Impact of Land Use on Karst Water Resources—A Case Study of the Kupa (Kolpa) Transboundary River Catchment
Abstract
:1. Introduction
2. Study Area
3. Materials and Methods
3.1. The Water Quality Index
3.2. Hazard Assessment (COST620)
4. Results
4.1. Water Quality Index
4.1.1. Surface Water Quality Index (WQIsw)
4.1.2. Groundwater Quality Index (WQIgw)
4.2. Hazard Map
5. Discussion
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Taylor, R.G.; Scanlon, B.; Döll, P.; Rodell, M.; Van Beek, R.; Wada, Y.; Longuevergne, L.; Leblanc, M.; Famiglietti, J.S.; Edmunds, M.; et al. Ground Water and Climate Change. Nat. Clim. Chang. 2013, 3, 322–329. [Google Scholar] [CrossRef] [Green Version]
- Lukač Reberski, J.; Rubinić, J.; Terzić, J.; Radišić, M. Climate Change Impacts on Groundwater Resources in the Coastal Karstic Adriatic Area: A Case Study from the Dinaric Karst. Nat. Resour. Res. 2020, 29, 1975–1988. [Google Scholar] [CrossRef]
- Biondić, B.; Biondić, R.; Kapelj, S. Karst Groundwater Protection in the Kupa River Catchment Area and Sustainable Development. Environ. Geol. 2006, 49, 828–839. [Google Scholar] [CrossRef]
- Marjanović, P.; Pejović, D.; Marjanović, M. GUIDR—Guidance for the Danube Region for Sustainable Land Use Planning. 2019. Available online: http://www.interreg-danube.eu/uploads/media/approved_project_output/0001/37/5b8d5a835624b6a9538ab8bc7e4f92cc625eb3c8.pdf (accessed on 10 August 2020).
- Federal Ministry of Agriculture Regions and Tourism; Agricultural Research and Education Centre Raumberg-Gumpenstein; Municipality of the City of Vienna Department 31—Vienna Water; University of Ljubljana; Public Water Utility JP VOKA SNAGA; Croatian Geological Survey; Forest Research Institute Baden-Württemberg. Transnational Cluster-Specific Characteristics Cluster 1 “Land Use and Vegetation Cover—Protection of Groundwater Resources”. 2019. Available online: www.interreg-danube.eu/approved-projects/camaro-d/outputs?page=1 (accessed on 15 August 2020).
- Buljan, R.; Pavlić, K.; Terzić, J.; Perković, D. A Conceptual Model of Groundwater Dynamics in the Catchment Area of the Zagorska Mrežnica Spring, the Karst Massif of Kapela Mountain. Water 2019, 11, 1983. [Google Scholar] [CrossRef] [Green Version]
- Pavlić, K.; Jakobović, D. High Flows from Gornja Dobra Basin. Rud. Geol. Naft. Zb. 2018, 33, 45–52. [Google Scholar] [CrossRef] [Green Version]
- International Commission for the Protection of the Danube River. The Danube River Basin District Management Plan. 2015. Available online: www.icpdr.org/main/activities-projects/river-basin-management-plan-update-2015 (accessed on 5 September 2020).
- International Commission for the Protection of the Danube River. Convention on Cooperation for the Protection and Sustainable Use of the Danube River; International Commission for the Protection of the Danube River: Vienna, Austria, 1994; p. 21. [Google Scholar]
- The Croatian Government. Plan Upravljanja Vodnim Područjima 2016–2021. (River Basin Management Plan 2016–2021); The Croatian Government: Zagreb, Croatia, 2016.
- The Slovenian Government. Načrt Upravljanja Voda na Vodnem Območju Donave za Obdobje 2016–2021 (Danube River Basin Management Plan 2016–2021); The Slovenian Government: Ljubljana, Slovenia, 2016.
- Čenčur Curk, B.; Cheval, S.; Vrhovnik, P.; Verbovšek, T.; Herrnegger, M.; Nachtnebel, H.; Marjanović, P.; Siegel, H.; Gerhardt, E.; Hochbichler, E.; et al. CC-WARE—Mitigating Vulnerability of Water Resources under Climate Change. WP3—Vulnerability of Water Resources in SEE, Report Version 5; 2014. Available online: https://www.researchgate.net/publication/301889158_CC-WARE_Mitigating_Vulnerability_of_Water_Resources_under_Climate_Change_WP3_-_Vulnerability_of_Water_Resources_in_SEE (accessed on 29 January 2020).
- Nistor, M.-M. Groundwater Vulnerability in the Piedmont Region under Climate Change. Atmosphere 2020, 11, 779. [Google Scholar] [CrossRef]
- Stevanović, Z.; Marinović, V. A Methodology for Assessing the Pressures on Transboundary Groundwater Quantity and Quality-Experiences from the Dinaric Karst. Geol. Croat. 2020, 73, 1–12. [Google Scholar] [CrossRef]
- COST Action 620 Vulnerability and Risk Mapping for the Protection of Carbonate (Karst) Aquifers; Final Report; Zwahlen, F. (Ed.) European Commission, Directorate-General for Research: Luxembourg, 2004. [Google Scholar]
- Biondić, R. Zaštita Voda Gornjeg Dijela Sliva Kupe (Water Protection of the Upper Part of the River Kupa Catchment Area). Ph.D. Thesis, Faculty of Mining, Geology and Petroleum Engineering, University of Zagreb, Zagreb, Croatia, 2005. [Google Scholar]
- Kovačič, G.; Ravbar, N. The Protection of Karst Waters. Acta Carsologica 2007, 36, 254. [Google Scholar] [CrossRef] [Green Version]
- Meaški, H. Model Zaštite Krških Vodnih Resursa na Primjeru Nacionalnog parka “Plitvička Jezera” (Model of the Karst Water Resources Protection on the Example of the Plitvice Lakes National Park). Ph.D. Thesis, Faculty of Mining, Geology and Petroleum Engineering, University of Zagreb, Zagreb, Croatia, 2011. [Google Scholar]
- Loborec, J.; Kapelj, S.; Novak, H. Analysis of Groundwater Pollution Hazard in Karst: A Case Study of Jadro and Žrnovnica Catchment Area. Građevinar 2015, 67, 1093–1103. [Google Scholar] [CrossRef]
- Frančišković-Bilinski, S.; Bhattacharya, A.K.; Bilinski, H.; Bhaskar, D.B.; Mitra, A.; Sarkar, S.K. Fluvial Geomorphology of the Kupa River Drainage Basin, Croatia: A Perspective of Its Application in River Management and Pollution Studies. Z. Fur Geomorphol. 2012, 56, 93–119. [Google Scholar] [CrossRef]
- Meaški, H.; Biondić, B.; Biondić, R. Delineation of the Plitvice Lakes Karst Catchment Area, Croatia. In Karst without Boundaries; Stevanović, Z., Krešić, N., Kukurić, N., Eds.; CRC Press/Balkema: Boca Raton, FL, USA, 2016; pp. 269–284. [Google Scholar]
- Habič, P.; Kogovšek, J.; Bricelj, M.; Zupan, M. Izviri Dobličice in njihovo širše kraško zaledje. Acta Carsologica 1990, 19, 5–100. [Google Scholar]
- Habič, P.; Kogovšek, J. Sledenje voda v kraškem zaledju Krupe v JV Sloveniji. Acta Carsologica 1992, 21, 35–76. [Google Scholar]
- Bura, D. Statistika Krša Jugoslavije (Statistical Analysis of Jugoslavian Karst); Savezno savjetovanje o kršu: Split, Croatia, 1958; pp. 67–98. [Google Scholar]
- Roglić, J. Geografski aspekt Dinarskog krša (Geographical aspect of Dinaric karst). In Krš Jugoslavije 1; Petrik, M., Ed.; JAZU: Zagreb, Croatia, 1969; pp. 19–39. [Google Scholar]
- Herak, M. Karst of Yugoslavia. In Karst: Important Karst Regions of the Northern Hemisphere; Herak, M., Stringfield, V.T., Eds.; Elsevier: Amsterdam, The Netherlands, 1972; pp. 25–83. [Google Scholar]
- Bogunović, M.; Bensa, A. Tla krša-temeljni čimbenik biljne proizvodnje (Karst Soils-Fundamental Factor of Agriculture Production). In Hrvatski Krš i Gospodarski Razvoj; Biondić, B., Božičević, J., Eds.; Centar za Krš: Gospić/Zagreb, Croatia, 2005; pp. 41–50. [Google Scholar]
- Šegota, T.; Filipčić, A. Köppen’s Classification of Climates and the Problem of Corresponding Croatian Terminology. Geoadria 2003, 8, 17–37. [Google Scholar] [CrossRef] [Green Version]
- Kozjek, K.; Dolinar, M.; Skok, G. Objective Climate Classification of Slovenia. Int. J. Climatol. 2017, 37, 848–860. [Google Scholar] [CrossRef]
- Croatian Hydrological and Meteorological Service. Mean Monthly Temperature for Stations Parg and Ogulin. Available online: https://meteo.hr/klima.php?section=klima_podaci¶m=k1 (accessed on 2 November 2020).
- Slovenian Environment Agency (ARSO). Mean Monthly Temperature for Station Dobliče. Available online: http://www.meteo.si/uploads/probase/www/climate/table/sl/by_location/doblice/climate-normals_81-10_Doblice.pdf (accessed on 2 November 2020).
- Biondić, B.; Biondić, R.; Kapelj, S. Protection of the Kast Aquifers in the River Kupa Catchment Area and Sustainable Development. Environ. Geol. 2003, 50, 33–36. [Google Scholar]
- Pavlić, K.; Kovač, Z.; Jurlina, T. Analiza Trendova Srednjih i Maksimalnih Protoka u Ovisnosti o Klimatskim Promjenama—Primjer Na Krškim Slivovima Hrvatsk. Geofizika 2017, 34, 157–174. [Google Scholar] [CrossRef]
- Frantar, P.; Hrvatin, M. Pretočni Režimi v Sloveniji Med Letoma 1971 in 2000. Geogr. Vestn. 2005, 77, 115–127. [Google Scholar]
- Bonacci, O.; Andrić, I. Impact of an Inter-Basin Water Transfer and Reservoir Operation on a Karst Open Streamflow Hydrological Regime: An Example from the Dinaric Karst (Croatia). Hydrol. Process. 2010, 24, 3852–3863. [Google Scholar] [CrossRef]
- Čanjevac, I. Tipologija Protočnih Režima Rijeka u Hrvatskoj. Hrvat. Geogr. Glas. 2013, 75, 23–42. [Google Scholar] [CrossRef]
- Croatian Geological Survey. The Geological Map of the Republic of Croatia at 1:300,000 Scale; Croatian Geological Survey: Zagreb, Croatia, 2009. [Google Scholar]
- Bauser, S. Basic Geological Map of the Republic of Slovenia at Scale 1:250,000; Geological Survey of Slovenia: Ljubljana, Slovenia, 2010. [Google Scholar]
- Hydrogeological Map of the Republic of Slovenia 1:250,000—IAH; Geological Survey of Slovenia: Ljubljana, Slovenia, 2004.
- Biondić, B.; Biondić, R.; Brkić, Ž. Basic Hydrogeological Map of Croatia 1:300,000; Croatian Geological Survey: Zagreb, Croatia, 2003. [Google Scholar]
- BGR (Bundesanstalt für Geowissenschaften und Rohstoffe). International Hydrogeological Map of Europe 1:1 500 000. 2015. Available online: https://www.bgr.bund.de/EN/Themen/Wasser/Projekte/laufend/Beratung/Ihme1500/ihme1500_projektbeschr_en.html (accessed on 26 November 2019).
- Vlahović, I.; Tišljar, J.; Velić, I.; Matičec, D. Evolution of the Adriatic Carbonate Platform: Palaeogeography, Main Events and Depositional Dynamics. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2005, 220, 333–360. [Google Scholar] [CrossRef]
- Schmid, S.; Bernoulli, D.; Fügenschuh, B.; Matenco, L.; Schefer, S.; Schuster, R.; Tischler, M.; Ustaszewski, K. The Alpine-Carpathian-Dinaridic Orogenic System: Correlation and Evolution of Tectonic Units. Swiss J. Geosci. 2008, 101, 139–183. [Google Scholar] [CrossRef] [Green Version]
- Terzić, J. Hydrogeology of Adriatic Karst Islands. Ph.D. Thesis, University of Zagreb, Zagreb, Croatia, 2006. [Google Scholar]
- Wochna, A.; Lange, K.; Urbanski, J. The influence of land cover change during sixty years on non point source phosphorus loads to Gulf of Gdansk. J. Coast. Res. 2011, 64, 1820–1824. [Google Scholar]
- European Environment Agency & Copernicus Land Service. Corine Land Cover 2018. Available online: https://land.copernicus.eu/pan-european/corine-land-cover/clc2018 (accessed on 26 November 2019).
- Prestor, J.; Janža, M. Assessment of the Infiltration (Kennessy Method) and Groundwater Vulnerability of Slovenia; Geological Survey of Slovenia: Ljubljana, Slovenia, 2006. [Google Scholar]
- Biondić, R.; Biondić, B.; Rubinić, J.; Meaški, H.; Kapelj, S.; Tepeš, P. Ocjena Stanja i Rizika Cjelina Podzemnih Voda na Krškom Području u Republici Hrvatskoj—Završno Izvješće (Assessment of status and Risk of Groundwater Bodies in the Karst Area of Croatia—Final Report); Faculty of Geotechnical Engineering, University of Zagreb: Varaždin, Croatia, 2009; (unpublished); Available online: https://www.voda.hr/sites/default/files/dokumenti/ocjena_stanja_i_rizika_podzemnih_voda_na_krskom_podrucju_u_rh_varazdin_2009.pdf (accessed on 5 November 2020).
- Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 establishing a framework for Community Action in the Field of Water Policy. Off. J. Bruss. 2000, 327, 1–73.
Corine Land Cover | |||
---|---|---|---|
CLC 2018 Code | CLC Description | Land Use Load Coefficient (LUSLI) | WQIsw (Normalized LUSLI) |
112 | Discontinuous urban fabric | 5.5 | 0.458 |
121 | Industrial or commercial units | 5 | 0.417 |
122 | Road and rail networks and associated land | 7.5 | 0.625 |
131 | Mineral extraction sites | 9 | 0.750 |
133 | Construction sites | 7 | 0.583 |
142 | Sport and leisure facilities | 4 | 0.333 |
211 | Non-irrigated arable land | 12 | 1.0 |
221 | Vineyards | 6 | 0.5 |
222 | Fruit trees and berry plantations | 5 | 0.417 |
231 | Pastures | 3.5 | 0.292 |
242 | Complex cultivation patterns | 8.3 | 0.692 |
243 | Land principally occupied by agriculture, with significant areas of natural vegetation | 5.5 | 0.458 |
311 | Broad-leaved forest | 3.6 | 0.3 |
312 | Coniferous forest | 2.5 | 0.208 |
313 | Mixed forest | 2.8 | 0.233 |
321 | Natural grasslands | 2.5 | 0.208 |
322 | Moors and heathland | 2.7 | 0.225 |
324 | Transitional woodland-shrub | 2.6 | 0.217 |
511 | Watercourses | 3 | 0.25 |
512 | Water bodies | 3 | 0.25 |
Aquifer Type | Effective Infiltration Coefficient (EIC) |
---|---|
Aquifer in which flow is mainly intergranular | |
extensive and highly productive aquifers | 0.6 |
local or discontinuous productive aquifers or extensive but only moderately productive aquifers | 0.3 |
Confined extensive aquifer | 0.2 |
Fissured aquifers, including karst aquifers | |
extensive and highly productive aquifers | 0.8 |
local or discontinuous productive aquifers or extensive but only moderately productive aquifers | 0.4 |
Strata (granular or fissured rocks) forming insignificant aquifers with local and limited groundwater resources or strata with essentially no groundwater resources | |
minor aquifers with local and limited groundwater resources | 0.1 |
strata with essentially no groundwater resources | 0.05 |
low permeability strata that cover porous and intergranular aquifers | 0.05 |
Data Type | Hazard | Impact Zone | Reduction Factor (Rf) |
---|---|---|---|
Point | Industry effluents | 0–50 m | 1.0 |
50–100 m | 0.5 | ||
Wastewater treatment plants effluents | 0–50 m | 1.0 | |
50–100 m | 0.5 | ||
Landfills | 0–50 m | 1.0 | |
50–100 m | 0.5 | ||
Illegal waste sites | 0–50 m | 1.0 | |
50–100 m | 0.5 | ||
Linear | Railway | 0–5 m | 1.0 |
5–25 m | 0.5 | ||
Road | 0–5 m | 1.0 |
Hazard Index | Hazard Index Class | Hazard Level | Colour |
---|---|---|---|
0–24 | 1 | No or very low | |
>24–48 | 2 | Low | |
>48–72 | 3 | Moderate | |
>72–96 | 4 | High | |
>96–120 | 5 | Very high |
No. | Hazard Type | Weighting Value |
---|---|---|
1 | Infrastructural development | |
Urbanization (leaking sewer pipes and sewer systems) | 35 | |
Urbanization without sewer systems | 70 | |
Septic tank, cesspool, latrine | 45 | |
1.2 | Municipal waste | |
Sanitary landfill | 50 | |
Illegal waste dumpsites | 85 | |
1.3 | Fuels | |
Gasoline station | 60 | |
1.4 | Transport and traffic | |
Road, unsecured | 40 | |
Railway line | 30 | |
Runway | 35 | |
Car parking/repair area | 35 | |
2 | Industrial activities | |
2.1 | Mining (in operation and abandoned) | 70 |
Mine, other non-metallic | ||
2.2 | Excavation sites | |
Excavation and embankment for development | 10 | |
Quarry | 25 | |
2.4 | Industrial plants | |
Iron and steelworks | 40 | |
Metal processing and finishing industry | 50 | |
Paper and pulp manufacture | 40 | |
Leather tannery | 70 | |
Food industry | 45 | |
2.5 | Power plants | |
Gasworks | 60 | |
2.6 | Industrial storage | |
Stockpiles of raw materials and chemicals | 60 | |
2.7 | Diverting and treatment for wastewater | |
Wastewater injection well | 85 | |
Discharges of treatment plants | 40 | |
3 | Livestock and Agriculture | |
3.1 | Livestock | |
Factory farm | 30 | |
Pastures | 25 | |
3.2 | Agriculture | |
Arable land | 30 | |
Vineyards and orchards | 30 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Selak, A.; Boljat, I.; Lukač Reberski, J.; Terzić, J.; Čenčur Curk, B. Impact of Land Use on Karst Water Resources—A Case Study of the Kupa (Kolpa) Transboundary River Catchment. Water 2020, 12, 3226. https://doi.org/10.3390/w12113226
Selak A, Boljat I, Lukač Reberski J, Terzić J, Čenčur Curk B. Impact of Land Use on Karst Water Resources—A Case Study of the Kupa (Kolpa) Transboundary River Catchment. Water. 2020; 12(11):3226. https://doi.org/10.3390/w12113226
Chicago/Turabian StyleSelak, Ana, Ivana Boljat, Jasmina Lukač Reberski, Josip Terzić, and Barbara Čenčur Curk. 2020. "Impact of Land Use on Karst Water Resources—A Case Study of the Kupa (Kolpa) Transboundary River Catchment" Water 12, no. 11: 3226. https://doi.org/10.3390/w12113226
APA StyleSelak, A., Boljat, I., Lukač Reberski, J., Terzić, J., & Čenčur Curk, B. (2020). Impact of Land Use on Karst Water Resources—A Case Study of the Kupa (Kolpa) Transboundary River Catchment. Water, 12(11), 3226. https://doi.org/10.3390/w12113226