A Bi-Objective Approach for Optimizing the Installation of PATs in Systems of Transmission Mains
Abstract
:1. Introduction
- the number of energy recovery devices is a surrogate for their cost;
- these devices have unitary efficiency (that is, their performance curves are neglected).
2. Methodology
2.1. PAT Installation
2.2. Optimization Algorithm
2.3. Economic Postprocessing
3. Applications
3.1. Case Study
3.2. Results
3.2.1. Optimization
3.2.2. Economic Postprocessing
- scenario 1, with c = 0.1561 €/KW h, r = 0.04;
- scenario 2, with c = 0.1561 €/KW h, r = 0.02;
- scenario 3, with c = 0.1561 €/KW h, r = 0.06;
- scenario 4, with c = 0.08 €/KW h, r = 0.04.
4. Discussion and Conclusions
- the installation of PATs confirms itself as a valuable solution for energy recovery from pressurized water networks;
- in the case-study considered, made up of transmission mains featuring high geodesic elevation variations, the payback period for the installation investment ranges from 1 to 3 years, lower than those previously remarked in the scientific literature;
- in the case-study considered, the most profitable solutions at all systems in typical economic scenarios are those associated with the maximum hydropower recovered, which ranges from about 6 KW to 83 KW.
Author Contributions
Funding
Conflicts of Interest
References
- IEA (International Energy Agency). Water Energy Nexus: Excerpt from the World Energy Outlook. 2016. Available online: https://www.iea.org/publications/freepublications/publication/WorldEnergyOutlook2016ExcerptWaterEnergyNexus.pdf (accessed on 22 May 2019).
- Xu, Q.; Chen, Q.; Ma, J.; Blanckaert, K.; Wan, Z. Water saving and energy reduction through pressure management in urban water distribution networks. Water Resour. Manag. 2014, 28, 3715–3726. [Google Scholar] [CrossRef]
- Pezzinga, G.; Tosto, G. Adeguamento energetico di reti di adduzione idrica in pressione. L’Acqua 2001, 1, 27–34. (In Italian) [Google Scholar]
- Sammartano, V.; Sinagra, M.; Filianoti, P.; Tucciarelli, T. A Banki-Michell turbine for in-line water supply systems. J. Hydraul. Res. 2017, 55, 686–694. [Google Scholar] [CrossRef]
- Samora, I.; Manso, P.; Franca, M.; Schleiss, A.; Ramos, H. Energy recovery using micro-hydropower technology in water supply systems: The case study of the city of Fribourg. Water 2016, 8, 344. [Google Scholar] [CrossRef] [Green Version]
- Sinagra, M.; Sammartano, V.; Morreale, G.; Tucciarelli, T. A new device for pressure control and energy recovery in water distribution networks. Water 2017, 9, 309. [Google Scholar] [CrossRef] [Green Version]
- Bonthuys, G.J.; van Dijk, M.; Cavazzini, G. Water distribution system energy recovery and leakage reduction optimisation through hydro turbines. J. Water Resour. Plan. Manag. 2016, 142, 04015045. [Google Scholar]
- Ramos, H.; Borga, A. Pumps as turbines: An unconventional solution to energy production. Urban Water 1999, 1, 261–263. [Google Scholar] [CrossRef]
- Agarwal, T. Review of pump as turbine (PAT) for microhydropower. Int. J. Emerg. Technol. Adv. Eng. 2012, 2, 163–169. [Google Scholar]
- Carravetta, A.; Del Giudice, G.; Fecarotta, O.; Ramos, H. Energy production in water distribution networks: A PAT design strategy. Water Resour. Manag. 2012, 26, 3947–3959. [Google Scholar] [CrossRef]
- Carravetta, A.; Del Giudice, G.; Fecarotta, O.; Ramos, H. PAT design strategy for energy recovery in water distribution networks by electrical regulation. Energies 2013, 6, 411–424. [Google Scholar] [CrossRef] [Green Version]
- Alberizzi, J.C.; Renzi, M.; Nigro, A.; Rossi, M. Study of a Pump-as-Turbine (PaT) speed control for a Water Distribution Network (WDN) in South-Tyrol subjected to high variable water flow rates. Energy Procedia 2018, 148, 226–233. [Google Scholar] [CrossRef]
- Derakhshan, S.; Nourbakhsh, A. Experimental study of characteristic curves of centrifugal pumps working as turbines in different specific speeds. Exp. Therm. Fluid Sci. 2008, 32, 800–807. [Google Scholar] [CrossRef]
- Pugliese, F.; De Paola, F.; Fontana, N.; Giugni, M.; Marini, G. Performance of vertical-axis pumps as turbines. J. Hydraul. Res. 2018, 56, 482–493. [Google Scholar] [CrossRef]
- Nautiyal, H.; Kumar, V.; Thakur, A. CFD Analysis on Pumps working as Turbines. Hydro Nepal 2010, 6, 35–37. [Google Scholar] [CrossRef]
- Fecarotta, O.; Carravetta, A.; Ramos, H. CFD and comparisons for a pump as turbine: Mesh reliability and performance concerns. Int. J. Energy Environ. 2011, 2, 39–48. [Google Scholar]
- Marchiori, I.N.; Lima, G.M.; Brentan, B.M.; Junior, E.L. Effectiveness of methods for selecting pumps as turbines to operate in water distribution networks. Water Supply 2018, 19, 417–423. [Google Scholar] [CrossRef]
- Novara, D.; McNabola, A. A model for the extrapolation of the characteristic curves of pumps as turbines from a datum best efficiency point. Energy Convers. Manag. 2018, 174, 1–7. [Google Scholar] [CrossRef]
- Fontana, N.; Giugni, M.; Glielmo, L.; Marini, G. Real time control of a prototype for pressure regulation and energy production in water distribution networks. J. Water Resour. Plan. Manag. 2016, 142, 04016015. [Google Scholar] [CrossRef]
- Fontana, N.; Giugni, M.; Glielmo, L.; Marini, G.; Zollo, R. Hydraulic and Electric Regulation of a Prototype for Real-Time Control of Pressure and Hydropower Generation in a Water Distribution Network. J. Water Resour. Plan. Manag. 2018, 144, 04018072. [Google Scholar] [CrossRef]
- Giugni, M.; Fontana, N.; Ranucci, A. Optimal location of PRVs and turbines in water distribution systems. J. Water Resour. Plan. Manag. 2014, 140, 06014004. [Google Scholar] [CrossRef]
- Corcoran, L.; McNabola, A.; Coughlan, P. Optimization of water distribution networks for combined hydropower energy recovery and leakage reduction. J. Water Resour. Plan. Manag. 2015, 142, 04015045. [Google Scholar] [CrossRef]
- Coelho, B.; Andrade-Campos, A. Energy recovery in water networks: Numerical decision support tool for optimal site and selection of micro turbines. J. Water Resour. Plan. Manag. 2018, 144, 04018004. [Google Scholar] [CrossRef]
- Fernández García, I.; Mc Nabola, A. Maximizing Hydropower Generation in Gravity Water Distribution Networks: Determining the Optimal Location and Number of Pumps as Turbines. J. Water Resour. Plan. Manag. 2020, 146, 04019066. [Google Scholar] [CrossRef]
- Fecarotta, O.; McNabola, A. Optimal location of pump as turbines (PATs) in water distribution networks to recover energy and reduce leakage. Water Resour. Manag. 2017, 31, 5043–5059. [Google Scholar] [CrossRef]
- Tricarico, C.; Morley, M.S.; Gargano, R.; Kapelan, Z.; Savic, D.; Santopietro, S.; Granata, F.; De Marinis, G. Optimal energy recovery by means of pumps as turbines (PATs) for improved WDS management. Water Sci. Technol. Water Supply 2018, 18, 1365–1374. [Google Scholar] [CrossRef]
- Deb, K.; Pratap, A.; Agarwal, S.; Meyarivan, T. A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II. IEEE Trans. Evolut. Comput. 2002, 6, 182–197. [Google Scholar] [CrossRef] [Green Version]
- Todini, E.; Pilati, S. A gradient algorithm for the analysis of pipe networks. Computer Application in Water Supply. In System Analysis and Simulation; Coulbeck, B., Choun-Hou, O., Eds.; John Wiley & Sons: London, UK, 1988; Volume I, pp. 1–20. [Google Scholar]
- Novara, D.; Carravetta, A.; McNabola, A.; Ramos, H. Cost Model for Pumps as Turbines in Run-of-River and In-Pipe Microhydropower Applications. J. Water Resour. Plan. Manag. 2019, 145, 04019012. [Google Scholar] [CrossRef]
- Chapallaz, J.M.; Eichenberger, P.; Fischer, G. Manual on Pumps Used as Turbines; VIEWEG, 1992. Available online: http://skat.ch/book/manual-on-pumps-used-as-turbines-volume-11/ (accessed on 22 January 2020).
System | Main | Upstream Node | its,un (0/1) | Downstream Node | its,dn (0/1) | Q (m3/s) | Hun (m) | Hdn (m) | L (m) | D (m) | k (m1/3/s) |
---|---|---|---|---|---|---|---|---|---|---|---|
Ciapparazzo | 1 | 1 | 1 | 2 | 1 | 0.4 | 757 | 733 | 10,300 | 0.800 | 75 |
2 | 2 | 1 | 3 | 0 | 0.4 | 733 | 719 | 4090 | 0.800 | 75 | |
3 | 3 | 0 | 4 | 0 | 0.325 | 719 | 716 | 1700 | 0.800 | 75 | |
4 | 4 | 0 | 5 | 0 | 0.37 | 716 | 715 | 590 | 0.800 | 75 | |
5 | 5 | 0 | 6 | 1 | 0.008 | 715 | 595 | 1000 | 0.200 | 75 | |
6 | 6 | 1 | 7 | 1 | 0.008 | 595 | 478 | 1600 | 0.200 | 75 | |
7 | 5 | 0 | 8 | 0 | 0.362 | 715 | 695 | 3730 | 0.700 | 75 | |
8 | 8 | 0 | 9 | 1 | 0.04 | 695 | 667 | 30 | 0.200 | 75 | |
9 | 8 | 0 | 10 | 0 | 0.322 | 695 | 695 | 4710 | 0.700 | 75 | |
10 | 10 | 0 | 11 | 1 | 0.092 | 695 | 666 | 170 | 0.400 | 75 | |
11 | 10 | 0 | 12 | 0 | 0.23 | 695 | 665 | 2300 | 0.700 | 75 | |
12 | 12 | 0 | 13 | 0 | 0.27 | 665 | 605 | 550 | 0.700 | 75 | |
13 | 13 | 0 | 14 | 1 | 0.02 | 605 | 493 | 2500 | 0.150 | 75 | |
14 | 13 | 0 | 15 | 0 | 0.25 | 605 | 670 | 1380 | 0.600 | 75 | |
15 | 15 | 0 | 16 | 1 | 0.171 | 670 | 683 | 3790 | 0.400 | 75 | |
Adrano | 1 | 1 | 1 | 2 | 1 | 0.075 | 733 | 705 | 250 | 0.600 | 75 |
2 | 2 | 1 | 3 | 1 | 0.061 | 705 | 619 | 1150 | 0.600 | 75 | |
Gravina | 1 | 1 | 1 | 2 | 0 | 0.024 | 435 | 410 | 900 | 0.150 | 75 |
2 | 2 | 0 | 3 | 1 | 0.005 | 410 | 382 | 600 | 0.080 | 75 | |
3 | 2 | 0 | 4 | 1 | 0.019 | 410 | 322 | 1900 | 0.150 | 75 | |
Mascalucia | 1 | 1 | 1 | 2 | 0 | 0.049 | 665 | 583 | 1900 | 0.250 | 75 |
2 | 2 | 0 | 3 | 1 | 0.007 | 583 | 577 | 350 | 0.150 | 75 | |
3 | 2 | 0 | 4 | 0 | 0.042 | 583 | 483 | 2100 | 0.250 | 75 | |
4 | 4 | 0 | 5 | 1 | 0.018 | 483 | 484 | 900 | 0.150 | 75 | |
S Gregorio | 1 | 1 | 1 | 2 | 0 | 0.038 | 476 | 398 | 1400 | 0.200 | 75 |
2 | 2 | 0 | 3 | 0 | 0.019 | 398 | 303 | 1600 | 0.150 | 75 | |
3 | 3 | 0 | 4 | 1 | 0.01 | 303 | 389 | 600 | 0.125 | 75 | |
4 | 3 | 0 | 5 | 1 | 0.01 | 303 | 347 | 1600 | 0.125 | 75 | |
S. M. La Stella | 1 | 1 | 1 | 2 | 0 | 0.01 | 683 | 569 | 3600 | 0.125 | 75 |
2 | 2 | 0 | 3 | 1 | 0.005 | 569 | 426 | 3100 | 0.125 | 75 | |
Maniace | 1 | 1 | 1 | 2 | 1 | 0.055 | 650 | 645 | 1678 | 0.450 | 90 |
2 | 2 | 1 | 3 | 1 | 0.055 | 645 | 641 | 3690 | 0.450 | 90 | |
3 | 3 | 1 | 4 | 1 | 0.055 | 641 | 639 | 1737 | 0.450 | 90 | |
4 | 4 | 1 | 5 | 1 | 0.055 | 639 | 638 | 1710 | 0.450 | 90 | |
5 | 5 | 1 | 6 | 1 | 0.055 | 638 | 635 | 1650 | 0.450 | 90 | |
6 | 6 | 1 | 7 | 1 | 0.095 | 635 | 631 | 2796 | 0.450 | 90 | |
7 | 7 | 1 | 8 | 1 | 0.095 | 631 | 628 | 2836 | 0.450 | 90 | |
8 | 8 | 1 | 9 | 1 | 0.095 | 628 | 625 | 2043 | 0.450 | 90 | |
9 | 9 | 1 | 10 | 1 | 0.095 | 625 | 623 | 1928 | 0.450 | 90 | |
10 | 10 | 1 | 11 | 0 | 0.095 | 623 | 620 | 1456 | 0.450 | 90 | |
11 | 11 | 0 | 12 | 1 | 0.057 | 620 | 619 | 1456 | 0.400 | 90 | |
12 | 12 | 1 | 13 | 1 | 0.057 | 619 | 617 | 1945 | 0.400 | 90 | |
13 | 13 | 1 | 14 | 1 | 0.057 | 617 | 613 | 3116 | 0.400 | 90 | |
14 | 14 | 1 | 15 | 1 | 0.057 | 613 | 610 | 2365 | 0.400 | 90 | |
15 | 15 | 1 | 16 | 1 | 0.008 | 610 | 476 | 1900 | 0.250 | 90 | |
16 | 15 | 1 | 17 | 1 | 0.049 | 610 | 607 | 2567 | 0.400 | 90 | |
17 | 17 | 1 | 18 | 1 | 0.049 | 607 | 604 | 2873 | 0.400 | 90 | |
18 | 18 | 1 | 19 | 1 | 0.049 | 604 | 602 | 28.8 | 0.400 | 90 | |
19 | 19 | 1 | 20 | 0 | 0.049 | 602 | 600 | 1412 | 0.350 | 90 | |
20 | 20 | 0 | 21 | 1 | 0.02 | 600 | 599 | 50 | 0.200 | 90 | |
21 | 20 | 0 | 22 | 1 | 0.029 | 600 | 597 | 1412 | 0.350 | 90 | |
22 | 22 | 1 | 23 | 1 | 0.029 | 597 | 594 | 1987 | 0.300 | 90 | |
23 | 23 | 1 | 24 | 1 | 0.029 | 594 | 591 | 2696 | 0.300 | 90 | |
Camporotondo | 1 | 1 | 1 | 2 | 0 | 0.008 | 599 | 562 | 1750 | 0.150 | 75 |
2 | 2 | 0 | 3 | 0 | 0.006 | 562 | 496 | 1650 | 0.125 | 75 | |
3 | 3 | 0 | 4 | 1 | 0.004 | 496 | 461 | 800 | 0.100 | 75 | |
S. G. Galermo | 1 | 1 | 1 | 2 | 0 | 0.036 | 420 | 351 | 1300 | 0.200 | 75 |
2 | 2 | 0 | 3 | 1 | 0.018 | 351 | 249 | 220 | 0.150 | 75 | |
3 | 2 | 0 | 4 | 1 | 0.018 | 351 | 253 | 1900 | 0.150 | 75 |
Solution | PAT in Main 1 | PAT in Main 2 | PAT in Main 3 | PAT Speed in Main 1 | PAT Speed in Main 2 | PAT Speed in Main 3 | Cinst,tot (€) | PPAT,tot (KW) |
---|---|---|---|---|---|---|---|---|
1 | 0 | 0 | ||||||
2 | NM4 25/12A | 3000 | 3920 | 1.85 | ||||
3 | NM4 25/160B | 3000 | 4391 | 3.43 | ||||
4 | NM4 32/20A | 3000 | 6468 | 3.72 | ||||
5 | NM4 40/16C | NM4 25/160B | 2577 | 3000 | 9748 | 4.68 | ||
6 | NM4 32/20A | NM4 25/12A | 2499 | 1988 | 10,388 | 4.79 | ||
7 | NM4 32/20A | NM4 32/20A | 3000 | 2083 | 12,936 | 4.84 | ||
8 | NM4 40/16C | NM4 32/20A | NM4 32/16A | 2537 | 2510 | 2132 | 17,094 | 5.40 |
9 | NM4 40/16C | NM4 32/20A | NM4 32/20A | 2316 | 2510 | 1671 | 18,293 | 5.73 |
System | Main | PAT | Cinst,i (€) | Hact,un (m) | Hact,dn (m) | Yv (m) | J L (m) | YPAT (m) | Speed (rpm) | PPAT (kW) |
---|---|---|---|---|---|---|---|---|---|---|
Ciapparazzo | 1 | 756.50 | 733.00 | 13.58 | 9.92 | |||||
2 | 733.00 | 729.06 | 0.00 | 3.94 | ||||||
3 | 729.06 | 727.98 | 0.00 | 1.08 | ||||||
4 | 727.98 | 727.49 | 0.00 | 0.49 | ||||||
5 | NM4 32/16B | 5107 | 727.49 | 595.00 | 72.21 | 0.63 | 59.65 | 3000 | 3.83 | |
6 | NM4 32/16A | 5269 | 595.00 | 477.50 | 30.26 | 1.00 | 86.24 | 3000 | 4.90 | |
7 | 727.49 | 721.50 | 0.00 | 6.00 | ||||||
8 | NM4 65/16S | 10,908 | 721.50 | 667.30 | 0.00 | 0.47 | 53.72 | 2932 | 16.71 | |
9 | 721.50 | 715.50 | 0.00 | 5.99 | ||||||
10 | NM4 125/25E | 19,697 | 715.50 | 665.50 | 2.56 | 0.35 | 47.09 | 3000 | 41.58 | |
11 | 715.50 | 714.01 | 0.00 | 1.49 | ||||||
12 | 714.01 | 713.52 | 0.00 | 0.49 | ||||||
13 | NM4 40/16A | 6262.5 | 713.52 | 493.40 | 15.77 | 45.38 | 158.96 | 3000 | 15.62 | |
14 | 713.52 | 711.11 | 0.00 | 2.41 | ||||||
15 | 711.11 | 683.00 | 1.37 | 26.74 | ||||||
Total | 47,243 | 82.65 | ||||||||
Adrano | 1 | NM4 125/25A | 42,428 | 733.00 | 705.00 | 0.00 | 0.04 | 27.96 | 1511 | 16.05 |
2 | NM4 80/20C | 12,206 | 705.00 | 619.00 | 4.89 | 0.12 | 80.99 | 3000 | 41.24 | |
Total | 54,634 | 57.29 | ||||||||
Gravina | 1 | 434.00 | 410.47 | 0.00 | 23.53 | |||||
2 | NM4 40/16C | 5357 | 410.47 | 382.00 | 0.85 | 19.45 | 8.18 | 1618 | 0.30 | |
3 | NM4 50/20C | 8784 | 410.47 | 322.00 | 0.93 | 31.13 | 56.42 | 2976 | 7.27 | |
Total | 14,141 | 7.58 | ||||||||
Mascalucia | 1 | NM4 80/20B | 13,675 | 665.00 | 588.85 | 0.00 | 13.30 | 62.85 | 3000 | 24.76 |
2 | 588.85 | 577.00 | 11.18 | 0.67 | ||||||
3 | NM4 65/20A | 13,858 | 588.85 | 508.32 | 0.00 | 11.03 | 69.50 | 3000 | 21.01 | |
4 | 508.32 | 484.00 | 11.08 | 13.23 | ||||||
Total | 27,533 | 45.77 | ||||||||
S Gregorio | 1 | NM4 80/20C | 12,206 | 476.00 | 421.71 | 0.00 | 19.78 | 34.51 | 2672 | 10.97 |
2 | 421.71 | 395.50 | 0.00 | 26.21 | ||||||
3 | 395.50 | 389.00 | 0.00 | 6.50 | ||||||
4 | NM4 40/16C | 5357 | 395.50 | 347.00 | 2.09 | 17.33 | 29.08 | 3000 | 2.07 | |
Total | 17,563 | 13.04 | ||||||||
S. M. La Stella | 1 | NM4 40/20B | 7630 | 683.00 | 569.30 | 14.20 | 38.99 | 60.51 | 2820 | 4.29 |
2 | NM4 25/160B | 4391 | 569.30 | 425.70 | 12.61 | 7.53 | 123.45 | 3000 | 4.45 | |
Total | 12,021 | 8.74 | ||||||||
Maniace | 1 | 650.00 | 645.40 | 4.14 | 0.46 | |||||
2 | 645.40 | 641.40 | 3.00 | 1.00 | ||||||
3 | 641.40 | 638.80 | 2.13 | 0.47 | ||||||
4 | 638.80 | 637.70 | 0.63 | 0.47 | ||||||
5 | 637.70 | 634.85 | 2.40 | 0.45 | ||||||
6 | 634.85 | 631.00 | 1.58 | 2.27 | ||||||
7 | 631.00 | 627.75 | 0.95 | 2.30 | ||||||
8 | 627.75 | 625.30 | 0.79 | 1.66 | ||||||
9 | 625.30 | 622.85 | 0.89 | 1.56 | ||||||
10 | 622.85 | 620.00 | 1.67 | 1.18 | ||||||
11 | 620.00 | 619.10 | 0.10 | 0.80 | ||||||
12 | 619.10 | 616.90 | 1.13 | 1.07 | ||||||
13 | 616.90 | 613.00 | 2.19 | 1.71 | ||||||
14 | 613.00 | 610.20 | 1.50 | 1.30 | ||||||
15 | NM4 32/20A | 6468 | 610.20 | 475.50 | 5.77 | 0.25 | 128.68 | 3000 | 8.21 | |
16 | 610.20 | 607.00 | 2.16 | 1.04 | ||||||
17 | 607.00 | 603.50 | 2.34 | 1.16 | ||||||
18 | 603.50 | 602.30 | 0.04 | 1.16 | ||||||
19 | 602.30 | 601.14 | 0.00 | 1.16 | ||||||
20 | 601.14 | 599.00 | 2.00 | 0.14 | ||||||
21 | 601.14 | 596.85 | 3.88 | 0.41 | ||||||
22 | 596.85 | 593.85 | 1.69 | 1.31 | ||||||
23 | 593.85 | 591.00 | 1.08 | 1.77 | ||||||
Total | 6468 | 8.21 | ||||||||
Camporotondo | 1 | NM4 40/16C | 5357 | 599.00 | 574.43 | 0.00 | 5.08 | 19.49 | 2316 | 1.20 |
2 | NM4 32/20A | 6468 | 574.43 | 497.19 | 0.00 | 7.13 | 70.12 | 2510 | 3.49 | |
3 | NM4 32/20A | 6468 | 497.19 | 461.00 | 0.00 | 5.05 | 31.14 | 1671 | 1.03 | |
Total | 18,293 | 5.73 | ||||||||
S. G. Galermo | 1 | NM4 65/16S | 10,908 | 420.10 | 362.76 | 0.00 | 16.49 | 40.85 | 2410 | 11.79 |
2 | NM4 50/25B | 11,437 | 362.76 | 248.55 | 0.00 | 3.23 | 110.98 | 2616 | 12.91 | |
3 | NM4 40/16C | 5357 | 362.76 | 253.00 | 0.00 | 27.94 | 81.83 | 2424 | 7.74 | |
Total | 27,702 | 32.44 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Creaco, E.; Galuppini, G.; Campisano, A.; Ciaponi, C.; Pezzinga, G. A Bi-Objective Approach for Optimizing the Installation of PATs in Systems of Transmission Mains. Water 2020, 12, 330. https://doi.org/10.3390/w12020330
Creaco E, Galuppini G, Campisano A, Ciaponi C, Pezzinga G. A Bi-Objective Approach for Optimizing the Installation of PATs in Systems of Transmission Mains. Water. 2020; 12(2):330. https://doi.org/10.3390/w12020330
Chicago/Turabian StyleCreaco, Enrico, Giacomo Galuppini, Alberto Campisano, Carlo Ciaponi, and Giuseppe Pezzinga. 2020. "A Bi-Objective Approach for Optimizing the Installation of PATs in Systems of Transmission Mains" Water 12, no. 2: 330. https://doi.org/10.3390/w12020330
APA StyleCreaco, E., Galuppini, G., Campisano, A., Ciaponi, C., & Pezzinga, G. (2020). A Bi-Objective Approach for Optimizing the Installation of PATs in Systems of Transmission Mains. Water, 12(2), 330. https://doi.org/10.3390/w12020330