2019–2020 Australia Fire and Its Relationship to Hydroclimatological and Vegetation Variabilities
Abstract
:1. Introduction
2. Material and Methods
2.1. Study Area
2.2. Datasets
2.3. Method of Data Processing and Analysis
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Di Virgilio, G.; Evans, J.P.; Clarke, H.; Sharples, J.; Hirsch, A.L.; Hart, M.A. Climate change significantly alters future wildfire mitigation opportunities in southeastern Australia. Geophys. Res. Lett. 2020, 47, e2020GL088893. [Google Scholar] [CrossRef]
- Borchers Arriagada, N.; Bowman, D.M.J.S.; Palmer, A.J.; Johnston, F.H. Climate Change, Wildfires, Heatwaves and Health Impacts in Australia. In Extreme Weather Events and Human Health; Akhtar, R., Ed.; Springer: Cham, Switzerland, 2020. [Google Scholar] [CrossRef]
- Nolan, R.H.; Boer, M.M.; Collins, L.; de Dios, V.R.; Clarke, H.; Jenkins, M.; Kenny, B.; Bradstock, R.A. Causes and consequences of eastern Australia’s 2019–20 season of mega-fires. Glob. Chang. Biol. 2020, 26, 1039–1041. [Google Scholar] [CrossRef] [Green Version]
- Jolly, W.M.; Cochrane, M.A.; Freeborn, P.H.; Holden, Z.A.; Brown, T.J.; Williamson, G.J.; Bowman, D.M.J.S. Climate-induced variations in global wildfire danger from 1979 to 2013. Nat. Commun. 2015, 6, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Bradstock, R.; Davies, I.; Price, O.; Cary, G. Effects of Climate Change on Bushfire Threats to Biodiversity, Ecosystem Processes and People in the Sydney Region. Final Report to the New South Wales Department of Environment and Climate Change: Climate Change Impacts and Adaptation Research Project 50831. 2008, p. 65. Available online: https://www.researchgate.net/publication/265892763_Effects_of_Climate_Change_on_Bushfire_Threats_to_Biodiversity_Ecosystem_Processes_and_People_in_the_Sydney_Region (accessed on 27 August 2020).
- Liu, Y.; Stanturf, J.; Goodrick, S. Trends in global wildfire potential in a changing climate. For. Ecol. Manag. 2010, 259, 685–697. [Google Scholar] [CrossRef]
- Piñol, J.; Terradas, J.; Lloret, F. Climate Warming, Wildfire Hazard, and Wildfire Occurrence in Coastal Eastern Spain. Clim. Chang. 1998, 38, 345–357. [Google Scholar] [CrossRef]
- IPCC. Climate Change 1995. Second Assessment Report of the Intergovernmental Panel on Climate Change; Houghton, J.T., Meira Filho, L.G., Callander, B.A., Harris, N., Kattenberg, A., Maskell, K., Eds.; Cambridge University Press: Cambridge, UK, 1996. [Google Scholar]
- Nicholls, N.; Gruza, G.V.; Jouzel, J.; Karl, T.R.; Ogallo, L.A.; Parker, D.E. Observed Climate Variability and Change. Climate Change 1995: The Science of Climate Change; Houghton, J.T., Ed.; Cambridge University Press: Cambridge, UK, 1996; pp. 135–192. Available online: https://www.researchgate.net/profile/Chris_Folland/publication/280564613_Observed_Climate_variability_and_Change/links/55c3ad6508aebc967df1b4bd/Observed-Climate-variability-and-Change.pdf (accessed on 27 August 2020).
- Nicholls, N. The El Niño/Southern Oscillation and Australian vegetation. Vegetatio 1991, 91, 23–36. [Google Scholar] [CrossRef]
- Cattau, M.E.; Wessman, C.; Mahood, A.; Balch, J.K. Anthropogenic and lightning-started fires are becoming larger and more frequent over a longer season length in the U.S.A. Glob. Ecol. Biogeogr. 2020, 29, 668–681. [Google Scholar] [CrossRef]
- Vadrevu, K.P.; Lasko, K.; Giglio, L.; Schroeder, W.; Biswas, S.; Justice, C. Trends in Vegetation fires in South and Southeast Asian Countries. Sci. Rep. 2019, 9, 7422. [Google Scholar] [CrossRef]
- Vadrevu, K.P.; Csiszar, I.; Ellicott, E.; Giglio, L.; Badarinath, K.V.S.; Vermote, E.; Justice, C. Hotspot analysis of vegetation fires and intensity in the Indian region. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2013, 6, 224–238. [Google Scholar] [CrossRef]
- García-Ortega, E.; Trobajo, M.T.; López, L.; Sánchez, J.L. Synoptic patterns associated with wildfires caused by lightning in Castile and Leon, Spain. Nat. Hazards Earth Syst. Sci. 2011, 11, 851–863. [Google Scholar] [CrossRef] [Green Version]
- Zhong, S.; Yu, L.; Heilman, W.E.; Bian, X.; Fromm, H. Synoptic weather patterns for large wildfires in the northwestern United States—A climatological analysis using three classification methods. Theor. Appl. Climatol. 2020, 141, 1057–1073. [Google Scholar] [CrossRef]
- Krueger, E.S.; Ochsner, T.E.; Quiring, S.M.; Engle, D.M.; Carlson, J.D.; Twidwell, D.; Fuhlendorf, S.D. Measured soil moisture is a better predictor of large growing-season wildfires than the Keetch–Byram drought index. Soil Sci. Soc. Am. J. 2017, 81, 490–502. [Google Scholar] [CrossRef]
- Chaparro, D.; Vall-Llossera, M.; Piles, M.; Camps, A.; Rüdiger, C.; Riera-Tatché, R. Predicting the extent of wildfires using remotely sensed soil moisture and temperature trends. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 9, 2818–2829. [Google Scholar] [CrossRef] [Green Version]
- Krueger, E.S.; Ochsner, T.E.; Carlson, J.D.; Engle, D.M.; Twidwell, D.; Fuhlendorf, S.D. Concurrent and antecedent soil moisture relate positively or negatively to probability of large wildfires depending on season. Int. J. Wildland Fire 2016, 25, 657–668. [Google Scholar] [CrossRef]
- Jensen, D.; Reager, J.T.; Zajic, B.; Rousseau, N.; Rodell, M.; Hinkley, E. The sensitivity of US wildfire occurrence to pre-season soil moisture conditions across ecosystems. Environ. Res. Lett. 2018, 13, 014021. [Google Scholar] [CrossRef]
- Farahmand, A.; Stavros, E.N.; Reager, J.T.; Behrangi, A.; Randerson, J.T.; Quayle, B. Satellite hydrology observations as operational indicators of forecasted fire danger across the contiguous United States. Nat. Hazards Earth Syst. Sci. 2020, 20, 1097–1106. [Google Scholar] [CrossRef] [Green Version]
- Farahmand, A.; Stavros, E.N.; Reager, J.T.; Behrangi, A. Introducing Spatially Distributed Fire Danger from Earth Observations (FDEO) Using Satellite-Based Data in the Contiguous United States. Remote Sens. 2020, 12, 1252. [Google Scholar] [CrossRef] [Green Version]
- Attiwill, P.M.; Adams, M.A. Mega-fires, inquiries and politics in the eucalypt forests of Victoria, south-eastern Australia. For. Ecol. Manag. 2013, 294, 45–53. [Google Scholar] [CrossRef]
- Leonard, S.W.; Bennett, A.F.; Clarke, M.F. Determinants of the occurrence of unburnt forest patches: Potential biotic refuges within a large, intense wildfire in south-eastern Australia. For. Ecol. Manag. 2014, 314, 85–93. [Google Scholar] [CrossRef]
- Balling, R.C.; Meyer, G.A.; Wells, S.G. Climate change in Yellowstone National Park: Is the drought-related risk of wildfires increasing? Clim. Chang. 1992, 22, 35–45. [Google Scholar] [CrossRef]
- Crockett, J.L.; Leroy Westerling, A. Greater temperature and precipitation extremes intensify Western, U.S. droughts, wildfire severity, and sierra Nevada tree mortality. J. Clim. 2018, 31, 341–354. [Google Scholar] [CrossRef]
- Ratajczak, Z.; Churchill, A.C.; Ladwig, L.M.; Taylor, J.H.; Collins, S.L. The combined effects of an extreme heatwave and wildfire on tallgrass prairie vegetation. J. Veg. Sci. 2019, 30, 687–697. [Google Scholar] [CrossRef]
- Parsa, S.M.; Rahbar, A.; Javadi, Y.D.; Koleini, M.H.; Afrand, M.; Amidpour, M. Energy-matrices, exergy, economic, environmental, exergoeconomic, enviroeconomic, and heat transfer (6E/HT) analysis of two passive/active solar still water desalination nearly 4000 m: Altitude concept. J. Clean. Prod. 2020, 261, 121243. [Google Scholar] [CrossRef]
- Trauernicht, C. Vegetation—Rainfall interactions reveal how climate variability and climate change alter spatial patterns of wildland fire probability on Big Island, Hawaii. Sci. Total Environ. 2019, 650, 459–469. [Google Scholar] [CrossRef] [PubMed]
- Javadian, M.; Behrangi, A.; Gholizadeh, M.; Tajrishy, M. METRIC and WaPOR Estimates of Evapotranspiration over the Lake Urmia Basin: Comparative Analysis and Composite Assessment. Water 2019, 11, 1647. [Google Scholar] [CrossRef] [Green Version]
- Fisher, J.B.; Melton, F.; Middleton, E.; Hain, C.; Anderson, M.; Allen, R.; McCabe, M.F.; Hook, S.; Baldocchi, D.; Townsend, P.A.; et al. The future of evapotranspiration: Global requirements for ecosystem functioning, carbon and climate feedbacks, agricultural management, and water resources. Water Resour. Res. 2017, 53, 2618–2626. [Google Scholar] [CrossRef]
- Javadian, M.; Behrangi, A.; Smith, W.K.; Fisher, J.B. Global Trends in Evapotranspiration Dominated by Increases across Large Cropland Regions. Remote Sens. 2020, 12, 1221. [Google Scholar] [CrossRef] [Green Version]
- Poon, P.K.; Kinoshita, A.M. Estimating Evapotranspiration in a Post-Fire Environment Using Remote Sensing and Machine Learning. Remote Sens. 2018, 10, 1728. [Google Scholar] [CrossRef] [Green Version]
- Behrangi, A.; Fetzer, E.J.; Granger, S.L. Early detection of drought onset using near surface temperature and humidity observed from space. Int. J. Remote Sens. 2016, 37, 3911–3923. [Google Scholar] [CrossRef]
- Behrangi, A.; Loikith, P.; Fetzer, E.; Nguyen, H.; Granger, S. Utilizing Humidity and Temperature Data to Advance Monitoring and Prediction of Meteorological Drought. Climate 2015, 3, 999–1017. [Google Scholar] [CrossRef] [Green Version]
- Akbari, M.; Torabi Haghighi, A.; Aghayi, M.M.; Javadian, M.; Tajrishy, M.; Kløve, B. Assimilation of Satellite-Based Data for Hydrological Mapping of Precipitation and Direct Runoff Coefficient for the Lake Urmia Basin in Iran. Water 2019, 11, 1624. [Google Scholar] [CrossRef] [Green Version]
- Dilley, A.C.; Millie, S.; O’Brien, D.M.; Edwards, M. The relation between normalized difference vegetation index and vegetation moisture content at three grassland locations in Victoria, Australia. Int. J. Remote Sens. 2004, 25, 3913–3930. [Google Scholar] [CrossRef]
- Caccamo, G.; Chisholm, L.A.; Bradstock, R.A.; Puotinen, M.L.; Pippen, B.G. Monitoring live fuel moisture content of heathland, shrubland and sclerophyll forest in south-eastern Australia using MODIS data. Int. J. Wildland Fire 2012, 21, 257–269. [Google Scholar] [CrossRef]
- Nolan, R.H.; Boer, M.M.; De Dios, V.R.; Caccamo, G.; Bradstock, R.A. Large-scale, Dynamic Transformations in Fuel Moisture Drive Wildfire Activity Across Southeastern Australia. Geophys. Res. Lett. 2016, 43, 4229–4238. [Google Scholar] [CrossRef] [Green Version]
- Szpakowski, D.M.; Jensen, J.L.R. A review of the applications of remote sensing in fire ecology. Remote Sens. 2019, 11, 2638. [Google Scholar] [CrossRef] [Green Version]
- Qi, Y.; Dennison, P.E.; Spencer, J.; Riaño, D. Monitoring live fuel moisture using soil moisture and remote sensing proxies. Fire Ecol. 2012, 8, 71–87. [Google Scholar] [CrossRef]
- Gao, Y.; Walker, J.P.; Allahmoradi, M.; Monerris, A.; Ryu, D.; Jackson, T.J. Optical Sensing of Vegetation Water Content: A Synthesis Study. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 1456–1464. [Google Scholar] [CrossRef] [Green Version]
- Dasgupta, S.; Qu, J.J.; Hao, X. Design of a susceptibility index for fire risk monitoring. IEEE Geosci. Remote Sens. Lett. 2006, 3, 140–144. [Google Scholar] [CrossRef]
- Forkel, M.; Andela, N.; Harrison, S.P.; Lasslop, G.; Van Marle, M.; Chuvieco, E.; Dorigo, W.; Forrest, M.; Hantson, S.; Heil, A.; et al. Emergent relationships with respect to burned area in global satellite observations and fire-enabled vegetation models. Biogeosciences 2019, 16, 57–76. [Google Scholar] [CrossRef] [Green Version]
- Sullivan, A.; McCaw, L.; Gomes Da Cruz, M.; Matthews, S.; Ellis, P. Fuel, Fire Weather and Fire Behaviour in Australian Ecosystems. In Flammable Australia: Fire Regimes, Biodiversity and Ecosystems in a Changing World; 2012; pp. 51–77. Available online: https://publications.csiro.au/rpr/pub?list=BRO&pid=csiro:EP104481&sb=RECENT&n=30&rpp=50&page=65&tr=3972&dr=all&dc4.browseYear=2012 (accessed on 27 August 2020).
- Myoung, B.; Kim, S.H.; Nghiem, S.V.; Jia, S.; Whitney, K.; Kafatos, M.C. Estimating live fuel moisture from MODIS satellite data for wildfire danger assessment in Southern California USA. Remote Sens. 2018, 10, 87. [Google Scholar] [CrossRef] [Green Version]
- Yebra, M.; Quan, X.; Riaño, D.; Rozas, P.; Dijk, A.I.J.M.; Van Cary, J. Remote Sensing of Environment A fuel moisture content and fl ammability monitoring methodology for continental Australia based on optical remote sensing. Remote Sens. Environ. 2018, 212, 260–272. [Google Scholar] [CrossRef]
- Liu, Y.Y.; van Dijk, A.I.J.M.; McCabe, M.F.; Evans, J.P.; de Jeu, R.A.M. Global vegetation biomass change (1988–2008) and attribution to environmental and human drivers. Glob. Ecol. Biogeogr. 2013, 22, 692–705. [Google Scholar] [CrossRef]
- Brandt, M.; Wigneron, J.P.; Chave, J.; Tagesson, T.; Penuelas, J.; Ciais, P.; Rasmussen, K.; Tian, F.; Mbow, C.; Al-Yaari, A.; et al. Satellite passive microwaves reveal recent climate-induced carbon losses in African drylands. Nat. Ecol. Evol. 2018, 2, 827–835. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Konings, A.G.; Rao, K.; Steele-Dunne, S.C. Macro to micro: Microwave remote sensing of plant water content for physiology and ecology. New Phytol. 2019, 223, 1166–1172. [Google Scholar] [CrossRef] [Green Version]
- Teubner, I.E.; Forkel, M.; Jung, M.; Liu, Y.Y.; Miralles, D.G.; Parinussa, R.; van der Schalie, R.; Vreugdenhil, M.; Schwalm, C.R.; Tramontana, G.; et al. Assessing the relationship between microwave vegetation optical depth and gross primary production. Int. J. Appl. Earth Obs. Geoinf. 2018, 65, 79–91. [Google Scholar] [CrossRef]
- Moesinger, L.; Dorigo, W.; de Jeu, R.; van der Schalie, R.; Scanlon, T.; Teubner, I.; Forkel, M. The global long-term microwave Vegetation Optical Depth Climate Archive (VODCA). Earth Syst. Sci. Data 2020, 12, 177–196. [Google Scholar] [CrossRef] [Green Version]
- Tian, F.; Brandt, M.; Liu, Y.Y.; Verger, A.; Tagesson, T.; Diouf, A.A.; Rasmussen, K.; Mbow, C.; Wang, Y.; Fensholt, R. Remote sensing of vegetation dynamics in drylands: Evaluating vegetation optical depth (VOD) using AVHRR NDVI and in situ green biomass data over West African Sahel. Remote Sens. Environ. 2016, 177, 265–276. [Google Scholar] [CrossRef] [Green Version]
- Fan, L.; Wigneron, J.; Xiao, Q.; Al-yaari, A.; Wen, J.; Martin-stpaul, N.; Dupuy, J.; Pimont, F.; Al Bitar, A.; Fernandez-moran, R.; et al. Evaluation of microwave remote sensing for monitoring live fuel moisture content in the Mediterranean region. Remote Sens. Environ. 2018, 205, 210–223. [Google Scholar] [CrossRef]
- Rodell, M.; Houser, P.R.; Jambor, U.E.; Gottschalck, J.; Mitchell, K.; Meng, C.J.; Arsenault, K.; Cosgrove, B.; Radakovich, J.; Bosilovich, M.; et al. The global land data assimilation system. Bull. Am. Meteorol. Soc. 2004, 85, 381–394. [Google Scholar] [CrossRef] [Green Version]
- Derber, J.C.; Parrish, D.F.; Lord, S.J. The new global operational analysis system at the National Meteorological Center. Weather Forecast. 1991, 6, 538–547. [Google Scholar] [CrossRef] [Green Version]
- Adler, R.F.; Huffman, G.J.; Chang, A.; Ferraro, R.; Xie, P.P.; Janowiak, J.; Rudolf, B.; Schneider, U.; Curtis, S.; Bolvin, D.; et al. The version-2 global precipitation climatology project (GPCP) monthly precipitation analysis (1979–present). J. Hydrometeorol. 2003, 4, 1147–1167. [Google Scholar] [CrossRef]
- Mu, Q.; Zhao, M.; Running, S.W. Improvements to a MODIS global terrestrial evapotranspiration algorithm. Remote Sens. Environ. 2011, 115, 1781–1800. [Google Scholar] [CrossRef]
- Huang, B.; Thorne, P.W.; Banzon, V.F.; Boyer, T.; Chepurin, G.; Lawrimore, J.H.; Menne, M.J.; Smith, T.M.; Vose, R.S.; Zhang, H.M. Extended Reconstructed Sea Surface Temperature, Version 5 (ERSSTv5): Upgrades, Validations, and Intercomparisons. J. Clim. 2017, 30, 8179–8205. [Google Scholar] [CrossRef]
- Adhikari, A.; Ehsani, M.R.; Song, Y.; Behrangi, A. Comparative Assessment of Snowfall Retrieval from Microwave Humidity Sounders using Machine Learning Methods. Earth Space Sci. 2020. [Google Scholar] [CrossRef]
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; et al. Scikit-learn: Machine learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830. [Google Scholar]
- Garreaud, R.D.; Boisier, J.P.; Rondanelli, R.; Montecinos, A.; Sepúlveda, H.H.; Veloso-Aguila, D. The Central Chile Mega Drought (2010–2018): A climate dynamics perspective. Int. J. Climatol. 2019, 40, 421–439. [Google Scholar] [CrossRef]
- Sungmin, O.; Hou, X.; Orth, R. Observational evidence of wildfire-promoting soil moisture anomalies. Sci. Rep. 2020, 10, 11008. [Google Scholar] [CrossRef]
- Ghannam, K.; Nakai, T.; Paschalis, A.; Oishi, C.A.; Kotani, A.; Igarashi, Y.; Kumagai, T.O.; Katul, G.G. Persistence and memory timescales in root-zone soil moisture dynamics. Water Resour. Res. 2016, 52, 1427–1445. [Google Scholar] [CrossRef] [Green Version]
- Karamouz, M.; Teymori, J.; Rahimi, R.; Olyaei, M.A.; Mohammadpour, P. The Impact of Artificial Groundwater Recharge on Water Resources Sustainability. In World Environmental and Water Resources Congress 2018: Groundwater, Sustainability, and Hydro-Climate/Climate Change; American Society of Civil Engineers Reston: Reston, VA, USA, 2018. [Google Scholar] [CrossRef]
Product | Variables | Resolution | Link |
---|---|---|---|
MODIS MOD14A1.006 | Fire Radiative Power | 1 km, daily D | Earth Engine Data Catalog: MODIS_006_MOD14A1 |
FIRMS | Fire Pixel Count | 1 km, daily | https://firms2.modaps.eosdis.nasa.gov/ respectively |
ONI | Oceanic Niño Index | 3-monthly | https://origin.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/ONI_v5.php |
NCEP/NCAR Reanalysis | Geopotential Height 10-m Winds | 2.5°, monthly | https://psl.noaa.gov/data/gridded/data.ncep.reanalysis.derived.html |
GLDAS-2.1 | Soil Moisture | 0.25°, 3-hourly | Earth Engine Data Catalog: NASA_GLDAS_V021_NOAH_G025_T3H |
ECMWF ERA5 Reanalysis | Near-surface Air Temperature | 30 km, monthly | Earth Engine Data Catalog: ECMWF_ERA5_MONTHLY |
IMERG | Precipitation Rate | 0.1°, 30 min | Earth Engine Data Catalog: NASA_GPM_L3_IMERG_V06 |
MODIS MOD16A2.006 | Actual Evapotranspiration Potential Evapotranspiration | 500 m, 8 days | Earth Engine Data Catalog: MODIS_006_MOD16A2 |
TerraClimate | Vapor Pressure Deficit | 1/24, monthly | Earth Engine Data Catalog: IDAHO_EPSCOR_TERRACLIMATE |
MODIS MOD13Q1.006 | NDVI, EVI | 250 m, 16 days | Earth Engine Data Catalog: MODIS_006_MOD13Q1 |
MODIS MCD15A3H.006 | LAI | 500 m, 4 days | Earth Engine Data Catalog: MODIS_006_MCD15A3H |
MODIS MCD12Q1.006 | Land Cover Type | 500 m, annual | Earth Engine Data Catalog: MODIS_006_MCD12Q1 |
VODCA | C-Band, X-Band | 0.25°, daily | https://zenodo.org/record/2575599#.X3H29mhKiUk |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ehsani, M.R.; Arevalo, J.; Risanto, C.B.; Javadian, M.; Devine, C.J.; Arabzadeh, A.; Venegas-Quiñones, H.L.; Dell’Oro, A.P.; Behrangi, A. 2019–2020 Australia Fire and Its Relationship to Hydroclimatological and Vegetation Variabilities. Water 2020, 12, 3067. https://doi.org/10.3390/w12113067
Ehsani MR, Arevalo J, Risanto CB, Javadian M, Devine CJ, Arabzadeh A, Venegas-Quiñones HL, Dell’Oro AP, Behrangi A. 2019–2020 Australia Fire and Its Relationship to Hydroclimatological and Vegetation Variabilities. Water. 2020; 12(11):3067. https://doi.org/10.3390/w12113067
Chicago/Turabian StyleEhsani, Mohammad Reza, Jorge Arevalo, Christoforus Bayu Risanto, Mostafa Javadian, Charles John Devine, Alireza Arabzadeh, Hector L. Venegas-Quiñones, Ambria Paige Dell’Oro, and Ali Behrangi. 2020. "2019–2020 Australia Fire and Its Relationship to Hydroclimatological and Vegetation Variabilities" Water 12, no. 11: 3067. https://doi.org/10.3390/w12113067
APA StyleEhsani, M. R., Arevalo, J., Risanto, C. B., Javadian, M., Devine, C. J., Arabzadeh, A., Venegas-Quiñones, H. L., Dell’Oro, A. P., & Behrangi, A. (2020). 2019–2020 Australia Fire and Its Relationship to Hydroclimatological and Vegetation Variabilities. Water, 12(11), 3067. https://doi.org/10.3390/w12113067