Impacts of Tile Drainage on Phosphorus Losses from Edge-of-Field Plots in the Lake Champlain Basin of New York
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description and Plot Establishment
2.2. Runoff Sampling, Flow Measurement and Analytical Methods
2.3. Statistical Analysis
3. Results and Discussion
3.1. Runoff in Tile-Drained and Undrained Plots
3.2. Export of Phosphorus and Total Suspended Solids
3.3. Flow-Weighted Mean Concentrations
3.4. Study Limitations
3.5. Water Quality Implications
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Sharpley, A.N.; McDowell, R.W.; Kleinman, P.J.A. Phosphorus loss from land to water: Integrating agricultural and environmental management. Plant Soil 2001, 237, 287–307. [Google Scholar] [CrossRef]
- Foy, R.H. The return of the phosphorus paradigm; agricultural phosphorus and eutrophication. In Phosphorus: Agriculture and the Environment; Sims, J.T., Sharpley, A.N., Eds.; ASA-CSA-SSSA: Madison, WI, USA, 2005; pp. 1021–1068. [Google Scholar]
- USEPA. National Water Quality Inventory: Report to Congress. 2004 Reporting Cycle; United States Environmental Protection Agency Office of Water: Washington, DC, USA, 2009; EPA 841-R-08-001.
- Sharpley, A.N.; Foy, B.; Withers, P. Practical and innovative measures for the control of agricultural phosphorus losses to water: An overview. J. Environ. Qual. 2000, 29, 1–9. [Google Scholar] [CrossRef]
- Skaggs, R.W.; Brevé, M.A.; Gilliam, J.W. Hydrologic and water quality impacts of agricultural drainage. Crit. Rev. Environ. Sci. Tec. 1994, 24, 1–32. [Google Scholar] [CrossRef]
- Gilliam, J.W.; Baker, J.L.; Reddy, K.R. Water quality effects of drainage in humid regions. In Agricultural Drainage; Skaggs, R.W., van Schilfgaarde, J., Eds.; American Society of Agronomy: Madison, WI, USA, 1999; pp. 801–830. [Google Scholar]
- Benoit, G.R. Effect of agricultural management of wet sloping soil on nitrate and phosphorus in surface and subsurface water. Water Resour. Res. 1973, 9, 1296–1303. [Google Scholar] [CrossRef]
- Hanway, J.J.; Laflen, J.M. Plant nutrient losses from tile-outlet terraces. J. Environ. Qual. 1974, 3, 351–356. [Google Scholar] [CrossRef]
- Baker, J.L.; Campbell, K.L.; Johnson, H.P.; Hanway, J.J. Nitrate, phosphorus, and sulfate in subsurface drainage water. J. Environ. Qual. 1975, 4, 406–412. [Google Scholar] [CrossRef]
- Zhao, S.L.; Gupta, S.C.; Huggins, D.R.; Moncrief, J.F. Tillage and nutrient source effects on surface and subsurface water quality at corn planting. J. Environ. Qual. 2001, 30, 998–1008. [Google Scholar] [CrossRef]
- Coelho, B.B.; Murray, R.; Lapen, D.; Topp, E.; Bruin, A. Phosphorus and sediment loading to surface waters from liquid swine manure application under different drainage and tillage practices. Agric. Water Manag. 2012, 104, 51–61. [Google Scholar] [CrossRef]
- Sims, J.T.; Simard, R.R.; Joern, B.C. Phosphorus loss in agricultural drainage: Historical perspective and current research. J. Environ. Qual. 1998, 27, 277–293. [Google Scholar] [CrossRef] [Green Version]
- Geohring, L.D.; McHugh, O.V.; Walter, M.T.; Steenhuis, T.S.; Akhtar, M.S.; Walter, M.F. Phosphorus transport into subsurface drains by macropores after manure applications: Implications for best manure management practices. Soil Sci. 2001, 166, 896–909. [Google Scholar] [CrossRef]
- Van Es, H.M.; Schindelbeck, R.R.; Jokela, W.E. Effect of manure application timing, crop, and soil type on phosphorus leaching. J. Environ. Qual. 2004, 33, 1070–1080. [Google Scholar] [PubMed]
- Kleinman, P.J.; Sharpley, A.N.; Saporito, L.S.; Buda, A.R.; Bryant, R.B. Application of manure to no-till soils: Phosphorus losses by sub-surface and surface pathways. Nutr. Cycl. Agroecosys. 2009, 84, 215–227. [Google Scholar] [CrossRef]
- Eastman, M.; Gollamudi, N.; Stampfli, N.; Madramootoo, C.A.; Sarangi, A. Comparative evaluation of phosphorus losses from subsurface and naturally drained agricultural fields in the Pike River watershed of Quebec, Canada. Agric. Water Manag. 2010, 97, 596–604. [Google Scholar] [CrossRef]
- Tan, C.S.; Zhang, T.Q. Surface runoff and sub-surface drainage phosphorus losses under regular free drainage and controlled drainage with sub-irrigation systems in southern Ontario. Can. J. Soil Sci. 2011, 91, 349–359. [Google Scholar] [CrossRef]
- Smith, D.R.; King, K.W.; Johnson, L.; Francesconi, W.; Richards, P.; Baker, D.; Sharpley, A.N. Surface runoff and tile drainage transport of phosphorus in the midwestern United States. J. Environ. Qual. 2015, 44, 495–502. [Google Scholar] [CrossRef]
- King, K.W.; Williams, M.R.; Macrae, M.L.; Fausey, N.R.; Frankenberger, J.; Smith, D.R.; Kleinman, P.J.A.; Brown, L.C. Phosphorus transport in agricultural subsurface drainage: A review. J. Environ. Qual. 2015, 44, 467–485. [Google Scholar] [CrossRef] [Green Version]
- King, K.W.; Williams, M.R.; Fausey, N.R. Contributions of systematic tile drainage to watershed-scale phosphorus transport. J. Environ. Qual. 2014, 44, 486–494. [Google Scholar] [CrossRef]
- Madison, A.M.; Ruark, M.D.; Stuntebeck, T.D.; Komiskey, M.J.; Good, L.W.; Drummey, N.; Cooley, E.T. Characterizing phosphorus dynamics in tile-drained agricultural fields of eastern Wisconsin. J. Hydrol. 2014, 519, 892–901. [Google Scholar] [CrossRef]
- Culley, J.L.B.; Bolton, E.F. Suspended solids and phosphorus loads from a clay soil: II. Watershed study. J. Environ. Qual. 1983, 12, 498–503. [Google Scholar] [CrossRef]
- Macrae, M.L.; English, M.C.; Schiff, S.L.; Stone, M. Intra-annual variability in the contribution of tile drains to basin discharge and phosphorus export in a first-order agricultural catchment. Agric. Water Manag. 2007, 92, 171–182. [Google Scholar] [CrossRef]
- King, K.W.; Fausey, N.R.; Williams, M.R. Effect of subsurface drainage on streamflow in an agricultural headwater watershed. J. Hydrol. 2014, 519, 438–445. [Google Scholar] [CrossRef]
- Trevail, T.D. Soil Survey of Clinton County, New York; USDA-NRCS: Washington, DC, USA, 2006; pp. 104–106, 376–377. [Google Scholar]
- American Public Health Association. Phosphorus: 4500-P. In Standard Methods for the Examination of Waste and Wastewaters, 17th ed.; Clesceri, L.S., Greenberg, A.E., Trussell, R.R., Eds.; Port City Press: Baltimore, MD, USA, 1989; pp. 166–181. [Google Scholar]
- Howard, A.; (University of Vermont, Burlington, VT, USA). Personal communication, 2015.
- Dolezal, F.; Kulhavy, Z.; Soukup, M.; Kodesova, R. Hydrology of tile drainage runoff. Phys. Chem. Earth 2001, 26, 623–627. [Google Scholar] [CrossRef]
- Needelman, B.A.; Gburek, W.J.; Petersen, G.W.; Sharpley, A.N.; Kleinman, P.J.A. Surface runoff along two agricultural hillslopes with contrasting soils. Soil Sci. Soc. Am. J. 2004, 68, 914–923. [Google Scholar] [CrossRef]
- Kirkby, M. Hillslope runoff processes and models. J. Hydrol. 1988, 100, 315–339. [Google Scholar] [CrossRef]
- Karl, T.R.; Knight, R.W. Secular trends of precipitation amount, frequency, and intensity in the United States. Bull. Am. Meteorol. Soc. 1998, 79, 231–241. [Google Scholar] [CrossRef]
- Tan, C.S.; Drury, C.F.; Reynolds, W.D.; Gaynor, J.D.; Zhang, T.Q.; Ng, H.Y.F. Effect of long-term conventional tillage and no-tillage systems on soil and water quality at the field scale. Water Sci. Technol. 2002, 46, 183–190. [Google Scholar] [CrossRef]
- Jamieson, A.; Madramootoo, C.A.; Enright, P. Phosphorus losses in surface and subsurface runoff from a snowmelt event on an agricultural field in Quebec. Can. Biosyst. Eng. 2003, 45, 1–7. [Google Scholar]
- Rodzik, J.; Furtak, T.; Zglobicki., W. The impact of snowmelt and heavy rainfall runoff on erosion rates in a gully system, Lublin Upland, Poland. Earth Surf. Process. Landforms. 2009, 34, 1938–1950. [Google Scholar] [CrossRef]
- Heckrath, G.; Brooks, P.C.; Poulton, P.R.; Goulding, K.W.T. Phosphorus leaching from soils containing different phosphorus concentrations in the Broadbalk experiment. J. Environ. Qual. 1995, 24, 904–910. [Google Scholar] [CrossRef]
- Pote, D.H.; Daniel, T.C.; Sharpley, A.N.; Moore, P.A., Jr.; Edwards, D.R.; Nichols, D.J. Relating extractable soil phosphorus to phosphorus in runoff. J. Environ. Qual. 1996, 60, 855–859. [Google Scholar]
- McDowell, R.W.; Sharpley, A.N. Approximating phosphorus release from soils to surface runoff and subsurface drainage. J. Environ. Qual. 2001, 30, 508–520. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maguire, R.O.; Sims, J.T. Soil testing to predict phosphorus leaching. J. Environ. Qual. 2002, 31, 1601–1609. [Google Scholar] [CrossRef] [PubMed]
- Vadas, P.A.; Kleinman, P.J.A.; Sharpley, A.N.; Turner, B.L. Relating soil phosphorus to dissolved phosphorus in runoff. J. Environ. Qual. 2005, 34, 572–580. [Google Scholar] [CrossRef] [Green Version]
- Kleinman, P.J.A.; Srinivasan, M.S.; Dell, C.J.; Schmidt, J.P.; Sharpley, A.N.; Bryant, R.B. Role of rainfall intensity and hydrology in nutrient transport via surface runoff. J. Environ. Qual. 2006, 35, 1248–1259. [Google Scholar] [CrossRef] [Green Version]
- Chapman, A.S.; Foster, I.D.L.; Lees, J.A.; Hodgkinson, R.A. Sediment delivery from agricultural land to rivers via subsurface drainage. Hydrol. Processes. 2005, 19, 2875–2897. [Google Scholar] [CrossRef]
- Stuntebeck, T.D.; Komiskey, M.J.; Owens, D.W.; Hall, D.W. Methods of Data Collection, Sample Processing, and Data Analysis for Edge-Of-Field, Streamgaging, Subsurface-Tile, and Meteorological Stations at Discovery Farms and Pioneer Farm in Wisconsin, 2001-7: U.S. Geological Survey Open-File Report 2008-1015. 2008. Available online: https://pubs.usgs.gov/of/2008/1015/pdf/ofr2008-1015.pdf (accessed on 22 January 2020).
- Sharpley, A.N.; Kleinman, P.J.A.; Heathwaite, A.L.; Gburek, W.J.; Folmar, G.J.; Schmidt, J.P. Phosphorus loss from an agricultural watershed as a function of storm size. J. Environ. Qual. 2008, 37, 362–368. [Google Scholar] [CrossRef] [Green Version]
- Correll, D.L. The Role of Phosphorus in the Eutrophication of Receiving Waters: A Review. J. Environ. Qual. 1998, 27, 261–266. [Google Scholar] [CrossRef] [Green Version]
- Sharpley, A.N.; Jarvie, H.P.; Buda, A.; May, L.; Spears, B.; Kleinman, P.J.A. Phosphorus legacy: Overcoming the effects of past management practices to mitigate future water quality impairment. J. Environ. Qual. 2013, 42, 1308–1326. [Google Scholar] [CrossRef] [Green Version]
- Sharpley, A.N.; Withers, P.J.A. The environmentally-sound management of agricultural phosphorus. Fert. Res. 1994, 39, 133–146. [Google Scholar] [CrossRef]
- Gentry, L.E.; David, M.B.; Royer, T.V.; Mitchell, C.A.; Starks, K.M. Phosphorus transport pathways to streams in tile-drained agricultural watersheds. J. Environ. Qual. 2007, 36, 408–415. [Google Scholar] [CrossRef] [Green Version]
- Vadas, P.A.; Good, L.W.; Jokela, W.E.; Karthikeyan, K.G.; Arriaga, F.J.; Stock, M. Quantifying the impact of seasonal and short-term manure application decisions on phosphorus loss in surface runoff. J. Environ. Qual. 2017, 46, 1395–1402. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Easton, Z.M.; Kleinman, P.J.A.; Buda, A.R.; Goering, D.; Emberston, N.; Reed, S.; Drohan, P.J.; Walter, M.T.; Guinan, P.; Lory, J.A.; et al. Short-term forecasting tools for agricultural nutrient management. J. Environ. Qual. 2017, 46, 1257–1269. [Google Scholar] [CrossRef] [PubMed]
- Dahlke, H.E.; Easton, Z.M.; Fuka, D.R.; Walter, M.T.; Steenhuis, T.S. Real-time forecast of hydrologically sensitive areas in the salmon creek watershed, New York state, using an online prediction tool. Water 2013, 5, 917–944. [Google Scholar] [CrossRef]
- Ketterings, Q.M.; Cela, S.; Collick, A.S.; Crittenden, S.J.; Czymmek, K.J. Restructuring the P index to better address P management in New York. J. Environ. Qual. 2017, 46, 1372–1379. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Williams, M.R.; King, K.W.; LaBarge, G.A.; Confesor, R.B.; Fausey, N.R. Edge-of-field evaluation of the Ohio phosphorus risk index. J. Environ. Qual. 2016, 46, 1306–1313. [Google Scholar] [CrossRef]
Event Date | Treatment | Runoff (mm) | SRP (g ha−1) | PUP (g ha−1) | TP (g ha−1) | TSS (kg ha−1) |
---|---|---|---|---|---|---|
16 May 2014 (54.4 mm) | TD | 24.4 a,† (5.6) § | 13.63 (12.55) | 62.23 (53.03) | 72.95 (65.58) | 42.67 (36.22) |
UD | 11.3 b (3.2) | 1.30 (1.06) | 14.25 (11.66) | 15.55 (12.72) | 113.21 (110.36) | |
3 June 2014 (27.9 mm) | TD | 10.9 (1.3) | 0.49 (0.34) | 15.73 (13.44) | 16.22 (13.77) | 14.47 (13.20) |
UD | 4.7 (2.6) | 0.50 (0.33) | 5.21 (1.51) | 5.70 (1.18) | 9.91 (0.65) | |
11 Jun 2014 (52.3 mm) | TD | 19.2 a (1.4) | 0.47 (0.27) | 3.87 (16.3) | 4.34 (1.90) | 1.21 (1.12) |
UD | 10.2 b (0.8) | 2.11 (1.45) | 7.40 (5.58) | 9.48 (6.02) | 7.21 (5.0) | |
24 Jun 2014 (10.9 mm) | TD | 2.0 a (0.9) | 0.04 (0.00) | 0.13 (0.04) | 0.17 (0.04) | 0.01 (0.00) |
UD | 0.7 b (0.7) | 0.02 (0.01) | 0.06 (0.05) | 0.08 (0.06) | 0.04 (0.03) | |
13 August 2014 (54.1 mm) | TD | 6.0 a (1.2) | 1.62 (1.38) | 2.45 (2.10) | 4.08 (3.47) | 0.33 a,† (0.29) |
UD | 2.6 b (0.1) | 1.73 (0.12) | 2.49 (0.56) | 4.22 (0.68) | 0.84 b (0.18) | |
24 December 2014 (11.4 mm) | TD | 50.3 (12.2) | 51.58 (49.03) | 14.00 (9.81) | 65.58 (58.84) | 1.21 (0.97) |
UD | 30.5 (16.8) | 110.45 (100.21) | 27.75 (22.88) | 138.19 (123.09) | 2.70 (1.86) | |
31 May 2015 (30.5 mm) | TD | 6.7 a (0.4) | 0.86 (0.62) | 0.90 (0.74) | 1.76 (1.36) | 0.18 (0.10) |
UD | 0.4 b (0.2) | 0.15 (0.04) | 0.20 (0.09) | 0.34 (0.13) | 0.05 (0.05) | |
Total (1042 mm) | TD | 559.6 a (110.1) | 84.19 (71.11) | 149.40 (82.24) | 233.59 (153.34) | 65.45 (51.36) |
UD | 163.8 b (51.1) | 130.78 (104.26) | 98.00 (31.83) | 228.78 (136.09) | 168.82 (101.07) |
Event Date | Treatment | Runoff (mm) | SRP (g ha−1) | PUP (g ha−1) | TP (g ha−1) | TSS (kg ha−1) |
---|---|---|---|---|---|---|
16 May 2014 (54.4 mm) | UD-surface | 11.3 (3.2) § | 1.30 (1.06) | 14.25 (11.66) | 15.55 (14.46) | 113.21 (111.80) |
TD-surface | 8.9 (8.5) | 13.12 (12.56) | 47.18 (46.18) | 60.31 (58.73) | 36.04 (35.87) | |
TD-tile | 15.4 (2.8) | 0.50 (0.01) | 15.06 (6.86) | 12.64 (6.85) | 6.63 (0.35) | |
3 Jun 2014 (27.9 mm) | UD-surface | 4.7 (2.6) | 0.50 (0.33) | 5.21 (1.51) | 5.70 (1.18) | 9.91 (0.65) |
TD-surface | 2.8 (2.2) | 0.36 (0.32) | 10.87 (9.74) | 11.23 (10.07) | 13.63 (12.93) | |
TD-tile | 8.1 (0.9) | 0.13 (0.02) | 4.86 (3.69) | 4.99 (3.71) | 0.84 (0.26) | |
11 Jun 2014 (52.3 mm) | UD-surface | 10.2 ab,† (0.8) | 1.87 (1.45) | 6.54 (4.58) | 8.41 (6.02) | 2.32 (1.55) |
TD-surface | 1.3 b (1.3) | 0.13 (0.14) | 0.94 (0.93) | 1.08 (1.08) | 0.34 (0.34) | |
TD-tile | 18.0 a (2.6) | 0.39 (0.13) | 2.88 (0.68) | 3.27 (0.81) | 0.29 (0.18) | |
24 Jun 2014 (10.9 mm) | UD-surface | 0.7 (0.7) | 0.02 (0.01) | 0.06 (0.05) | 0.08 (0.06) | 0.04 (0.03) |
TD-surface | 0.0 (0.0) | 0.01 (0.01) | 0.06 (0.04) | 0.07 (0.06) | 0.00 (0.00) | |
TD-tile | 2.0 (0.9) | 0.03 (0.01) | 0.07 (0.01) | 0.10 (0.02) | 0.01 (0.01) | |
13 August 2014 (54.1 mm) | UD-surface | 2.6 (0.1) | 1.73 (0.12) | 2.49 (0.56) | 4.22 (0.68) | 0.84 a,† (0.18) |
TD-surface | 1.4 (1.2) | 1.27 (1.23) | 1.17 (1.14) | 2.44 (2.38) | 0.17 b (0.16) | |
TD-tile | 4.6 (0.0) | 0.35 (0.14) | 1.28 (0.95) | 1.63 (1.10) | 0.16 b (0.13) | |
24 December 2014 (11.4 mm) | UD-surface | 30.5 ab (16.8) | 110.45 (100.21) | 27.75 (22.88) | 138.19 (123.09) | 2.70 (1.86) |
TD-surface | 4.4 b (4.1) | 11.28 (9.42) | 2.08 (1.80) | 13.36 (11.22) | 0.21 (0.19) | |
TD-tile | 45.9 a (8.1) | 40.30 (39.61) | 11.92 (8.01) | 52.22 (47.61) | 1.00 (0.78) | |
31 May 2015 (30.5 mm) | UD-surface | 0.4 b (0.4) | 0.15 (0.04) | 0.20 (0.09) | 0.34 (0.13) | 0.05 (0.05) |
TD-surface | 0.5 b (0.4) | 0.56 (0.54) | 0.25 (0.23) | 0.81 (0.77) | 0.02 (0.02) | |
TD-tile | 6.2 a (0.2) | 0.30 (0.08) | 0.66 (0.51) | 0.96 (0.59) | 0.16 (0.08) | |
Total (1042 mm) | UD-surface | 163.8 ab (51.1) | 130.79 (104.26) | 100.10 (31.83) | 230.87 (136.09) | 162.29 (101.07) |
TD-surface | 25.8 a (22.9) | 34.01 (30.61) | 68.54 (64.92) | 102.52 (95.53) | 50.99 (50.00) | |
TD-tile | 533.8 b (133.0) | 50.17 (40.49) | 81.15 (17.32) | 131.35 (57.81) | 14.46 (1.36) |
Treatment | Pathway | SRP (μg L−1) | PUP (μg L−1) | TP (μg L−1) | TSS (mg L−1) |
---|---|---|---|---|---|
UD | surface | 80 | 61 | 141 | 99 |
TD | surface | 132 | 265 | 397 | 197 |
TD | tile | 9 | 15 | 25 | 3 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Klaiber, L.B.; Kramer, S.R.; Young, E.O. Impacts of Tile Drainage on Phosphorus Losses from Edge-of-Field Plots in the Lake Champlain Basin of New York. Water 2020, 12, 328. https://doi.org/10.3390/w12020328
Klaiber LB, Kramer SR, Young EO. Impacts of Tile Drainage on Phosphorus Losses from Edge-of-Field Plots in the Lake Champlain Basin of New York. Water. 2020; 12(2):328. https://doi.org/10.3390/w12020328
Chicago/Turabian StyleKlaiber, Laura B., Stephen R. Kramer, and Eric O. Young. 2020. "Impacts of Tile Drainage on Phosphorus Losses from Edge-of-Field Plots in the Lake Champlain Basin of New York" Water 12, no. 2: 328. https://doi.org/10.3390/w12020328
APA StyleKlaiber, L. B., Kramer, S. R., & Young, E. O. (2020). Impacts of Tile Drainage on Phosphorus Losses from Edge-of-Field Plots in the Lake Champlain Basin of New York. Water, 12(2), 328. https://doi.org/10.3390/w12020328