Measurement of Flux at Sediment–Water Interface Using a Seepage Meter under Controlled Flow Conditions
Abstract
:1. Introduction
2. Experimental Methods
2.1. Seepage Meter
2.2. Water Tank
2.3. Collection Bags
2.4. Experimental Procedures
3. Results
3.1. Influx Measurement
3.2. Outflux Measurement
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Ward, J.V.; Stanford, J.A.; Voelz, N.J. Spatial distribution patterns of Crustacea in the flood plain aquifer of an alluvial river. Hydrobiologia 1994, 287, 11–17. [Google Scholar] [CrossRef]
- Brunke, M.; Gonser, T. The ecological significance of exchange processes between rivers and groundwater. Freshw. Boil. 1997, 37, 1–33. [Google Scholar] [CrossRef] [Green Version]
- Silliman, S.E.; Booth, D.F. Analysis of time-series measurements of sediment temperature for identification of gaining vs. losing portions of Juday Creek, Indiana. J. Hydrol. 1993, 146, 131–148. [Google Scholar] [CrossRef]
- Winter, T.C.; Harvey, J.W.; Franke, O.L.; Alley, W.M. Ground Water and Surface Water: A Single Resource; U.S. Geological Survey Circular 1139; U.S. Geological Survey: Denver, CO, USA, 1998.
- Winter, T.C. Relation of streams, lakes, and wetlands to groundwater flow systems. Hydrogeol. J. 1999, 7, 28–45. [Google Scholar] [CrossRef]
- Sophocleous, M. Interactions between groundwater and surface water: The state of the science. Hydrogeol. J. 2002, 10, 52–67. [Google Scholar] [CrossRef]
- Kalbus, E.; Reinstorf, F.; Schirmer, M. Measuring methods for groundwater-surface water interactions: A review. Hydrol. Earth Syst. Sci. 2006, 10, 873–887. [Google Scholar] [CrossRef] [Green Version]
- Jeon, W.-H.; Lee, J.-Y.; Cheong, W.-Y.; Park, Y.-H.; Oh, S.-H.; Eum, D.-H.; Park, J.-Y. A multi-method approach revealing the groundwater-stream water interaction in the Inbuk stream, Korea. Geosci. J. 2015, 19, 325–340. [Google Scholar] [CrossRef]
- Barthel, R.; Banzhaf, S. Groundwater and surface water interaction at the regional-scale—A review with focus on regional integrated models. Water Resour. Manag. 2016, 30, 1–32. [Google Scholar] [CrossRef] [Green Version]
- Berg, S.J.; Grosso, N.R.; Sherrier, M.P.; Mudrick, K.; Ohr, M.; Hwang, H.-T.; Park, Y.-J.; Callaghan, M.V.; Frey, S.K.; Sudicky, E.A. Natural stimuli calibration with fining direction regularization in an integrated hydrologic model. Ground Water 2019, 57, 21–35. [Google Scholar] [CrossRef]
- Constantz, J.; Cox, M.H.; Su, G.W. Comparison of heat and bromide as ground water tracers near streams. Ground Water 2003, 41, 647–656. [Google Scholar] [CrossRef]
- Conant, B., Jr. Delineating and quantifying ground water discharge zones using streambed temperatures. Ground Water 2004, 42, 243–257. [Google Scholar] [CrossRef]
- Anderson, M.P. Heat as a ground water tracer. Ground Water 2005, 43, 951–968. [Google Scholar] [CrossRef] [PubMed]
- Klaus, J.; McDonnell, J.J. Hydrograph separation using stable isotopes: Review and evaluation. J. Hydrol. 2013, 505, 47–64. [Google Scholar] [CrossRef]
- Jung, Y.-Y.; Koh, D.-C.; Yoon, Y.-Y.; Kwon, H.-I.; Heo, J.; Ha, K.; Yun, S.-T. Using stable isotopes and tritium to delineate groundwater flow systems and their relationship to streams in the Geum River basin, Korea. J. Hydrol. 2019, 573, 267–280. [Google Scholar] [CrossRef]
- Hendricks, S.P. Microbial ecology of the hyporheic zone: A perspective integrating hydrology and biology. J. N. Am. Benthol. Soc. 1993, 12, 70–78. [Google Scholar] [CrossRef]
- Lee, J.-H.; Lee, B.-J.; Unno, T. Bacterial communities in ground-and surface water mixing zone induced by seasonal heavy extraction of groundwater. Geomicrobiol. J. 2018, 35, 768–774. [Google Scholar] [CrossRef]
- Rautio, A.; Korkka-Niemi, K. Characterization of groundwater-lake water interactions at Pyhäjärvi, a lake in SW Finland. Boreal Environ. Res. 2011, 16, 363–380. [Google Scholar]
- Rosenberry, D.O.; Duque, C.; Lee, D.R. History and evolution of seepage meters for quantifying flow between groundwater and surface water: Part 1—Freshwater settings. Earth Sci. Rev. 2020, 204, 103167. [Google Scholar] [CrossRef]
- Lee, D.R. A device for measuring seepage flux in lakes and estuaries. Limnol. Oceanogr. 1977, 22, 140–147. [Google Scholar] [CrossRef]
- Lee, D.R.; Cherry, J.A. A field exercise on groundwater flow using seepage meters and mini-piezometers. J. Geol. Educ. 1978, 27, 6–10. [Google Scholar] [CrossRef]
- Woessner, W.W.; Sullivan, K.E. Results of seepage meter and mini-piezometer study, Lake Mead, Nevada. Ground Water 1984, 22, 561–568. [Google Scholar] [CrossRef]
- Isiorho, S.A.; Meyer, J.H. The effects of bag type and meter size on seepage meter measurements. Ground Water 1999, 37, 411–413. [Google Scholar] [CrossRef]
- Landon, M.K.; Rus, D.L.; Harvey, F.E. Comparison of instream methods for measuring hydraulic conductivity in sandy streambeds. Ground Water 2001, 39, 870–885. [Google Scholar] [CrossRef] [Green Version]
- Rosenberry, D.O.; Morin, R.H. Use of an electromagnetic seepage meter to investigate temporal variability in lake seepage. Ground Water 2004, 42, 68–77. [Google Scholar] [CrossRef]
- Rosenberry, D.O. A seepage meter designed for use in flowing water. J. Hydrol. 2008, 359, 118–130. [Google Scholar] [CrossRef]
- Jo, I.; Jeen, S.-W. Measurement of groundwater-surface water exchange rates using seepage meters: A case study of Deokjin pond in Jeonju-si (in Korean with English abstract). J. Geol. Soc. Korea 2018, 54, 433–441. [Google Scholar] [CrossRef]
- Lee, C.; Kim, W.; Jeen, S.-W. Analysis of water budget through measurement of groundwater flux using seepage meters at Osongji in Jeonju-si (in Korean with English abstract). J. Geol. Soc. Korea 2019, 55, 461–472. [Google Scholar] [CrossRef]
- Cremeans, M.M.; Devlin, J.F.; Osorno, T.C.; McKnight, U.S.; Bjerg, P.L. A comparison of tools and methods for estimating groundwater-surface water exchange. Ground Water Monit. R. 2020, 40, 24–34. [Google Scholar] [CrossRef]
- Kim, J.; Jeen, S.-W.; Lim, H.S.; Lee, J.; Kim, O.-S.; Lee, H.; Hong, S.G. Hydrogeological characteristics of groundwater and surface water associated with two small lake systems on King George Island, Antarctica. J. Hydrol. 2020, 590, 125537. [Google Scholar] [CrossRef]
- Murdoch, L.C.; Kelly, S.E. Factors affecting the performance of conventional seepage meters. Water Resour. Res. 2003, 39, 1163. [Google Scholar] [CrossRef]
- Rosenberry, D.O.; Pitlick, J. Effects of sediment transport and seepage direction on hydraulic properties at the sediment–water interface of hyporheic settings. J. Hydrol. 2009, 373, 377–391. [Google Scholar] [CrossRef]
- Shaw, R.D.; Prepas, E.E. Anomalous, short-term influx of water into seepage meters. Limnol. Oceanogr. 1989, 34, 1343–1351. [Google Scholar] [CrossRef]
- Belanger, T.V.; Montgomery, M.T. Seepage meter errors. Limnol. Oceanogr. 1992, 37, 1787–1795. [Google Scholar] [CrossRef]
- Libelo, E.L.; MacIntyre, W.G. Effects of surface-water movement on seepage-meter measurements of flow through the sediment-water interface. Appl. Hydrogeol. 1994, 2, 49–54. [Google Scholar] [CrossRef]
- Kim, J.; Jeen, S.-W.; Lee, J.; Ko, K.-S.; Koh, D.-C.; Kim, W.; Jo, H. Evaluation of temporal contribution of groundwater to a small lake through analyses of water quantity and quality. Water 2020, 12, 2879. [Google Scholar] [CrossRef]
- Bedient, P.B.; Huber, W.C.; Vieux, B.E. Hydrology and Floodplain Analysis, 4th ed.; Prentice Hall: Upper Saddle River, NJ, USA, 2008. [Google Scholar]
- Dorrance, D.W. Streaming Potential and Seepage Meter Studies at Upper Lake Mary near Flagstaff, Arizona: Tucson. Master’s Thesis, University of Arizona, Tucson, AZ, USA, 1989. [Google Scholar]
- Cherkauer, D.A.; McBride, J.M. A remotely operated seepage meter for use in large lakes and rivers. Ground Water 1988, 26, 165–171. [Google Scholar] [CrossRef]
- Erickson, D.R. A Study of Littoral Groundwater Seepage at Williams Lake, Minnesota using Seepage Meters and Wells. Master’s Thesis, University of Minnesota, Minneapolis, MN, USA, 1981. [Google Scholar]
- Asbury, C.E. The Role of Groundwater Seepage in Sediment Chemistry and Nutrient Budgets in Mirror Lake, New Hampshire. Ph.D. Thesis, Cornell University, Ithaca, NY, USA, 1990. [Google Scholar]
- Rosenberry, D.O. Integrating seepage heterogeneity with the use of ganged seepage meters. Limnol. Oceanogr. Methods 2005, 3, 131–142. [Google Scholar] [CrossRef]
- Rosenberry, D.O.; Menheer, M.A. A System for Calibrating Seepage Meters Used to Measure Flow Between Ground Water and Surface Water; USGS Scientific Investigations Report 2006-5053; U.S. Geological Survey: Reston, VA, USA, 2006.
- Zamora, C. Estimating Water Fluxes across the Sediment-Water Interface in the Lower Merced River, California; USGS Scientific Investigations Report 2007-5216; U.S. Geological Survey: Reston, VA, USA, 2008.
Type 1 | Type 2 | |
---|---|---|
Size | 25 cm × 35 cm | 33 cm × 38.1 cm |
Wall thickness | 0.07 mm | 0.05 mm |
Volume | 4.4 ± 0.2 L | 6.7 ± 0.3 L |
Material | Polyethylene (PE) | Low density polyethylene (LDPE), liner low density polyethylene (LLDPE) |
Brand name (manufacturer) | Super Pack (Super Pack, Seoul, Korea) | Ziploc® (S.C. Johnson and Son, Inc., Racine, WI, USA) |
Head Difference | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
20 cm | 40 cm | 60 cm | 80 cm | 100 cm | |||||||||||
No Bag | With Bag | No Bag | With Bag | No Bag | With Bag | No Bag | With Bag | No Bag | With Bag | ||||||
Experiment No. | Tank Specific Flux (×10−6 m/s) | Tank Specific Flux (×10−6 m/s) | Seepage Specific Flux (×10−6 m/s) | Tank Specific Flux (×10−6 m/s) | Tank Specific Flux (×10−6 m/s) | Seepage Specific Flux (×10−6 m/s) | Tank Specific Flux (×10−6 m/s) | Tank Specific Flux (×10−6 m/s) | Seepage Specific Flux (×10−6 m/s) | Tank Specific Flux (×10−6 m/s) | Tank Specific Flux (×10−6 m/s) | Seepage Specific Flux (×10−6 m/s) | Tank Specific Flux (×10−6 m/s) | Tank Specific Flux (×10−6 m/s) | Seepage Specific Flux (×10−6 m/s) |
1st | 1.59 | 1.79 | 1.25 | 2.93 | 2.56 | 1.62 | 3.47 | 3.48 | 1.77 | 4.61 | 3.98 | 2.69 | 4.91 | 4.53 | 4.00 |
2nd | 1.71 | 1.57 | 1.28 | 2.74 | 2.59 | 1.66 | 3.37 | 3.50 | 1.87 | 4.57 | 4.14 | 2.90 | 4.66 | 4.85 | 3.81 |
3rd | 1.53 | 1.60 | 1.26 | 2.71 | 2.44 | 1.58 | 3.61 | 3.54 | 2.27 | 4.47 | 4.25 | 2.99 | 4.77 | 4.75 | 3.20 |
4th | 1.60 | 1.55 | 1.24 | 2.89 | 2.48 | 2.04 | 3.59 | 3.54 | 1.91 | 4.58 | 4.03 | 2.96 | 4.66 | 4.77 | 3.26 |
5th | 1.57 | 1.55 | 1.34 | 2.84 | 2.48 | 1.58 | 3.34 | 3.54 | 2.65 | 4.46 | 4.15 | 2.99 | 4.96 | 4.77 | 3.30 |
Average (standard deviation) | 1.60 (±0.06) | 1.61 (±0.10) | 1.27 (±0.04) | 2.82 (±0.09) | 2.51 (±0.06) | 1.69 (±0.20) | 3.48 (±0.12) | 3.52 (±0.03) | 2.09 (±0.36) | 4.54 (±0.07) | 4.11 (±0.11) | 2.91 (±0.13) | 4.79 (±0.14) | 4.74 (±0.12) | 3.51 (±0.36) |
Head Difference | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
20 cm | 40 cm | 60 cm | 80 cm | 100 cm | |||||||||||
No Bag | With Bag | No Bag | With Bag | No Bag | With Bag | No Bag | With Bag | No Bag | With Bag | ||||||
Experiment No. | Tank Specific Flux (×10−6 m/s) | Tank Specific Flux (×10−6 m/s) | Seepage Specific Flux (×10−6 m/s) | Tank Specific Flux (×10−6 m/s) | Tank Specific Flux (×10−6 m/s) | Seepage Specific Flux (×10−6 m/s) | Tank Specific Flux (×10−6 m/s) | Tank Specific Flux (×10−6 m/s) | Seepage Specific Flux (×10−6 m/s) | Tank Specific Flux (×10−6 m/s) | Tank Specific Flux (×10−6 m/s) | Seepage Specific Flux (×10−6 m/s) | Tank Specific Flux (×10−6 m/s) | Tank Specific Flux (×10−6 m/s) | Seepage Specific Flux (×10−6 m/s) |
1st | 5.50 | 5.47 | 4.72 | 7.37 | 7.28 | 5.97 | 7.68 | 7.73 | 6.42 | 8.25 | 7.89 | 6.83 | 9.44 | 9.12 | 8.43 |
2nd | 5.51 | 7.43 | 4.65 | 7.33 | 7.26 | 5.76 | 7.71 | 7.60 | 6.27 | 7.82 | 7.91 | 7.36 | 9.19 | 9.08 | 8.35 |
3rd | 5.54 | 5.45 | 5.05 | 7.31 | 7.33 | 5.99 | 7.73 | 7.61 | 6.22 | 8.10 | 7.87 | 6.73 | 9.12 | 9.00 | 8.41 |
4th | 5.57 | 5.48 | 4.92 | 7.17 | 7.27 | 5.77 | 7.64 | 7.57 | 6.29 | 7.84 | 7.82 | 6.77 | 9.10 | 9.14 | 8.54 |
5th | 5.71 | 5.45 | 4.76 | 7.30 | 7.27 | 5.84 | 7.67 | 7.56 | 5.91 | 7.99 | 7.88 | 6.94 | 9.14 | 9.11 | 8.24 |
6th | N/A | N/A | N/A | N/A | N/A | N/A | N/A | N/A | N/A | N/A | 7.88 | 6.85 | N/A | 9.10 | 8.22 |
7th | N/A | N/A | N/A | N/A | N/A | N/A | N/A | N/A | N/A | N/A | 7.87 | 6.92 | N/A | 9.15 | 8.49 |
8th | N/A | N/A | N/A | N/A | N/A | N/A | N/A | N/A | N/A | N/A | 7.81 | 6.81 | N/A | 9.17 | 8.52 |
Average (standard deviation) | 5.57 (±0.09) | 5.86 (±0.88) | 4.82 (±0.16) | 7.30 (±0.08) | 7.28 (±0.03) | 5.87 (±0.11) | 7.68 (±0.04) | 7.61 (±0.07) | 6.22 (±0.19) | 8.00 (±0.18) | 7.87 (±0.04) | 6.90 (±0.20) | 9.20 (±0.14) | 9.11 (±0.05) | 8.40 (±0.12) |
Pump Speed | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Speed 1 | Speed 2 | Speed 3 | Speed 4 | Speed 5 | |||||||||||
No Bag | With Bag | No Bag | With Bag | No Bag | With Bag | No Bag | With Bag | No Bag | With Bag | ||||||
Experiment No. | Tank Specific Flux (×10−6 m/s) | Tank Specific Flux (×10−6 m/s) | Seepage Specific Flux (×10−6 m/s) | Tank Specific Flux (×10−6 m/s) | Tank Specific Flux (×10−6 m/s) | Seepage Specific Flux (×10−6 m/s) | Tank Specific Flux (×10−6 m/s) | Tank Specific Flux (×10−6 m/s) | Seepage Specific Flux (×10−6 m/s) | Tank Specific Flux (×10−6 m/s) | Tank Specific Flux (×10−6 m/s) | Seepage Specific Flux (×10−6 m/s) | Tank Specific Flux (×10−6 m/s) | Tank Specific Flux (×10−6 m/s) | Seepage Specific Flux (×10−6 m/s) |
1st | 3.69 | 3.24 | 3.81 | 4.16 | 4.17 | 5.34 | 4.99 | 4.75 | 6.14 | 5.44 | 5.49 | 7.99 | 6.14 | 5.94 | 8.41 |
2nd | 3.60 | 3.21 | 3.89 | 4.22 | 4.06 | 5.38 | 5.07 | 4.94 | 6.48 | 5.54 | 5.52 | 8.16 | 6.14 | 6.07 | 8.75 |
3rd | 3.60 | 3.42 | 3.83 | 4.25 | 4.07 | 5.30 | 5.05 | 4.94 | 6.81 | 5.47 | 5.36 | 8.37 | 6.02 | 6.24 | 8.58 |
4th | 3.59 | 3.20 | 4.12 | 4.22 | 4.17 | 5.43 | 4.99 | 4.81 | 6.88 | 5.50 | 5.52 | 8.12 | 6.28 | 6.12 | 8.66 |
5th | 3.60 | 3.36 | 3.83 | 4.22 | 4.07 | 5.32 | 5.03 | 4.98 | 6.73 | 5.50 | 5.57 | 8.24 | 6.07 | 6.15 | 8.71 |
Average (standard deviation) | 3.62 (±0.04) | 3.29 (±0.10) | 3.89 (±0.13) | 4.21 (±0.03) | 4.11 (±0.06) | 5.35 (±0.05) | 5.02 (±0.03) | 4.88 (±0.10) | 6.61 (±0.30) | 5.49 (±0.03) | 5.49 (±0.08) | 8.18 (±0.14) | 6.13 (±0.09) | 6.11 (±0.10) | 8.62 (±0.13) |
Pump Speed | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Speed 1 | Speed 2 | Speed 3 | Speed 4 | Speed 5 | |||||||||||
No Bag | With Bag | No Bag | With Bag | No Bag | With Bag | No Bag | With Bag | No Bag | With Bag | ||||||
Experiment No. | Tank Specific Flux (×10−6 m/s) | Tank Specific Flux (×10−6 m/s) | Seepage Specific Flux (×10−6 m/s) | Tank Specific Flux (×10−6 m/s) | Tank Specific Flux (×10−6 m/s) | Seepage Specific Flux (×10−6 m/s) | Tank Specific Flux (×10−6 m/s) | Tank Specific Flux (×10−6 m/s) | Seepage Specific Flux (×10−6 m/s) | Tank Specific Flux (×10−6 m/s) | Tank Specific Flux (×10−6 m/s) | Seepage Specific Flux (×10−6 m/s) | Tank Specific Flux (×10−6 m/s) | Tank Specific Flux (×10−6 m/s) | Seepage Specific Flux (×10−6 m/s) |
1st | 3.80 | 3.73 | 7.25 | 4.85 | 4.75 | 8.14 | 6.07 | 5.66 | 8.14 | 7.10 | 6.71 | 10.5 | 7.50 | 7.94 | 11.5 |
2nd | 3.82 | 3.76 | 6.12 | 4.97 | 4.88 | 8.01 | 6.09 | 5.85 | 9.65 | 7.12 | 6.87 | 9.97 | 7.70 | 7.99 | 10.2 |
3rd | 3.85 | 3.86 | 6.25 | 5.04 | 4.97 | 9.27 | 6.11 | 5.92 | 8.26 | 7.16 | 6.87 | 8.45 | 8.00 | 7.92 | 12.1 |
4th | 3.90 | 3.90 | 5.93 | 5.13 | 4.99 | 9.15 | 6.07 | 5.97 | 9.84 | 7.19 | 6.98 | 9.21 | 8.10 | 7.99 | 10.3 |
5th | 3.82 | 3.91 | 6.81 | 5.46 | 4.99 | 8.20 | 6.07 | 6.02 | 1.00 | 7.21 | 6.99 | 9.02 | 8.06 | 7.97 | 11.5 |
6th | 3.92 | 3.95 | 7.32 | 5.18 | 4.99 | 8.96 | 6.11 | 6.08 | 9.34 | 7.16 | 6.94 | 9.21 | 8.31 | 8.06 | 11.7 |
7th | 3.87 | 3.91 | 7.89 | 5.21 | 5.12 | 7.38 | 6.11 | 6.07 | 1.05 | 7.19 | 6.99 | 9.53 | 8.27 | 8.00 | 12.1 |
8th | 3.90 | 3.95 | 6.81 | 5.22 | 5.07 | 8.26 | 6.14 | 6.14 | 9.71 | 7.14 | 7.06 | 9.34 | 8.34 | 8.05 | 12.4 |
Average (standard deviation) | 3.86 (±0.04) | 3.87 (±0.08) | 6.80 (±0.67) | 5.13 (±0.18) | 4.97 (±0.11) | 8.42 (±0.65) | 6.10 (±0.03) | 5.96 (±0.15) | 9.43 (±0.83) | 7.16 (±0.04) | 6.93 (±0.11) | 9.40 (±0.61) | 8.04 (±0.30) | 7.99 (±0.05) | 11.5 (±0.84) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, C.; Kim, W.; Jeen, S.-W. Measurement of Flux at Sediment–Water Interface Using a Seepage Meter under Controlled Flow Conditions. Water 2020, 12, 3071. https://doi.org/10.3390/w12113071
Lee C, Kim W, Jeen S-W. Measurement of Flux at Sediment–Water Interface Using a Seepage Meter under Controlled Flow Conditions. Water. 2020; 12(11):3071. https://doi.org/10.3390/w12113071
Chicago/Turabian StyleLee, Changyong, Wonbin Kim, and Sung-Wook Jeen. 2020. "Measurement of Flux at Sediment–Water Interface Using a Seepage Meter under Controlled Flow Conditions" Water 12, no. 11: 3071. https://doi.org/10.3390/w12113071
APA StyleLee, C., Kim, W., & Jeen, S. -W. (2020). Measurement of Flux at Sediment–Water Interface Using a Seepage Meter under Controlled Flow Conditions. Water, 12(11), 3071. https://doi.org/10.3390/w12113071