Afforestation of Degraded Croplands as a Water-Saving Option in Irrigated Region of the Aral Sea Basin
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. SWAT Modeling
2.3. Data Description and Analysis
2.3.1. Digital Elevation Model (DEM) and Climate
2.3.2. Soil
2.3.3. Land Use
2.3.4. Irrigation
2.3.5. Afforestation Scenarios
- “100% afforestation”: Afforestation of the entire marginal cropland characterized by sufficient water availability for trees (67% of the total marginal cropland area, that is, approximately 663 km2). The two related scenarios (LU2005-100% and LU2008-100%) are depicted in Figure 6c,f for average and drought years, respectively.
- “62% afforestation”: Afforestation of only “moderately marginal” and “marginal” cropland area with sufficient water availability for trees, comprising 62% of total marginal land, that is, approximately 408 km2 (or 10.2% of Khorezm’s area). The two related scenarios (LU2005-62% and LU2008-62%) are depicted in Figure 6b,e for average and drought years, respectively.
3. Results
3.1. Land Use Allocation under Simulation Scenarios
3.2. Impact of Afforestation on Water Balance Components
3.3. Plausibility of the SWAT Simulation and Estimated Water Saving
4. Discussion
4.1. Limitations of SWAT-Based Analysis
4.2. Impact of Afforestation on Irrigation Water Savings and Drainage
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Bank. Climate Change in Central Asia, Illustrated Summary; World Bank: Washington, DC, USA, 2020. [Google Scholar]
- Punkari, M.; Droogers, P.; Immerzeel, W.; Korhonen, N.; Lutz, A.; Venäläinen, A. Climate Change and Sustainable Water Management in Central Asia Central and West Asia Working Paper Series; Asian Development Bank: Mandaluyong, Metro Manila, Philippines, 2014. [Google Scholar]
- Parry, M.L.; Canziani, O.F.; Palutikof, J.P.; van der Linden, P.J.; Hanson, C.E. Climate Change 2007: Impacts, Adaptation and Vulnerability; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2007; p. 976. [Google Scholar]
- Roll, G.; Alexeeva, N.; Aladin, N.; Plotnikov, I.; Sokolov, V.; Sarsembekov, T.; Micklin, P. Aral Sea: Experiences and Lessons Learned Brief. Lake Basin Management Initiative. 2005. Available online: https://www.iwlearn.net/documents/6014 (accessed on 20 May 2021).
- Awan, U.K.; Ibrakhimov, M.; Tischbein, B.; Kamalov, P.; Martius, C.; Lamers, J.P.A. Improving Irrigation Water Operation in the Lower Reaches of the Amu Darya River—Current Status and Suggestions. Irrig. Drain. 2011, 60, 600–612. [Google Scholar] [CrossRef]
- Awan, U.K.; Tischbein, B.; Conrad, C.; Martius, C.; Hafeez, M. Remote Sensing and Hydrological Measurements for Irrigation Performance Assessments in a Water User Association in the Lower Amu Darya River Basin. Water Resour. Manag. 2011, 25, 2467–2485. [Google Scholar] [CrossRef]
- Dukhovny, V.; Yakubov, K.; Usmano, A.; Yakubov, M. Drainage water management in the Aral Sea Basin. In Agricultural Drainage Water Management in Arid and Semi-Arid Areas. FAO Irrigation and Drainage Paper; World Food Organization: Rome, Italy, 2002; Volume 61, pp. 1–23. [Google Scholar]
- Saigal, S. Issues and Approaches to Combat Desertification; Asian Development Bank: Tashkent, Uzbekistan, 2003; p. 51. [Google Scholar]
- Varis, O. Resources: Curb vast water use in central Asia. Nature 2014, 514, 27–29. [Google Scholar] [CrossRef] [PubMed]
- Djalilov, B.M.; Khamzina, A.; Hornidge, A.-K.; Lamers, J.P. Exploring constraints and incentives for the adoption of agroforestry practices on degraded cropland in Uzbekistan. J. Environ. Plan. Manag. 2016, 59, 142–162. [Google Scholar] [CrossRef]
- Dubovyk, O.; Menz, G.; Khamzina, A. Land suitability assessment for afforestation with Elaeagnus angustifolia L. in degraded agricultural areas of the lower Amu Darya River Basin. Land Degrad. Dev. 2016, 27, 1831–1839. [Google Scholar] [CrossRef]
- Khamzina, A.; Lamers, J.P.A.; Vlek, P.L.G. Conversion of degraded cropland to tree plantations for ecosystem and livelihood benefits. In Cotton, Water, Salts and Soums; Martius, C., Rudenko, I., Lamers, J.P.A., Vlek, P.L.G., Eds.; Springer: Berlin/Heidelberg, Germany, 2012; pp. 235–248. [Google Scholar] [CrossRef]
- Djanibekov, U.; Khamzina, A. Stochastic Economic Assessment of Afforestation on Marginal Land in Irrigated Farming System. Environ. Resour. Econ. 2016, 63, 95–117. [Google Scholar] [CrossRef]
- Khamzina, A.; Lamers, J.P.A.; Vlek, P.L.G. Tree establishment under deficit irrigation on degraded agricultural land in the lower Amu Darya River region, Aral Sea Basin. For. Ecol. Manag. 2008, 255, 168–178. [Google Scholar] [CrossRef]
- Kumar, N.; Khamzina, A.; Tischbein, B.; Knöfel, P.; Conrad, C.; Lamers, J.P.A. Spatio-temporal supply–demand of surface water for agroforestry planning in saline landscape of the lower Amudarya Basin. J. Arid Environ. 2019, 162, 53–61. [Google Scholar] [CrossRef]
- Dagar, J.C.; Gupta, S.R. Agroforestry Interventions for Rehabilitating Salt-Affected and Waterlogged Marginal Landscapes. In Agroforestry for Degraded Landscapes; Springer: Singapore, 2020; pp. 111–162. [Google Scholar] [CrossRef]
- Minhas, P.S.; Yadav, R.K.; Bali, A. Perspectives on reviving waterlogged and saline soils through plantation forestry. Agric. Water Manag. 2020, 232, 106063. [Google Scholar] [CrossRef]
- Cao, S.; Chen, L.; Shankman, D.; Wang, C.; Wang, X.; Zhang, H. Excessive reliance on afforestation in China’s arid and semi-arid regions: Lessons in ecological restoration. Earth-Sci. Rev. 2011, 104, 240–245. [Google Scholar] [CrossRef]
- Hübner, L. Large Scale Afforestation in Arid and Semi-Arid Climate: Hydrologic-Ecological Lessons Learned and Concept of Modular Hydrologic Connectivity of Vegetation. J. Agric. Food Dev. 2020, 6, 10–21. [Google Scholar] [CrossRef]
- Sun, G.; Zhou, G.; Zhang, Z.; Wei, X.; McNulty, S.G.; Vose, J.M. Potential water yield reduction due to forestation across China. J. Hydrol. 2006, 328, 548–558. [Google Scholar] [CrossRef]
- Farley, K.A.; Jobbágy, E.G.; Jackson, R.B. Effects of afforestation on water yield: A global synthesis with implications for policy. Glob. Chang. Biol. 2005, 11, 1565–1576. [Google Scholar] [CrossRef]
- Filoso, S.; Bezerra, M.O.; Weiss, K.C.; Palmer, M.A. Impacts of forest restoration on water yield: A systematic review. PLoS ONE 2017, 12, e0183210. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jackson, R.B.; Jobbágy, E.G.; Avissar, R.; Roy, S.B.; Barrett, D.J.; Cook, C.W.; Farley, K.A.; Le Maitre, D.C.; McCarl, B.A.; Murray, B.C. Trading water for carbon with biological carbon sequestration. Science 2005, 310, 1944–1947. [Google Scholar] [CrossRef] [Green Version]
- Milkovic, M.; Paruelo, J.M.; Nosetto, M.D. Hydrological impacts of afforestation in the semiarid Patagonia: A modelling approach. Ecohydrology 2019, 12, 2113. [Google Scholar] [CrossRef]
- Konikow, L.F.; Reilly, T.E. Ground-water Modelling. In The Handbook of Groundwater Engineering; Delleur, J.W., Ed.; CRC Press: Boca Raton, FL, USA, 1998; pp. 1–20. [Google Scholar]
- Bergström, S.; Forsman, A. Development of a conceptual deterministic rainfall-runoff mode. Nord. Hydrol. 1973, 4, 240–253. [Google Scholar] [CrossRef]
- Im, S.; Kim, H.; Kim, C.; Jang, C. Assessing the impacts of land use changes on watershed hydrology using MIKE SHE. Environ. Geol. 2009, 57, 231. [Google Scholar] [CrossRef]
- Refshaard, J.C.; Storm, B. MIKE SHE. In Computer Models of Watershed Hydrology; Water Resources Publications: Colorado, CO, USA, 1995; pp. 809–846. [Google Scholar]
- Niehoff, D.; Fritsch, U.; Bronstert, A. Land-use impacts on storm-runoff generation: Scenarios of land-use change and simulation of hydrological response in a meso-scale catchment in SW-Germany. J. Hydrol. 2002, 267, 80–93. [Google Scholar] [CrossRef]
- Schulla, J. Hydrologische Modellierung von Flußeinzugsgebieten zur Abschätzung der Folgen von Klimaänderungen (Hydrological modelling of river basins for evaluating the impacts of climatic changes). Züricher Geogr. Hefte. 1997. Available online: https://doi.org/10.3929/ethz-a-001763261 (accessed on 20 May 2021).
- Srivastava, A.; Kumari, N.; Maza, M. Hydrological Response to Agricultural Land Use Heterogeneity Using Variable Infiltration Capacity Model. Water Resour. Manag. 2020, 34, 3779–3794. [Google Scholar] [CrossRef]
- Arnold, J.G.; Srinivasan, R.; Muttiah, R.S.; Williams, J.R. Large area hydrologic modeling and assessment part I: Model development. J. Am. Water Resour. Assoc. 1998, 34, 73–89. [Google Scholar] [CrossRef]
- Fohrer, N.; Haverkamp, S.; Eckhardt, K.; Frede, H.-G. Hydrologic response to land use changes on the catchment scale. Phys. Chem. Earth Part B Hydrol. Ocean. Atmos. 2001, 26, 577–582. [Google Scholar] [CrossRef]
- Durło, G.; Jagiełło-Leńczuk, K.; Małek, S.; Banach, J.; Dudek, K.; Kormanek, M. Hydrological responses to forest cover change in mountains under projected climate conditions. Int. J. Environ. Agric. Res. 2016, 2, 60–68. [Google Scholar]
- Kim, G.S.; Lim, C.-H.; Kim, S.J.; Lee, J.; Son, Y.; Lee, W.-K. Effect of national-scale afforestation on forest water supply and soil loss in South Korea, 1971–2010. Sustainability 2017, 9, 1017. [Google Scholar] [CrossRef] [Green Version]
- Von Stackelberg, N.O.; Chescheir, G.M.; Skaggs, R.W.; Amatya, D.M. Simulation of the hydrologic effects of afforestation in the Tacuarembó River Basin, Uruguay. Trans. ASABE 2007, 50, 455–468. [Google Scholar] [CrossRef]
- Gassman, P.W.; Reyes, M.R.; Green, C.H.; Arnold, J.G. The soil and water assessment tool: Historical development, applications, and future research directions. Trans. ASABE 2007, 50, 1211–1250. [Google Scholar] [CrossRef] [Green Version]
- Douglas-Mankin, K.; Srinivasan, R.; Arnold, J. Soil and Water Assessment Tool (SWAT) model: Current developments and applications. Trans. ASABE 2010, 53, 1423–1431. [Google Scholar] [CrossRef]
- Ibrakhimov, M.; Khamzina, A.; Forkutsa, I.; Paluasheva, G.; Lamers, J.P.A.; Tischbein, B.; Vlek, P.L.G.; Martius, C. Groundwater table and salinity: Spatial and temporal distribution and influence on soil salinization in Khorezm region (Uzbekistan, Aral Sea Basin). Irrig. Drain. Syst. 2007, 21, 219–236. [Google Scholar] [CrossRef]
- Ibrakhimov, M.; Martius, C.; Lamers, J.P.A.; Tischbein, B. The dynamics of groundwater table and salinity over 17 years in Khorezm. Agric. Water Manag. 2011, 101, 52–61. [Google Scholar] [CrossRef]
- Akramkhanov, A.; Tischbein, B.; Awan, U.K. Effective management of soil salinity—Revising leaching norms. In Technologies, Policies and Practices for the Lower Amudarya Region; Lamers, J.P.A., Khamzina, A., Rudenko, I., Vlek, P.L.G., Eds.; V&R Unipress, Bonn University Press: Göttingen, Germany, 2014; pp. 121–134. ISBN 978-3-8471-0297-7. [Google Scholar]
- Forkutsa, I.; Sommer, R.; Shirokova, Y.I.; Lamers, J.P.A.; Kienzler, K.; Tischbein, B.; Martius, C.; Vlek, P.L.G. Modeling irrigated cotton with shallow groundwater in the Aral Sea Basin of Uzbekistan: II. Soil salinity dynamics. Irrig. Sci. 2009, 27, 319–330. [Google Scholar] [CrossRef]
- Consultative Group for International Agricultural Research (CGIAR). SRTM 90m DEM Digital Elevation Database. Available online: https://srtm.csi.cgiar.org/ (accessed on 10 May 2021).
- Conrad, C.; Schorcht, G.; Tischbein, B.; Davletov, S.; Sultonov, M.; Lamers, J.P.A. Agro-meteorological trends of recent climate development in Khorezm and implications for crop production. In Cotton, Water, Salts and Soums; Martius, C., Rudenko, I., Lamers, J.P.A., Vlek, P.L.G., Eds.; Springer: Berlin/Heidelberg, Germany, 2012; pp. 25–36. [Google Scholar] [CrossRef]
- Lamers, J.P.A.; Khamzina, A.; Rudenko, I.; Vlek, P.L. Restructuring Land Allocation, Water Use and Agricultural Value Chains: Technologies, Policies and Practices for the Lower Amudarya Region; V&R Unipress, Bonn University Press: Göttingen, Germany, 2014; ISBN 978-3-8471-0297-7. [Google Scholar]
- Uzgipromeliovodkhoz Institute. Soil Types by Rayon in Khorezm Region; OOO UZGIP: Tashkent, Uzbekistan, 1999. [Google Scholar]
- U.S. Department of Agriculture, Natural Resources Conservation Service. National Soil Survey Handbook; 1996. Available online: http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/ref/?cid=nrcs142p2_054242 (accessed on 20 May 2021).
- Williams, J.R. The EPIC model. In Computer Models of Watershed Hydrology; Water Resources Publications: Colorado, CO, USA, 1995; pp. 909–1000. [Google Scholar]
- Conrad, C.; Lamers, J.P.A.; Ibragimov, N.; Löw, F.; Martius, C. Analysing irrigated crop rotation patterns in arid Uzbekistan by the means of remote sensing: A case study on post-Soviet agricultural land use. J. Arid Environ. 2016, 124, 150–159. [Google Scholar] [CrossRef]
- UzNIIKh. (Uzbekistan Science and Research Institute of Cotton Culture). In Hydro-Module Zoning and Irrigation Regimes of Agricultural Crops for Administrative Regions of Uzbekistan; UzNIIKh: Tashkent, Uzbekistan, 1992. [Google Scholar]
- Ministry of Agriculture and Water Resources of Uzbekistan (MAWR). Guide for Water Engineers in Shirkats and WUAs; Ministry of Agriculture and Water Resources of Uzbekistan (MAWR): Tashkent, Uzbekistan, 2001. [Google Scholar]
- OblVvodKkhoz (Department of Agriculture and Water Resources in Khorezm Region). Hydro-Module-Zones in Khorezm for 2002; OblVodKhoz: Khorezm, Uzbekistan, 2004. [Google Scholar]
- Khamzina, A. The Assessment of Tree Species and Irrigation Techniques for Afforestation of Degraded Agricultural Landscapes in Khorezm, Uzbekistan, Aral Sea Basin. Ph.D. Thesis, Center for Development Research (ZEF), University of Bonn, Cuvillier Verlag, Göttingen, Germany, 2006. [Google Scholar]
- Khamzina, A.; Lamers, J.P.A.; Martius, C. Above-and belowground litter stocks and decay at a multi-species afforestation site on arid, saline soil. Nutr. Cycl. Agroecosyst. 2016, 104, 187–199. [Google Scholar] [CrossRef]
- Conrad, C.; Dech, S.W.; Hafeez, M.; Lamers, J.P.A.; Tischbein, B. Remote sensing and hydrological measurement based irrigation performance assessments in the upper Amu Darya Delta, Central Asia. Phys. Chem. Earth 2013, 61, 52–62. [Google Scholar] [CrossRef]
- Tischbein, B.; Manschadi, A.M.; Hornidge, A.-K.; Conrad, C.; Lamers, J.P.; Oberkircher, L.; Schorcht, G.; Vlek, P.L. Ansätze für eine effizientere Wassernutzung in der Provinz Khorezm, Usbekistan. Hydrol. Und Wasserbewirtsch. 2011, 55, 116–125. [Google Scholar]
- Knöfel, P. Optimization of Energy Balance Modelling in Order to Determine Evapotranspiration by Developing a Physical Based Soil Heat Flux Approach on the Example of Khorezm Region in Uzbekistan. Ph.D. Thesis, University of Würzburg, Würzburg, Germany, 2016. [Google Scholar]
- Shao, G.; Zhang, D.; Guan, Y.; Xie, Y.; Huang, F. Application of SWAT model with a modified groundwater module to the semi-arid Hailiutu River Catchment, Northwest China. Sustainability 2019, 11, 2031. [Google Scholar] [CrossRef] [Green Version]
- Ellison, D.; Futter, N.M.; Bishop, K. On the forest cover–water yield debate: From demand-to supply-side thinking. Glob. Chang. Biol. 2012, 18, 806–820. [Google Scholar] [CrossRef] [Green Version]
- Mátyás, C.; Sun, G. Forests in a water limited world under climate change. Environ. Res. Lett. 2014, 9, 085001. [Google Scholar] [CrossRef] [Green Version]
- Cao, S.; Wang, G.; Chen, L. Questionable value of planting thirsty trees in dry regions. Nature 2010, 465, 31. [Google Scholar] [CrossRef] [Green Version]
- Bekchanov, M.; Lamers, J.P.A.; Martius, C. Pros and cons of adopting water-wise approaches in the lower reaches of the Amu Darya: A socio-economic view. Water 2010, 2, 200–216. [Google Scholar] [CrossRef]
- Yin, H.; Khamzina, A.; Pflugmacher, D.; Martius, C. Forest cover mapping in post-Soviet Central Asia using multi-resolution remote sensing imagery. Sci. Rep. 2017, 7, 1–11. [Google Scholar] [CrossRef] [Green Version]
Crop Type | Crop Water Requirement According to Hydro-Module Zone | Average | Actual Water Application Requirement | ||
---|---|---|---|---|---|
VII | VIII | IX | |||
Cotton | 6400 | 4900 | 5300 | 5533 | 8853 |
Wheat | 4000 | 3200 | 3600 | 3600 | 5760 |
Rice | 26,200 | 26,200 | 26,200 | 26,200 | 41,920 |
Other | 5900 | 5200 | 5700 | 5600 | 8960 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kumar, N.; Khamzina, A.; Knöfel, P.; Lamers, J.P.A.; Tischbein, B. Afforestation of Degraded Croplands as a Water-Saving Option in Irrigated Region of the Aral Sea Basin. Water 2021, 13, 1433. https://doi.org/10.3390/w13101433
Kumar N, Khamzina A, Knöfel P, Lamers JPA, Tischbein B. Afforestation of Degraded Croplands as a Water-Saving Option in Irrigated Region of the Aral Sea Basin. Water. 2021; 13(10):1433. https://doi.org/10.3390/w13101433
Chicago/Turabian StyleKumar, Navneet, Asia Khamzina, Patrick Knöfel, John P. A. Lamers, and Bernhard Tischbein. 2021. "Afforestation of Degraded Croplands as a Water-Saving Option in Irrigated Region of the Aral Sea Basin" Water 13, no. 10: 1433. https://doi.org/10.3390/w13101433
APA StyleKumar, N., Khamzina, A., Knöfel, P., Lamers, J. P. A., & Tischbein, B. (2021). Afforestation of Degraded Croplands as a Water-Saving Option in Irrigated Region of the Aral Sea Basin. Water, 13(10), 1433. https://doi.org/10.3390/w13101433