Water Use Conflict and Coordination between Agricultural and Wetlands—A Case Study of Yanqi Basin
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Wetland Characteristics
2.2. Overview of Hydrologic Setting
2.3. SWAT-MODFLOW Model Structure and Development
3. Conceptual Model and Input Data Construction
3.1. Surface-Water Modeling
3.2. Numerical Model of Groundwater
3.3. SWAT-MODFLOW Coupled in Irrigation Area
4. Results and Discussion
4.1. SWAT Sensitivity Analysis and Calibration
4.2. Calibration and Verification of Numerical Simulation
4.3. Influence of Scale Groundwater Extraction on Lake
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Meng, B.; Liu, J.L.; Bao, K.; Sun, B. Water fluxes of Nenjiang river basin with ecological network analysis: Conflict and coordination between agricultural development and wetland restoration. J. Clean. Prod. 2019, 213, 933–943. [Google Scholar] [CrossRef]
- van der Kamp, G.; Hayashi, M. Groundwater-wetland ecosystem interaction in the semiarid glaciated plains of North America. Hydrogeol. J. 2009, 17, 203–214. [Google Scholar] [CrossRef]
- Stacke, T.; Hagemann, S. Development and evaluation of a global dynamical wetlands extent scheme. Hydrol. Earth Syst. Sci. 2012, 16, 2915–2933. [Google Scholar] [CrossRef] [Green Version]
- WWAP (United Nations World Water Assessment Programme)/UN-Water. The United Nations World Water Development Report; Nature-based Solutions for Water, UNESCO: Paris, France, 2018. [Google Scholar]
- Bailey, R.T.; Park, S.; Bieger, K.; Arnold, J.G.; Allen, P.M. Enhancing SWAT+ simulation of groundwater flow and groundwater-surface water interactions using MODFLOW routines. Environ. Model. Softw. 2020, 126, 1364–8152. [Google Scholar] [CrossRef]
- Sophocleous, M.A.; Koelliker, J.K.; Govindaraju, R.S.; Birdie, T.; Ramireddygari, S.R.; Perkins, S.P. Integrated numerical modeling for basin-wide water management: The case of the rattlesnake creek basin in south-central kansas. J. Hydrol. 1999, 214, 179–196. [Google Scholar] [CrossRef]
- Izady, A.; Davary, K.; Alizadeh, A.; Ziaei, A.N.; Brusseau, M.L. Groundwater conceptualization and modeling using distributed swat-based recharge for the semi-arid agricultural Neishaboor plain, Iran. Hydrogeol. J. 2014, 23, 47–68. [Google Scholar] [CrossRef]
- Ehtiat, M.; Jamshid Mousavi, S.; Srinivasan, R. Groundwater modeling under variable operating conditions using swat, modflow and mt3dms: A catchment scale approach to water resources management. Water Resour. Manag. 2018, 32, 1–19. [Google Scholar] [CrossRef]
- Beven, K. Topmodel: A critique. Hydrol. Process. 1997, 11, 1069–1085. [Google Scholar] [CrossRef]
- Mcdonald, M.G.; Harbaugh, A.W. A Modular Three-Dimensional Finite-Difference Ground-Water Flow Model; US Geological Survey Open-File Report; U.S. Geological Survey, National Center: Reston, VA, USA, 1984; p. 528. [Google Scholar]
- Dierrsch, H.J.G. Feflow Users Manual; Institute for Water Resources Planning and System Research Ltd.: Berlin, Germany, 1998. [Google Scholar]
- Reshmidevi, T.V.; Nagesh, K.D. Modelling the impact of extensive irrigation on the groundwater resources. Hydrol. Process. 2014, 28, 628–639. [Google Scholar] [CrossRef]
- Zhan, L.; Cui, Y.; Liang, G.; Liang, L.; Wang, X. Application of SWAT-MODFLOW coupling model in groundwater balance analysis. S-N Wat. Tra. Sci. Tech. 2020, 11, 1–15. (In Chinese) [Google Scholar]
- Dowlatabadi, S.; Ali Zomorodian, S.M. Conjunctive simulation of surface water and groundwater using SWAT and MODFLOW in Firoozabad watershed. KSCE J. Civ. Eng. 2016, 20, 485–496. [Google Scholar] [CrossRef]
- LABOLLE, E.M.; AHMED, A.A.; FOGG, G.E. Review of the integrated groundwater and surface-water model (IGSM). Groundwater 2003, 41, 238–246. [Google Scholar] [CrossRef] [PubMed]
- PANDAY, S.; HUYAKORN, P.S. A fully coupled physicallybased spatially-distributed model for evaluating surface flow. Adv. Water Resour. 2004, 27, 361–382. [Google Scholar] [CrossRef]
- Wang, Y.Y.; Chen, F.Z. Decomposition and phosphorus release from four different size fractions of Microcystis spp. taken from Lake Taihu, China. J. Environ. Sci. (China) 2008, 20, 891–896. [Google Scholar] [CrossRef]
- Aliyari, F.; Bailey, R.T.; Tasdighi, A.; André, D.; Arabi, M.; Zeiler, K. Coupled SWAT-MODFLOW model for large-scale mixed agro-urban river basins. Environ. Model. Softw. 2019, 115, 200–210. [Google Scholar] [CrossRef]
- Wang, S.; Wu, B.; Yang, P.; Li, X.; Dong, X. Reasonable definition of groundwater depth under Ecological Security in Oasis Irrigation District of Yanqi Basin. Resour. Sci. 2011, 33, 422–430. (In Chinese) [Google Scholar]
- Wang, S.; Wu, B.; Guo, Y. The land-use change and it ecosystem services value effects in Yanqi basin Oasis, Xinjiang. J. Arid Land Resour. Environ. 2012, 26, 138–143. (In Chinese) [Google Scholar]
- Zou, Y.; Duan, X.; Xue, Z.; Mingju, E.; Sun, M.; Lu, X.; Jiang, M.; Yu, X. Water use conflict between wetland and agriculture. J. Environ. Manag. 2018, 224, 140–146. [Google Scholar] [CrossRef]
- National Bureau of Statistics. National Data. 2019. Available online: http://data.stats.gov.cn/ (accessed on 28 May 2019).
- Qin, G.Q.; Dong, X.G.; Yang, P.N.; Wu, B.; Du, M.L. The Relationshp between the Decline of Groundwater Level sand Irrigated Agriculture on Yanqi. Chin. J. Rural Hydropower 2015, 4, 1–8. (In Chinese) [Google Scholar]
- Schot, P.P.; Wassen, M.J. Calcium concentrations in wetland groundwater in relation to water sources and soil conditions in the recharge area. J. Hydrol. 1993, 141, 197–217. [Google Scholar] [CrossRef] [Green Version]
- Harbor, J.M. A practical method for estimating the impact of land-use change on surface runoff, groundwater recharge and wetland hydrology. J. Am. Plan. Assoc. 1994, 62, 95–108. [Google Scholar] [CrossRef]
- Kamp, G.V.D.; Hayashi, M. The groundwater recharge function of small wetlands in the semi-arid northern prairies. Great Plains Res. 1998, 8, 39–56. [Google Scholar]
- Barbier, E.B.; Acharya, G. Valuing groundwater recharge through agricultural production in the hadejia-nguru wetlands in Northern Nigeria. Agric. Econ. 2015, 22, 247–259. [Google Scholar]
- Sophocleous, M. Two-way coupling of unsaturated-saturated flow by integrating the swat and modflow models with application in an irrigation district in arid region of west china. J. Arid Land 2011, 3, 164–173. [Google Scholar]
- Lerner, D.N.; Issar, A.S.; Simmers, I. Groundwater recharge: A guide to understanding and estimating natural recharge. J. Am. Plan. Assoc. 1994, 60, 95–108. [Google Scholar]
- Kim, N.W.; Chung, I.M.; Won, Y.S.; Arnold, J.G. Development and application of the integrated SWAT-MODFLOW model. J. Hydrol. 2008, 356, 1–16. [Google Scholar] [CrossRef]
- Bailey, R.; Rathjens, H.; Bieger, K.; Chaubey, I.; Jeffrey Arnold, J. SWATMOD-Prep: Graphical user interface for preparing coupled SWAT-MODFLOW Simulations. J. Am. Water Resour. Assoc. 2017, 53, 400–410. [Google Scholar] [CrossRef]
- Molina-Navarro, E.; Bailey, R.T.; Andersen, H.E.; Thodsen, H.; Nielsen, A.; Park, A.; Jensen, J.S.; Jensen, J.B.; Trolle, D. Comparison of abstraction scenarios simulated by SWAT and SWAT-MODFLOW. Hydrol. Sci. J. 2019, 64, 434–454. [Google Scholar] [CrossRef]
- Dai, J.F.; Cui, Y.L. Irrigation Hydrology and its Research Progress. Prog. Water Sci. 2008, 19, 294–299. (In Chinese) [Google Scholar]
- Arnold, J.G.; Srinivasan, R.; Muttiah, R.S.; Williams, J.R. Large area hydrologic modeling and assessment part I: Model development. J. Am. Water Resour. Assoc. 1998, 34, 73–89. [Google Scholar] [CrossRef]
- Monteith, J.L. The State and Movement of Water in Living Organisms, Cambridge University Press, Cambridge. Evaporation Environ. 1965, 19, 205–234. [Google Scholar]
- Priestley, C.H.B.; Taylor, R.J. On the assessment of surface heat flux and evaporation using large-scale parameters. Mon. Weather Rev. 1972, 100, 81. [Google Scholar] [CrossRef]
- Hargreaves, G.; Samani, Z.A. Reference crop evapotranspiration from temperature. Appl. Eng. Agric. 1985, 1, 96–99. [Google Scholar] [CrossRef]
- Chunn, D.; Faramarzi, M.; Smerdon, B.; Alessi, D.S. Application of an Integrated SWAT–MODFLOW Model to Evaluate Potential Impacts of Climate Change and Water Withdrawals on Groundwater–Surface Water Interactions in West-Central Alberta. Water 2019, 11, 110. [Google Scholar] [CrossRef] [Green Version]
- Abbaspour, K.C. User Manual for SWAT-CUP: SWAT Calibration and Uncertainty Analysis Programs; Swiss Fed. Inst. of Aquatic Science and Technology: Dübendorf, Switzerland, 2015; Volume 6, pp. 72–80. Available online: http://www.eawag.ch/organization/abteilungen/siam/software/swat/index_EN/ (accessed on 22 June 2019).
- Mofiasi, D.N.; Arnold, J.G.; VanLiew, M.W. Model evaluation guidelines for system aticquantification of accuracy in watershed simulations. Trans. ASABE 2007, 50, 885–900. [Google Scholar]
- Liu, L.; Xu, G.; Zhao, G.; Li, L.; Meng, H. Study on Inverse Evaluation of Parameters Based on Groundwater Numerical Modeling. Yellow River 2012, 34, 66–69. [Google Scholar]
- Jiang, H.; Yusufujjiang, R.; Rerilai, K.; Adilai, W. A Remote Seesing Method for Retrieving Groundwater Levelis using Soil Moitsure. Remote Sens. Inf. 2018, 33, 82–88. (In Chinese) [Google Scholar]
- Llamas, M.R. Conflicts between wetland conservation and groundwater exploitation: Two case histories in Spain. Environ. Geol. Water Sci. 1988, 11, 241–251. [Google Scholar] [CrossRef]
- Schilling, K.E.; Dinsmore, S. Monitoring the Wildlife, Hydrology and Water Quality of Drained Wetlands of the Des Moines Lobe, Northern Iowa: Introduction to Special Feature. Wetlands 2018, 38, 207. [Google Scholar] [CrossRef]
Land Use Classes | Code in Model | Area (%) |
---|---|---|
Agricultural land | AGRL | 36.17 |
Garden | ORCD | 3.46 |
Forest-Semi dense | FRST | 15.25 |
River bed | WATR | 18.41 |
Urban or Built-up Land | UCOM | 2.00 |
Barren Land | BARR | 20.57 |
Wetland | WETL | 4.15 |
Irrigation Time (Day/Month) Spring Irrigation (30 January–10 May) Summer Irrigation (20 May–20 August) Winter Irrigation (20 October–5 February) | Irrigation Amount per Period Spring Irrigation: 96 mm Summer Irrigation: 180 mm Winter Irrigation: 98 mm | |
---|---|---|
Year | Well Irrigation% | Canal Irrigation% |
1955–1990 | 0 | 100 |
1991–2000 | 0.15 | 99.85 |
2001 | 2.91 | 97.09 |
2002 | 5.38 | 94.62 |
2003 | 7.61 | 92.39 |
2004 | 8.62 | 91.38 |
2005 | 8.45 | 91.55 |
2006 | 9.25 | 90.75 |
2007 | 9.29 | 90.71 |
2008 | 18.23 | 81.77 |
2009 | 27.31 | 72.69 |
2010 | 36.06 | 63.94 |
2011 | 42.44 | 57.56 |
2012–2017 | 46.7 | 53.3 |
Parameter a | Physical Meaning | t-Value | p-Value | Initial Range | Final Range | Ranking |
---|---|---|---|---|---|---|
v__TRNSRCH.bsn | Reach transmission loss | −42.07 | 0.00 | [0, 1] | [0.24, 0.45] | 1 |
v__CH_K2.rte | Channel effective hydraulic conductivity (mm/h) | −18.41 | 0.00 | [0, 70] | [18, 42] | 2 |
v__CH_N2.rte | Main channel’s “n” value of Manning | −5.66 | 0.00 | [0, 1] | [0.12, 0.2] | 3 |
v__GW_DELAY.gw | Delay time for aquifer recharge (days) | 4.62 | 0.00 | [0, 200] | [165, 180] | 4 |
v__CO2.sub | Carbon dioxide concentration | 2.91 | 0.00 | [378, 800] | [450, 580] | 5 |
v__GW_REVAP.gw | “Revap” coefficient | −2.74 | 0.01 | [0, 0.1] | [0.02, 0.07] | 6 |
v__ESCO.hru | Soil evaporation compensation factor | 1.86 | 0.06 | [0, 1] | [0.3, 0.6] | 7 |
v__ALPHA_BNK.rte | Baseflow alpha factor of bank storage | 1.82 | 0.07 | [0, 1.2] | [0.5, 0.8] | 8 |
v__RCHRG_DP.gw | Aquifer percolation coefficient | 1.66 | 0.10 | [0, 0.6] | [0.2, 35] | 9 |
v__GWQMN.gw | Threshold water level in shallow aquifer for baseflow (mm) | −1.58 | 0.11 | [0, 1800] | [1600, 1610] | 10 |
r__SOL_BD().sol | Moist bulk density | 1.51 | 0.13 | [0.5, 2.3] | [0.6, 0.8] | 11 |
r__CH_L1.sub | Longest tributary channel length in subbasin | −1.23 | 0.22 | [−0.2, 0.2] | [0, 0.1] | 12 |
r__SOL_K().sol | Soil hydraulic conductivity (mm/h) | 1.17 | 0.24 | [1, 100] | [26, 38] | 13 |
a__LAT_TTIME.hru | Lateral flow travel time | 1.10 | 0.27 | [0, 10.5] | [6, 7.5] | 14 |
r__OV_N.hru | Overland flow’s “n” value of Manning flow | 0.91 | 0.36 | [0, 0.2] | [0.05, 0.15] | 15 |
v__CNCOEF.bsn | Plant ET curve number coefficient | −0.75 | 0.46 | [0, 2] | [1.2, 1.7] | 16 |
a__SLSOIL.hru | Slope length of lateral subsurface flow | 0.73 | 0.46 | [5, 10] | [6, 8.5] | 17 |
v__DEP_IMP_BSN.bsn | Depth of aquifuge for modeling perched water levels | −0.73 | 0.46 | [−25, 0] | [−5.5, 0] | 18 |
r__SOL_AWC().sol | Available water capacity | −0.52 | 0.60 | [0.03, 0.43] | [0.035, 0.3] | 19 |
r__HRU_SLP.hru | Average slope steepness | −0.52 | 0.61 | [0, 0.2] | [0.1, 0.15] | 20 |
r__SLSUBBSN.hru | Average slope length (m) | 0.36 | 0.72 | [0, 0.2] | [0.05, 0.1] | 21 |
a__DEP_IMP.hru | Depth to aquifuge for modeling perched water levels | 0.32 | 0.75 | [0, 6000] | [0, 50] | 22 |
v__ALPHA_BF.gw | Baseflow recession constant | −0.26 | 0.79 | [0, 1] | [0, 0.42] | 23 |
v__SFTMP.bsn | Snow melt base temperature | 0.24 | 0.81 | [−1, 1] | [0, 0.55] | 24 |
v__SURLAG.bsn | Surface runoff lag coefficient | −0.21 | 0.84 | [1, 10] | [2.6, 3.9] | 25 |
r__CN2.mgt | Initial SCS CN II value | 0.19 | 0.20 | [15, 90] | [35.2, 53] | 26 |
r__CH_S1.sub | Average slope of tributary channels | 0.19 | 0.85 | [−0.2, 0.2] | [−0.2, −0.1] | 27 |
r__SOL_ZMX.sol | Maximum rooting depth for soil profile | −0.11 | 0.91 | [−0.5, 0.5] | [−0.15, 0.1] | 28 |
v__CH_N1.sub | Tributary channels’ “n” value of Manning | −0.04 | 0.96 | [0.01, 30] | [1, 3.6] | 29 |
a__SOL_Z().sol | Depth from soil surface to layer bottom | −0.03 | 0.98 | [−0.6, 0.5] | [0.26, 0.5] | 30 |
Observation Sites | Stage | Time | Monthly Runoff (m3/s) | p-Factor | r-Factor | R2 | NS |
---|---|---|---|---|---|---|---|
Yanqi | calibration periods | 1961–1990 | Observed 77.021 | 0.62 | 1.49 | 0.95 | 0.71 |
Simulation 75.651 | |||||||
validation periods | 1991–2007 | Observed 113.31 | 0.57 | 1.78 | 0.88 | 0.83 | |
Simulation 105.28 |
Water Balance | Status Quo Year | Scenario 1 | Scenario 2 | Scenario 3 | Scenario 4 | Scenario 5 |
---|---|---|---|---|---|---|
Net flow from the lake to the aquifer | −0.62 | −0.39 | −0.28 | +0.36 | +0.86 | +2.25 |
Groundwater extraction | −6.76 | −7.67 | −8.67 | −10.67 | −12.67 | −16.67 |
Drains (irrigation canals) | −0.79 | −1.58 | −1.67 | −1.34 | −0.92 | −0.66 |
Evaporation | −4.95 | −4.63 | −4.02 | −3.45 | −2.85 | −1.62 |
Water exchange of River | +0.42 | +0.45 | +0.48 | +0.54 | +0.62 | +0.73 |
Recharge | +8.13 | +8.25 | +8.31 | +8.35 | +8.43 | +8.51 |
The recharge of lateral inflow | +4.64 | +5.53 | +5.72 | +5.86 | +6.08 | +6.68 |
Water balance | +0.07 | −0.04 | −0.13 | −0.35 | −0.45 | −0.78 |
Lake level (m) | 1047.2 | 1047 | 1046.8 | 1046.5 | 1046.2 | 1045.9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, M.; Xie, S.; Wang, S. Water Use Conflict and Coordination between Agricultural and Wetlands—A Case Study of Yanqi Basin. Water 2020, 12, 3225. https://doi.org/10.3390/w12113225
Jiang M, Xie S, Wang S. Water Use Conflict and Coordination between Agricultural and Wetlands—A Case Study of Yanqi Basin. Water. 2020; 12(11):3225. https://doi.org/10.3390/w12113225
Chicago/Turabian StyleJiang, Mengyao, Shuntao Xie, and Shuixian Wang. 2020. "Water Use Conflict and Coordination between Agricultural and Wetlands—A Case Study of Yanqi Basin" Water 12, no. 11: 3225. https://doi.org/10.3390/w12113225
APA StyleJiang, M., Xie, S., & Wang, S. (2020). Water Use Conflict and Coordination between Agricultural and Wetlands—A Case Study of Yanqi Basin. Water, 12(11), 3225. https://doi.org/10.3390/w12113225