from the Northern Persian Gulf. Mar. Pollut. Bull. 2018, 135, 682–693. [Google Scholar] [CrossRef] [PubMed]
- Han, Q.; Zhao, S.; Zhang, X.; Wang, X.; Song, C.; Wang, S. Distribution, combined pollution and risk assessment of antibiotics in typical marine aquaculture farms surrounding the Yellow Sea, North China. Environ. Int. 2020, 138, 105551. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Zhao, H.; Lehmler, H.-J.; Cai, X.; Chen, J. Antibiotic Pollution in Marine Food Webs in Laizhou Bay, North China: Trophodynamics and Human Exposure Implication. Environ. Sci. Technol. 2017, 51, 2392–2400. [Google Scholar] [CrossRef]
- Fischer, H.B.; List, E.J.; Koh, R.C.Y.; Imberger, J.; Brook, N.H. Mixing in Inland and Coastal Waters; Academic Press: New York, NY, USA, 1979; p. 484. [Google Scholar]
- Klebert, P.; Lader, P.; Gansel, L.; Oppedal, F. Hydrodynamic interactions on net panel and aquaculture fish cages: A review. Ocean Eng. 2013, 58, 260–274. [Google Scholar] [CrossRef]
- Fernandez-Jover, D.; Sanchez-Jerez, P.; Bayle-Sempere, J.; Carratala, A.; Leon, V.M. Addition of dissolved nitrogen and dissolved organic carbon from wild fish faeces and food around Mediterranean fish farms: Implications for waste-dispersal models. J. Exp. Mar. Biol. Ecol. 2007, 340, 160–168. [Google Scholar] [CrossRef]
- Venayagamoorthy, S.K.; Ku, H.; Fringer, O.B.; Chiu, A.; Naylor, R.L.; Koseff, J.R. Numerical modeling of aquaculture dissolved waste transport in a coastal embayment. Environ. Fluid Mech. 2011, 11, 329–352. [Google Scholar] [CrossRef]
- Yeo, S.E.; Binkowski, F.P.; Morris, J.E. Aquaculture Effluents and Waste By-Products Characteristics, Potential Recovery, and Beneficial Reuse; NCRAC Technical Bulletin no. 6; North Central Regional Aquaculture Center, Iowa State University: Ames, IA, USA, 2004. [Google Scholar]
- Matta, E.; Selge, F.; Gunkel, G.; Rossiter, K.; Jourieh, A.; Hinkelmann, R. Simulations of nutrient emissions from a net cage aquaculture system in a Brazilian bay. Water Sci. Technol. 2016, 73, 2430–2435. [Google Scholar] [CrossRef] [Green Version]
- Perez, O.; Almansa, E.; Riera, R.; Rodriguez, M.; Ramos, E.; Costa, J.; Monterros, O. Food and faeces settling velocities of meagre (Argyrosomus regius) and its application for modelling waste dispersion from sea cage aquaculture. Aquaculture 2014, 420, 171–179. [Google Scholar] [CrossRef]
- Merino, G.E.; Piedrahita, R.H.; Conklin, D.E. Settling characteristics of solids settled in a recirculating system for California halibut (Paralichthys californicus) culture. Aquac. Eng. 2007, 37, 79–88. [Google Scholar] [CrossRef]
- Chen, Y.S.; Beveridge, M.C.M.; Telfer, T.C. Settling rate characteristics and nutrient content of the faeces of Atlantic salmon, Salmo salar L., and the implications for modelling of solid waste dispersion. Aquac. Res. 1999, 30, 395–398. [Google Scholar] [CrossRef]
- Masaló, I.; Guadayol, Ò.; Peters, F.; Oca, J. Analysis of sedimentation and resuspension processes of aquaculture biosolids using an oscillating grid. Aquac. Eng. 2008, 38, 135–144. [Google Scholar] [CrossRef]
- Reid, G.K.; Liutkus, M.; Robinson, S.M.C.; Chopin, T.R.; Blair, T.; Lander, T.; Mullen, J.; Page, F.; Moccia, R.D. A review of the biophysical properties of salmonid faeces: Implications for aquaculture waste dispersal models and integrated multi-trophic aquaculture. Aquac. Res. 2009, 40, 257–273. [Google Scholar] [CrossRef]
- Neofitou, N.; Papadimitriou, K.; Domenikiotis, C.; Tziantziou, L.; Panagiotaki, P. GIS in environmental monitoring and assessment of fish farming impacts on nutrients of Pagasitikos Gulf, Eastern Mediterranean. Aquaculture 2019, 501, 62–75. [Google Scholar] [CrossRef]
- Cullen-Unsworth, L.C.; Nordlund, L.M.; Paddock, J.; Baker, S.; McKenzie, L.J.; Unsworth, R.K.F. Seagrass meadows globally as a coupled social-ecological system: Implications for human wellbeing. Mar. Pollut. Bull. 2014, 83, 387–397. [Google Scholar] [CrossRef]
- Kendrick, G.A.; Pomeroy, A.W.; Orth, R.J.; Cambridge, M.L.; Shaw, J.; Kotula, L.; Lowe, R.J. A novel adaptation facilitates seed establishment under marine turbulent flows. Sci. Rep. 2019, 9, 1–8. [Google Scholar] [CrossRef]
- Belias, C.; Dassenakis, M.; Scoullos, M. Study of the N, P and Si fluxes between fish farm sediment and seawater. Results of simulation experiments employing a benthic chamber under various redox conditions. Mar. Chem. 2007, 103, 266–275. [Google Scholar] [CrossRef]
- Pupulawaththa, A.W. Disintegration and Degradation of Fish Feed Pellets and Feces under Aerobic Marine Conditions. Master’s Thesis, Universitetet i Sørøst-Norge, Buskerud, Norway, 2018. [Google Scholar]
- Piedrahita, R.H. Reducing the potential environmental impact of tank aquaculture effluents through intensification and recirculation. Aquaculture 2003, 226, 35–44. [Google Scholar] [CrossRef]
- Ali, A.; Thiem, O.; Berntsen, J. Numerical modelling of organic waste dispersion from fjord located fish farms. Ocean Dyn. 2011, 61, 977–989. [Google Scholar] [CrossRef] [Green Version]
- Sara, G.; Scilipoti, D.; Milazzo, M.; Modica, A. Use of stable isotopes to investigate dispersal of waste from fish farms as a function of hydrodynamics. Mar. Ecol. Prog. Ser. 2006, 313, 261–270. [Google Scholar] [CrossRef] [Green Version]
- Maa, P.Y.; Kwon, J.I.; Hwang, K.N.; Ha, H.K. Critical Bed-Shear Stress for Cohesive Sediment Deposition under Steady Flows. J. Hydraul. Eng. 2008, 134, 1767–1771. [Google Scholar] [CrossRef] [Green Version]
- Bombardelli, F.A.; Moreno, P.A. Exchange at the bed sediments-water column interface. In Fluid Mechanics of Environmental Interfaces, 2nd ed.; Gualtieri, C., Mihailovic, D.T., Eds.; CRC Press/Balkema: Leiden, The Netherlands, 2012; pp. 221–253. [Google Scholar]
- Carvajalino-Fernández, M.A.; Keeley, N.B.; Fer, I.; Law, B.A.; Bannister, R.J. Effect of substrate type and pellet age on the resuspension of Atlantic salmon faecal material. Aquac. Environ. Interact. 2020, 12, 117–129. [Google Scholar] [CrossRef] [Green Version]
- Cromey, C.J.; Nickell, T.D.; Black, K.D.; Provost, P.G.; Griffiths, C.R. Validation of a fish farm waste resuspension model by use of a particulate tracer discharged from a point source in a coastal environment. Estuaries 2002, 25, 916–929. [Google Scholar] [CrossRef]
- Wu, Y.; Chaffey, J.; Law, B.; Greenberg, D.A.; Drozdowski, A.; Page, F.; Haigh, S. A three-dimensional hydrodynamic model for aquaculture: A case study in the Bay of Fundy. Aquac. Environ. Interact. 2014, 5, 235–248. [Google Scholar] [CrossRef] [Green Version]
- Chapra, S.C. Surface Water-Quality Modeling; McGraw-Hill: New York, NY, USA, 1997; p. 846. [Google Scholar]
- Gualtieri, C. Sediments burial velocity estimation in Venice Lagoon. In Proceedings of the XXVIII IAHR Congress, Graz, Austria, 22–27 August 1999; pp. 22–27. [Google Scholar]
- Iversen, N.; JøRgensen, B.B. Diffusion coefficients of sulfate and methane in marine sediments: Influence of porosity. Geochim. Et Cosmochim. Acta 1993, 57, 571–578. [Google Scholar] [CrossRef]
- Ben Brahim, M.; Mabrouk, L.; Hamza, A.; Mahfoudhi, M.; Bouain, A.; Aleya, L. Spatial scale variability in shoot density and epiphytic leaves of Posidonia oceanica on Kerkennah Island (Tunisia) in relation to current tide effects. Mar. Ecol. Evol. Perspect. 2015, 36, 1311–1331. [Google Scholar] [CrossRef]
- EU Commission. Water Environmental Quality Standards; EU: Brussels, Belgium, 2007; Volume 16. [Google Scholar]
- Bleninger, T.; Jirka, G.H. Mixing zone regulation for effluent discharges into EU waters. In Proceedings of the Institution of Civil Engineers-Water Management; Thomas Telford Ltd.: London, UK, May 2011; Volume 164, pp. 387–396. [Google Scholar]
- SEPA. Potection of the Marine Environment; Scottish Environment Protection Agency: Stirling, UK, 2019. [Google Scholar]
- Mugg, J.; Serrano, A.; Liberti, A.; Rice, M.A. Aquaculture effluents: A Guide for Water Quality Regulators and Aquaculturists; No. 00-003; NRAC Publication, University of Massachusetts Dartmouth: North Dartmouth, MA, USA, 2007. [Google Scholar]
- USEPA. Water Quality Standards Handbook Chapter 5: General Policies; USEPA: Washington, DC, USA, 2014.
- Queenland. Licensing Wastewater Releases from Existing Marine Prawn Farms in Queensland; Operational Policy-Marine Prawn Aquaculture; Department of Environment and Science: Queenland, MD, USA, 2015.
- Department of Agriculture. Permits and Regulatory Requirements for Aquaculture in Hawaii; Aquaculture Planning & Advocacy: Kaneohe, HI, USA, 2011. [Google Scholar]
- Cooke, J.; Milne, P.; Rutherford, K. A Review of Definitions of “Mixing Zones” and “Reasonable Mixing” in Receiving Waters; A report prepared for Auckland Regional Council. Auckland Regional Council Technical Report 2010/045, August 2010, ISSN 1179-0512 (Online); Auckland Regional Council: Auckland, New Zealand, 2010; ISBN 978-1-927135-01. [Google Scholar]
- Wilson, A.; Magill, S.; Black, K.D. Review of Environmental Impact Assessment and Monitoring in Salmon Aquaculture; FAO Fisheries and Aquaculture Technical Paper; FAO: Rome, Italy, 2009; Volume 527, pp. 455–535. [Google Scholar]
- ANZECC. Australia and New Zealand Environment Council Guidelines for Fresh and Marine Water Quality; ANZECC: Artarmon, Australia, 2000; Volume 2. [Google Scholar]
- Li, X.; Li, J.; Wang, Y.; Fu, L.; Fu, Y.; Li, B.; Jiao, B. Aquaculture Industry in China: Current State, Challenges, and Outlook. Rev. Fish. Sci. 2011, 19, 187–200. [Google Scholar] [CrossRef]
- Yu, J.; Yin, W.; Liu, D. Evolution of mariculture policies in China: Experience and challenge. Mar. Policy 2020, 119, 104062. [Google Scholar] [CrossRef]
- Nixon, R.M. Federal Water Pollution Control Act (FWPC); USEPA: Washington, DC, USA, 1972.
- Ministry of Agriculture and Rural Affairs of the People’s Republic of China. Marine Aquaculture Water Discharge Requirements; Ministry of Agriculture and Rural Affairs of the People’s Republic of China: Beijing, China, 2007.
- Holen, S.M.; Yang, X.; Utne, I.B.; Haugen, S. Major accidents in Norwegian fish farming. Saf. Sci. 2019, 120, 32–43. [Google Scholar] [CrossRef]
- Singer, A.; Schuckel, U.; Beck, M.; Bleich, O.; Brumsack, H.J.; Freund, H.; Geimecke, C.; Lettmann, K.A.; Millat, G.; Staneva, J.; et al. Small-scale benthos distribution modelling in a North Sea tidal basin in response to climatic and environmental changes (1970s-2009). Mar. Ecol. Prog. Ser. 2016, 551, 13–30. [Google Scholar] [CrossRef] [Green Version]
- Bostock, J.; McAndrew, B.; Richards, R.; Jauncey, K.; Telfer, T.; Lorenzen, K.; Little, D.; Ross, L.; Handisyde, N.; Gatward, I.; et al. Aquaculture: Global status and trends. Philos. Trans. R. Soc. B Biol. Sci. 2010, 365, 2897–2912. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, N.C.; Bonetti, C.; Seiffert, W.Q. Hydrological and Water Quality Indices as management tools in marine shrimp culture. Aquaculture 2011, 318, 425–433. [Google Scholar] [CrossRef]
- EPA. Aquaculture Management and the Environment Protection (Water Quality) Policy; EPA: Adelaide, Australia, 2005.
- Environment Agency of UK. The Water Framework Directive (Standards and Classification) Directions (England and Wales); Environment Agency of UK: Bristol, UK, 2015.
- Ministry of Natural Resources of the People’s Republic of China. Marine Water Quality Standard; Ministry of Natural Resources of the People’s Republic of China: Beijing, China, 1997.
- Department of Agriculture, Forestry and Fisheries. National Aquaculture Policy Framework in South Africa; Department of Agriculture, Forestry and Fisheries: Eastern Cape, South Africa, 2013.
- Fisheries & Aquaculture. South Australia Environment Protection (Water Quality) Policy; Fisheries & Aquaculture: Adelaide, Australia, 2003. [Google Scholar]
- USEPA. Water Quality Standards Handbook, 2nd ed.; USEPA: Washington, DC, USA, 1994.
- Dean, R.J.; Shimmield, T.M.; Black, K.D. Copper, zinc and cadmium in marine cage fish farm sediments: An extensive survey. Environ. Pollut. 2007, 145, 84–95. [Google Scholar] [CrossRef]
- DEP. Maine Pollutant Discharge Elimination Sysytem Permit Marine Waste Discharge License; Maine Department of Environmental Protection: Augusta, ME, USA, 2014.
- Maroni, K. Monitoring and regulation of marine aquaculture in Norway. J. Appl. Ichthyol. 2000, 16, 192–195. [Google Scholar] [CrossRef]
- Carroll, M.L.; Cochrane, S.; Fieler, R.; Velvin, R.; White, P. Organic enrichment of sediments from salmon farming in Norway: Environmental factors, management practices, and monitoring techniques. Aquaculture 2003, 226, 165–180. [Google Scholar] [CrossRef]
- Ottinger, M.; Clauss, K.; Kuenzer, C. Aquaculture: Relevance, distribution, impacts and spatial assessments—A review. Ocean Coast. Manag. 2016, 119, 244–266. [Google Scholar] [CrossRef]
- Hamoutene, D.; Salvo, F.; Bungay, T.; Mabrouk, G.; Couturier, C.; Ratsimandresy, A.; Dufour, S.C. Assessment of Finfish Aquaculture Effect on Newfoundland Epibenthic Communities through Video Monitoring. N. Am. J. Aquaculture 2015, 77, 117–127. [Google Scholar] [CrossRef]
- Ma, D.K.; Ding, Q.S.; Li, D.L.; Zhao, L.L. Wireless Sensor Network for Continuous Monitoring Water Quality in Aquaculture Farm. Sens. Lett. 2010, 8, 109–113. [Google Scholar] [CrossRef]
- Parra, L.; Lloret, G.; Lloret, J.; Rodilla, M. Physical sensors for precision aquaculture: A Review. IEEE Sens. J. 2018, 18, 3915–3923. [Google Scholar] [CrossRef] [Green Version]
- Harun, A.; Ndzi, D.L.; Ramli, M.F.; Shakaff, A.Y.M.; Ahmad, M.N.; Kamarudin, L.M.; Zakaria, A.; Yang, Y. Signal propagation in aquaculture environment for wireless sensor network applications. Prog. Electromagn. Res.-Pier 2012, 131, 477–494. [Google Scholar] [CrossRef] [Green Version]
- Yamazaki, H.; Aoyama, W.; Masunaga, E.; Tanaka, M. Observation of three-dimensional flow structures and effluent transport around fish cages using a towed ADCP and free-fall multi-parameter profiler. Aquac. Res. 2019, 50, 1107–1116. [Google Scholar] [CrossRef]
- White, C.A.; Woodcock, S.H.; Bannister, R.J.; Nichols, P.D. Terrestrial fatty acids as tracers of finfish aquaculture waste in the marine environment. Rev. Aquac. 2019, 11, 133–148. [Google Scholar] [CrossRef] [Green Version]
- Xie, B.; Huang, J.; Huang, C.; Wang, Y.; Shi, S.; Huang, L. Stable isotopic signatures (δ13C and δ15N) of suspended particulate organic matter as indicators for fish cage culture pollution in Sansha Bay, China. Aquaculture 2020, 522, 735081. [Google Scholar] [CrossRef]
- Woodcock, S.H.; Troedsson, C.; Strohmeier, T.; Balseiro, P.; Skaar, K.S.; Strand, Ø. Combining biochemical methods to trace organic effluent from fish farms. Aquac. Environ. Interact. 2017, 9, 429–443. [Google Scholar] [CrossRef]
- Howarth, L.M.; Filgueira, R.; Jiang, D.; Koepke, H.; Frame, M.K.; Buchwald, C.; Finnis, S.; Chopin, T.; Costanzo, S.D.; Grant, J. Using macroalgal bioindicators to map nutrient plumes from fish farms and other sources at a bay-wide scale. Aquac. Environ. Interact. 2019, 11, 671–684. [Google Scholar] [CrossRef] [Green Version]
- Stoeck, T.; Kochems, R.; Forster, D.; Lejzerowicz, F.; Pawlowski, J. Metabarcoding of benthic ciliate communities shows high potential for environmental monitoring in salmon aquaculture. Ecol. Indic. 2018, 85, 153–164. [Google Scholar] [CrossRef]
- Law, B.A.; Hill, P.S. Spatial and temporal variation in cumulative mass eroded and organic matter percentage in surface sediments near areas of active salmon aquaculture. Aquac. Environ. Interact. 2019, 11, 305–320. [Google Scholar] [CrossRef] [Green Version]
- Heerschap, M.E. User’s Manual for the Computer Program CUFUS: Quick Design Procedure for a CUt-Out in a FUSelage Version 1.0. Delft University of Technology, 1997. Available online: https://www.narcis.nl/publication/RecordID/oai:tudelft.nl:uuid:717630e4-194c-4d2a-b4d1-d7f3929b5608 (accessed on 14 July 2020).
- Dudley, R.W.; Panchang, V.G.; Newell, C.R. Application of a comprehensive modeling strategy for the management of net-pen aquaculture waste transport. Aquaculture. 2000, 187, 319–349. [Google Scholar] [CrossRef]
- SAMS. DEPOMOD Modelling Software. 2017. Available online: https://www.sams.ac.uk/science/projects/depomod/ (accessed on 16 July 2020).
- Cromey, C.J.; Nickell, T.D.; Black, K.D. DEPOMOD-modelling the deposition and biological effects of waste solids from marine cage farms. Aquaculture 2002, 214, 211–239. [Google Scholar] [CrossRef]
- Cromey, C.J.; Thetmeyer, H.; Lampadariou, N.; Black, K.D.; Kogeler, J.; Karakassis, I. MERAMOD: Predicting the deposition and benthic impact of aquaculture in the eastern Mediterranean Sea. Aquac. Environ. Interact. 2012, 2, 157–176. [Google Scholar] [CrossRef] [Green Version]
- Cromey, C.J.; Nickell, T.D.; Treasurer, J.; Black, K.D.; Inall, M. Modelling the impact of cod (Gadus morhua L.) farming in the marine environment—CODMOD. Aquaculture 2009, 289, 42–53. [Google Scholar] [CrossRef]
- Nickell, T.D.; Cromey, C.J.; Borja, Á.; Black, K.D. The benthic impacts of a large cod farm—Are there indicators for environmental sustainability? Aquaculture 2009, 295, 226–237. [Google Scholar] [CrossRef]
- Panchang, V.; Cheng, G.; Newell, C. Modeling hydrodynamics and aquaculture waste transport in coastal maine. Estuaries 1997, 20, 14–41. [Google Scholar] [CrossRef]
- Danish Hydraulic Institute. MIKE 21 Hydrodynamic Module Step-By-Step Training Guide; 2017; Available online: https://manuals.mikepoweredbydhi.help/2017/Coast_and_Sea/MIKE21_HD_Step_By_Step.pdf (accessed on 21 July 2020).
- Engø-Monsen, K. The Bergen Ocean Model Benchmark 1.0. University of Bergen, 2000. Available online: https://www.academia.edu/5474148/The_Bergen_Ocean_Model_Benchmark_1_0 (accessed on 21 July 2020).
- Ali, A.; Thiem, Ø.; Berntsen, J. Numerical simulation of flow and aquaculture organic waste dispersion in a curved channel. Ocean Dyn. 2013, 63, 1073–1082. [Google Scholar] [CrossRef]
- Sato, T.; Tonoki, K.; Yoshikawa, T.; Tsuchiya, Y. Numerical and hydraulic simulations of the effect of Density Current Generator in a semi-enclosed tidal bay. Coast. Eng. 2006, 53, 49–64. [Google Scholar] [CrossRef]
- Zhang, J.; Kitazawa, D. Numerical analysis of particulate organic waste diffusion in an aquaculture area of Gokasho Bay, Japan. Mar. Pollut. Bull. 2015, 93, 130–143. [Google Scholar] [CrossRef]
- Open TELEMAC-MASCARET. User Manual Telemac-3d. 2020. Available online: http://wiki.opentelemac.org/doku.php?id=user_manual_telemac-3d (accessed on 27 July 2020).
- MARETEC. MOHID Water Modelling System. 2018. Available online: http://mohid.com/pages/home/whatismohid.shtml (accessed on 27 July 2020).
- Moreno Navas, J.; Telfer, T.C.; Ross, L.G. Application of 3D hydrodynamic and particle tracking models for better environmental management of finfish culture. Cont. Shelf Res. 2011, 31, 675–684. [Google Scholar] [CrossRef]
- Deltares. Delft3D Open Source Community. 2015. Available online: https://oss.deltares.nl/web/delft3d (accessed on 27 July 2020).
- Windupranata, W.; Mayerle, R. Decision support system for selection of suitable mariculture site in the western part of Java Sea, Indonesia. J. Eng. Technol. Sci. 2009, 41, 77–96. [Google Scholar] [CrossRef] [Green Version]
- Doglioli, A.M. Lagrangian Assessment for Marine Pollution 3D Model. 2004. Available online: https://people.mio.osupytheas.fr/~doglioli/ (accessed on 28 July 2020).
- Mestres, M.; Chaperon, W.; Pau Sierra, J. Modeling the benthic loading of particulate wastes from a gilthead seabream (Sparus aurata) farm during a complete rearing cycle. Cienc. Mar. 2016, 42, 179–194. [Google Scholar] [CrossRef] [Green Version]
- Liu, C.H.; Beardsley, R.C. An unstructured, finite-volume, three-dimensional, primitive equation ocean model: Application to coastal ocean and estuaries. J. Atmos. Ocean. Technol. 2003, 20, 159–186. [Google Scholar]
- Zhao, Y.; Zhang, J.; Wu, W.; Teng, F.; Kelly, R.M.; Sun, K.; Liu, Y.; Qu, D.; Liu, Y.; Zhu, Y. Assessing environmental carrying capacity of sea cage culture in the Yellow Sea, China, using a coupled diffusion model. Aquaculture 2020, 520, 735009. [Google Scholar] [CrossRef]
- Shchepetkin, A.F.; Mcwilliams, J.C. The regional oceanic modeling system (ROMS): A split-explicit, free-surface, topography-following-coordinate oceanic model. Ocean Model. 2005, 9, 347–404. [Google Scholar] [CrossRef]
- Fringer, O.B.; Gerritsen, M.; Street, R.L. An unstructured-grid, finite-volume, nonhydrostatic, parallel coastal ocean simulator. Ocean Model. 2006, 14, 139–173. [Google Scholar] [CrossRef]
- Ervik, A.; Hansen, P.K.; Aure, J.; Stigebrandt, A.; Johannessen, P.; Jahnsen, T. Regulating the local environmental impact of intensive marine fish farming I. The concept of the MOM system (Modelling-Ongrowing fish farms-Monitoring). Aquaculture 1997, 194, 75–92. [Google Scholar] [CrossRef]
- Zhang, J.; Ren, L.; Wu, T.; Zhang, M.; Wang, W.; Fang, J. Assessment of the local environmental impact of abalone suspended long-line culture—Application of the MOM system in Sungo Bay. Fish. Mod. 2011, 38, 1–6. [Google Scholar]
- Hawkins, A.; Duarte, P.; Fang, J.; Pascoe, P.; Zhu, M. A functional model of responsive suspension-feeding and growth in bivalve shellfish, configured and validated for the scallop Chlamys farreri during culture in China. J. Exp. Mar. Biol. Ecol. 2002, 281, 13–40. [Google Scholar] [CrossRef]
- Ferreira, J.G.; Hawkins, A.J.S.; Monteiro, P.; Moore, H.; Service, M.; Pascoe, P.L.; Ramos, L.; Sequeira, A. Integrated assessment of ecosystem-scale carrying capacity in shellfish growing areas. Aquaculture 2008, 275, 138–151. [Google Scholar] [CrossRef]
- Turner, R.K. Integrating natural and socio-economic science in coastal management. J. Mar. Syst. 2000, 25, 447–460. [Google Scholar] [CrossRef]
- Tironi, A.; Marin, V.H.; Campuzano, F.J. A management tool for assessing aquaculture environmental impacts in Chilean Patagonian Fjords: Integrating hydrodynamic and pellets dispersion models. Environ. Manag. 2010, 45, 953–962. [Google Scholar] [CrossRef]
- Choi, K.W.; Lee, J.H.W. Distributed entrainment sink approach for modeling mixing and transport in the intermediate field. J. Hydraul. Eng. 2007, 134, 804–815. [Google Scholar] [CrossRef]
- Kim, W.; Lee, Y.; Kim, S.D. Developing and applying a site-specific multimedia fate model to address ecological risk of oxytetracycline discharged with aquaculture effluent in coastal waters off Jangheung, Korea. Ecotoxicol. Environ. Saf. 2017, 145, 221–226. [Google Scholar] [CrossRef] [PubMed]
- Symonds, A.M. A comparison between far-field and near-field dispersion modelling of fish farm particulate wastes. Aquac. Res. 2011, 42, 73–85. [Google Scholar] [CrossRef]
- Weitzman, J.; Filgueira, R. The evolution and application of carrying capacity in aquaculture: Towards a research agenda. Rev. Aquac. 2019, 12, 1297–1322. [Google Scholar] [CrossRef]
- The People’s Republic of China Ministry of Agriculture. China Fisheries Yearbook; The People’s Republic of China Ministry of Agriculture: Beijing, China, 2019.
Composition | Main Source | |
---|---|---|
Organic matter and nutrients | Organic carbon | Uneaten feed, feces |
Urea | Excretion | |
Uric acid | Excretion | |
Nitrogen (N) | Uneaten feed, feces | |
Phosphorus (P) | Uneaten feed, feces | |
Chemicals | Antibiotic | Uneaten feed, feces, and biliary excretion |
Pesticide | Uneaten feed, feces, and biliary excretion | |
Parasiticides | Uneaten feed, feces, biliary excretion, and water column (bath) | |
Algaecide | Water column (bath) | |
Disinfectant | Water column (bath) | |
Hormone | Uneaten feed, feces, and biliary excretion | |
Zinc | Feed, algaecides and pesticides | |
Copper | Antifoulant paints, algaecides, and pesticides | |
Lead | Antifoulant paints |
Country/Region | Location | Size | Shape |
---|---|---|---|
EU (including Norway) | The mixing zone should be adjacent to points of discharge and up to 25 m from the cages [83]. | The size should be as small as possible, without compromising the receiving water standards or significantly affecting aquatic life [83]. | N/A |
UK (including Scotland) | The mixing zone should lie within 100 m of the pens in all directions [84]. | The size of the mixing zone should not exceed the equivalent symmetrical area [84]. | The shape of the mixing zone does not have to be symmetrical [84] |
USA and Canada | The mixing zone should be 100 m from the point of discharge [86]. | The size should be as small as possible [86]. | The shape should be a simple configuration that is easy to locate in a body of water [86]. |
Australia | The mixing zone is set up at 200 m from the mean low water mark of the coast at spring tides [91]. | The size should not have a radius exceeding 100 m [91]. | N/A |
New Zealand | The mixing zone is limited to 200 m downstream of the point of discharge [89]. | The size of the mixing zone will vary with the effluent flow, effluent concentration, background concentration, and bed characteristics [89] | N/A |
Abiotic Parameters | Critical Concentration | Country | Reference |
---|---|---|---|
Free residual chlorine | <0.1 mg/L | China | [95] |
<13 μg/L | USA | [86] | |
Dissolved oxygen | 4–6 mg/L | Canada | [99] |
>6 mg/L | China, Australia | [95,100] | |
>5.7 mg/L | UK | [101] | |
Turbidity | <10 mg/L | Australia | [100] |
<12 mg/L | UK | [101] | |
Chemical oxygen demand | ≤10 mg/L | China | [95] |
Biochemical oxygen demand | ≤6 mg/L | China | [95] |
<10 mg/L | Australia | [100] | |
pH | 6.5–9.0 | Australia | [100] |
6.5–8.5 | USA | [86] | |
6.0–9.0 | Canada | [99] | |
7.0–8.5 | China | [95] | |
Seawater temperature | the optimum temperature for shrimp is 27 °C | Canada | [99] |
Total suspended solids | <100 mg/L | Canada | [99] |
<40 mg/L | China | [95] | |
Total nitrogen | <3 mg/L | Australia | [87] |
Total phosphorus | <0.5 mg/L | Australia | [100] |
Ammonia | <2 mg/L | Canada | [99] |
Nitrate | <0.09 mg/L | Canada | [99] |
Total organic carbon | <10 mg/L | Australia | [100] |
CaCO3 | >100 mg/L | Canada | [99] |
Sulfide | <0.002 mg/L | Australia | [100] |
Copper | <4.8 μg/L | USA | [86] |
<5 μg/L | China | [95] | |
<3.76 μg/L | UK | [101] | |
Zinc | <90 μg/L | USA | [86] |
<20 μg/L | China | [95] | |
<5 μg/L | Australia | [100] | |
<6.8 μg/L | UK | [101] | |
Chromium | <1100 μg/L | USA | [86] |
Nickel | <74 μg/L | USA | [86] |
<100 μg/L | Australia | [100] | |
Cadmium | <40 μg/L | USA | [86] |
Lead | <210 μg/L | USA | [86] |
Mercury | <0.05 μg/L | Australia | [100] |
Biotic Parameters | CriticalConcentration | Country | Reference |
Chlorophyll-a | 0.01 mg/L | Canada | [99] |
Total marine bacteria | 1000 CFU/L | Canada | [99] |
Country | Standards of Water Quality | Reference |
---|---|---|
China | Dissolved oxygen > 6 mg/L; Chemical oxygen demand ≤ 1 mg/L | [102] |
Australia | Concentrations of suspended solids, total nitrogen, and total phosphorus must not exceed background concentrations (determined by administering authority) at a boundary of the regulatory mixing zone. | [87] |
USA | Pollutant concentrations are not lethal to organisms passing through the mixing zone. | [86] |
UK | Concentrations of organic waste outside of the mixing zone are low enough to avoid adverse impacts on the status of sea life. | [84] |
South Africa | Dissolved oxygen ≥ 60%. | [10] |
Country | Standards of Sediment Quality | Reference |
---|---|---|
USA | Sulfide ≤ 1500 μM; the Shannon–Wiener diversity index of benthic < 0.5 and percent Capitella capitate of benthic > 25%. | [107] |
UK | Zinc ≤ 410 μg/g, copper ≤ 270 μg/g, indicating benthic impacts that are “probably adverse”, and Zinc ≤ 270 μg/g, copper ≤ 108 μg/g represent benthic impacts that are “potentially problematic”. | [106] |
Norway | Total organic carbon ≤ 20 mg/g. | [108] |
South Africa | Faunal benthic composition, electroconductibility, sediment carbon content. | [10] |
Model | Simulated Systems/Dimensionality | Model Structure | Simulated Processes | Applications |
---|---|---|---|---|
Near-Field Model | ||||
DUCHESS [122] |
| hydrodynamics model coupled with particle tracking model | particle waste transport process | aquaculture particle waste transport tracking [123] |
NewDEPOMOD [124] | water column and seabed sediment | particle tracking model integration with regional hydrodynamic models (e.g., FVCOM) | deposition of waste to the seabed | used in the site selection of a new farm to investigate the proposed farm position and biomass levels [125] |
MERAMOD [126] | water column and seabed sediment | particle tracking model coupled with benthic response modules | deposition of waste to the seabed | assess the benthic effects of particulate waste in Mediterranean area [13] |
CODMOD [127] | water column and seabed sediment | particle tracking model coupled with cod-specific data. | dispersion and resuspension process of waste feed and fecal particles | assess the benthic effects of cod farm [128] |
Far-Field Model | ||||
Aquaculture waste transport simulator (AWAST) [129] |
| flow model coupled with particle tracking model | physical dispersion of finfish aquaculture wastes | safeguard the long-term use of fish farm sites [123] |
Mike21 [130] |
| MIKE21 HD, MIKE21 AD, MIKE21 PT |
|
|
Bergen Ocean Model [74,131] |
| hydrodynamic σ-coordinate model coupled with a Lagrangian particle tracking simulator | dispersion and deposition process of particulate organic matter | particulate organic matter dispersion and deposition simulation [132] |
Marine Environmental Committee (MEC) ocean model [133] |
| coupled with submodules of fish cage drag and the diffusion of particulate organic waste. | particle waste transport process | provide references for the time and location of IMTA systems [134] |
TELEMAC-3D [135] |
| hydrodynamics model coupled with particle tracking model | dispersion process of particle wastes | assess the installation of new aquaculture systems [59] |
MOHID [136] |
| hydrodynamics model coupled with particle tracking model | dispersion process of particle wastes | simulate the particles dispersion through Lagrangian tracers in the far-field [137] |
Delft3D [138] |
| hydrodynamics model coupled with particle tracking model | dispersion process of particle wastes | simulate the waste dispersion in the offshore area and provide a reference for site selection [139] |
LAMP3D [140] |
| hydrodynamics model coupled with particle tracking model | transport of dissolved nutrients, fecal particulates and uneaten feed | simulate the time-varying dispersion with different pollutants and/or with different conditions of release [141] |
Finite-Volume Community Ocean Model (FVCOM) [142] |
| hydrodynamic model coupled with sediment transport model | transport, deposition and resuspension of particulate wastes | predict the far-field distribution and potential environmental effects of particulate waste [143] |
Regional Ocean Modelling System (ROMS) [144] |
| hydrodynamic model coupled with particle tracking model | transport, and deposition of particulate wastes | simulate the time-varying impact on benthic sediment with changes in fish feeding behavior [141] |
Coupled Near- and Far-Field Model | ||||
SUNTANS [145] |
| two-dimensional shallow water equations together with the depth-averaged continuity equation | mixing and transport process of waste under oscillatory flow conditions | assess the impact of aquaculture fish pens on coastal water quality in both near- and far- field |
Ecological Carrying Capacity Assessment Model | ||||
Modelling ongrowing fish farms monitoring (MOM) [146] | system-scale | fish model, coupled with dispersion model and benthic model |
| provide references for the size of fish farms and the hydrodynamic and topographic conditions of the selected areas [147] |
SMILE framework [148] | system-scale | Delft3D model coupled with cultured species growth model (ShellSIM) and ecosystem models (EcoWin2000) | interactions between environmental variables and aquaculture activities |
|
Environmental Impact Assessment Model | ||||
Integrated Coastal Zone Management (ICZM) [150] | system-scale | 3-level nested hydrodynamic model coupled with particle tracking module and GIS model | dispersion and deposition of organic waste | The model offers an open source alternative to particulate waste modeling and evaluation, contributing valuable information for local decision makers in the process of locating new facilities and monitoring stations. Offers information for new farm and monitoring stations locating [151] |
Site-specific multimedia fate model [152] | system-scale | JETLAG model integrated into the fugacity model | transport and transformation of chemicals | assess the ecological risk of therapeutants from aquaculture effluent [153] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Cuthbertson, A.; Gualtieri, C.; Shao, D. A Review on Mariculture Effluent: Characterization and Management Tools. Water 2020, 12, 2991. https://doi.org/10.3390/w12112991
Wang X, Cuthbertson A, Gualtieri C, Shao D. A Review on Mariculture Effluent: Characterization and Management Tools. Water. 2020; 12(11):2991. https://doi.org/10.3390/w12112991
Chicago/Turabian StyleWang, Xinyan, Alan Cuthbertson, Carlo Gualtieri, and Dongdong Shao. 2020. "A Review on Mariculture Effluent: Characterization and Management Tools" Water 12, no. 11: 2991. https://doi.org/10.3390/w12112991
APA StyleWang, X., Cuthbertson, A., Gualtieri, C., & Shao, D. (2020). A Review on Mariculture Effluent: Characterization and Management Tools. Water, 12(11), 2991. https://doi.org/10.3390/w12112991