Roof-Harvested Rainwater Use in Household Agriculture: Contributions to the Sustainable Development Goals
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data
2.1.1. Study Site
2.1.2. Climate Data
- Maximum temperature in °C;
- Minimum temperature in °C;
- Dew point temperature in °C;
- Wind run in m/s;
- Solar radiation in MJ/m2/day;
- Rainfall in mm/day.
2.1.3. Yield, Water Use, and Nutritional Need
2.1.4. Scenario
2.2. Method
2.2.1. Tank Balance Model, Water Demand, Evapotranspiration, and Crop Yield
2.2.2. Definition of Reliability and Calculation of Crop Yield
3. Results
3.1. Climate Data Integrity
3.2. ETo Analysis
3.3. RSS Reliability and Crop Yield
3.3.1. The 1 ML Reservoir in the Orphanage Scenario
3.3.2. RSS 225 System Results
4. Discussion
4.1. Lessons Learnt from Miti Mingi Village
- Attain high yields;
- Practice water management;
- Plant the correct crops (for nutrition or sale);
- Result in seed saving;
- Have good pest management–currently an issue;
- Maintain fertilization and soil health;
- Conduct crop rotation.
4.2. Household Agriculture, Rainwater Storage Systems, and the Sustainable Development Goals
4.3. International Relevance
5. Conclusions and Further Research
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Soga, M.; Gaston, K.J.; Yamaura, Y. Gardening is beneficial for health: A meta-analysis. Prev. Med. Rep. 2017, 5, 92–99. [Google Scholar] [CrossRef] [PubMed]
- Rabin, J.; Zinati, G.; Nitzsche, P. Yield expectations for mixed stand, Small-Scale Agriculture. Sustain. Farming Urban Fringe 2012, 7. [Google Scholar]
- Holt-Giménez, E.; Shattuck, A.; Altieri, M.; Herren, H.; Gliessman, S. We Already Grow Enough Food for 10 Billion People … and Still Can’t End Hunger. J. Sustain. Agric. 2012, 36, 595–598. [Google Scholar] [CrossRef]
- United Nations. Food. 2015. Available online: https://www.un.org/en/sections/issues-depth/food/index.html (accessed on 19 November 2019).
- World Health Organization. Malnutrition Fact Sheet. 2018. Available online: https://www.who.int/news-room/fact-sheets/detail/malnutrition (accessed on 22 January 2020).
- FAO. The Future of Food and Agriculture—Trends and Challenges; Food and Agriculture Organization of the United Nations (FAO): Rome, Italy, 2017. [Google Scholar]
- Hunter, M.C.; Smith, R.G.; Schipanski, M.E.; Atwood, L.W.; Mortensen, D.A. Agriculture in 2050: Recalibrating Targets for Sustainable Intensification. BioScience 2017, 67, 386–391. [Google Scholar] [CrossRef] [Green Version]
- Rockström, J.; Karlberg, L.; Wani, S.P.; Barron, J.; Hatibu, N.; Oweis, T.; Bruggerman, A.; Farahani, J.; Qiang, Z. Managing water in rainfed agriculture—The need for a paradigm shift. Agric. Water Manag. 2010, 97, 543–550. [Google Scholar] [CrossRef] [Green Version]
- Strzepek, K.; Boehlert, B. Competition for water for the food system. Philos. Trans. Royal Soc. B Biol. Sci. 2010, 365, 2927–2940. [Google Scholar] [CrossRef]
- Frazer, L. Paving Paradise: The Peril of Impervious Surfaces; National Institue of Environmental Health Sciences: Durham, NC, USA, 2005; Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1257665/ (accessed on 22 January 2020).
- Haines, A.; Bruce, N.; Cairncross, S.; Davies, M.; Greenland, K.; Hiscox, A.; Lindsay, S.; Lindsay, T.; Satterthwaite, D.; Wilkinson, P. Promoting health and advancing development through improved housing in low-income settings. J. Urban Health 2013, 90, 810–831. [Google Scholar] [CrossRef] [Green Version]
- Stout, D.T.; Walsh, T.C.; Burian, S.J. Ecosystem services from rainwater harvesting in India. Urban Water J. 2017, 14, 561–573. [Google Scholar] [CrossRef]
- Campisano, A.; Butler, D.; Ward, S.; Burns, M.J.; Friedler, E.; DeBusk, K.; Fisher-Jeffes, L.D.; Ghisi, E.; Rahman, A.; Furumai, H.; et al. Urban rainwater harvesting systems: Research, implementation and future perspectives. Water Res. 2017, 115, 195–209. [Google Scholar] [CrossRef]
- Lupia, F.; Pulighe, G. Water use and urban agriculture: Estimation and water saving scenarios for residential kitchen gardens. Agric. Agric. Sci. Procedia 2015, 4, 50–58. [Google Scholar] [CrossRef] [Green Version]
- Muklada, H.; Gilboa, Y.; Friedler, E. Stochastic modelling of the hydraulic performance of an onsite rainwater harvesting system in Mediterranean climate. In Water Science and Technology: Water Supply; IWA Publishing: London, UK, 2016; pp. 1614–1623. Available online: https://iwaponline.com/ws/article/16/6/1614/28113/Stochastic-modelling-of-the-hydraulic-performance (accessed on 22 January 2020).
- FAO. FAO 66: Crop Yield Response to Water FAO Irrigation and Drainage Paper 66; FAO: Rome, Italy, 2012. [Google Scholar]
- Friedler, E.; Gilboa, Y.; Muklada, H. Quality of Roof-Harvested Rainwater as a Function of Environmental and Air Pollution Factors in a Coastal Mediterranean City (Haifa, Israel). Water 2017, 9, 896. [Google Scholar] [CrossRef] [Green Version]
- Yazar, A.; Ali, A. Water harvesting in dry environments. In Innovations in Dryland Agriculture; Springer International Publishing: Berlin/Heidelberg, Germany, 2017; pp. 49–98. [Google Scholar]
- MoALF. Climate Risk Profile Nakuru County. In Kenya County Climate Risk Profile Series; The Kenya Ministry of Agriculture, Livestock and Fisheries (MoALF): Nairobi, Kenya, 2016. [Google Scholar]
- Gato-Trinidad, S.; Gan, K. Rainwater tank rebate scheme in Greater Melbourne, Australia. J. Water Supply Res. Technol. 2014, 63, 601–610. [Google Scholar] [CrossRef]
- Mok, H.F.; Williamson, V.G.; Grove, J.R.; Burry, K.; Barker, S.F.; Hamilton, A.J. Strawberry fields forever? Urban. agriculture in developed countries: A review. Agron. Sustain. Dev. 2014, 34, 21–43. [Google Scholar] [CrossRef] [Green Version]
- Innovations, W. Africa Water Bank. 2019. Available online: https://washinnovations.r4d.org/program/africa-water-bank (accessed on 27 March 2019).
- New Partnership for Africa’s Development (NEPAD). Crop Production: Small–scale Irrigation Development Project. In Bankable Investment Project Profile; New Partnership for Africa’s Development (NEPAD) & Food and Agriculture Organization of the United Nations (FAO) Investment Centre Division. 2005. Available online: http://www.fao.org/3/ae901e/ae901e00.htm (accessed on 22 January 2020).
- Billingsley, R.; Mothunyane, M.; Thabane, M.; McLean, S. Lessons from Lesotho: How Joined-Up Approach, Centred on Keyhole Gardens, is Tackling Linked Issues of Hunger, Nutrition and Poverty. Hunger, Nutrition, Climate Justice, a New Dialogue: Putting People at the Heart of Global Development. 2013. Available online: https://www.mrfcj.org/resources/case-study-lessons-from-lesotho-how-a-joined-up-approach-centred-on-keyhole-gardens-is-tackling-linked-issues-of-hunger-nutrition-and-poverty/ (accessed on 22 January 2020).
- Eigenbrod, C.; Gruda, N. Urban vegetable for food security in cities: A review. Agron. Sustain. Dev. 2015, 35, 483–498. [Google Scholar] [CrossRef] [Green Version]
- Marsh, P.; Spinaze, A. Community gardens as sites of solace and end-of-life support: A literature review. Int. J. Palliat. Nurs. 2016, 22, 214–219. [Google Scholar] [CrossRef] [PubMed]
- Genter, C.; Roberts, A.; Richardson, J.; Sheaff, M. The contribution of allotment gardening to health and wellbeing: A systematic review of the literature. Br. J. Occup. Ther. 2015, 78, 593–605. [Google Scholar] [CrossRef]
- Amos, C.C.; Rahman, A.; Karim, F.; Gathenya, J.M. A scoping review of roof harvested rainwater usage in urban agriculture: Australia and Kenya in focus. J. Clean. Prod. 2018, 202, 174–190. [Google Scholar] [CrossRef]
- Amos, C.C.; Rahman, A.; Gathenya, J.M. Economic Analysis and Feasibility of Rainwater Harvesting Systems in Urban and Peri-Urban Environments: A Review of the Global Situation with a Special Focus on Australia and Kenya. Water 2016, 8, 149. [Google Scholar] [CrossRef]
- Amos, C.C.; Rahman, A.; Gathenya, J.M. Economic Analysis of Rainwater Harvesting Systems Comparing Developing and Developed Countries: A Case Study of Australia and Kenya. J. Clean. Prod. 2018, 172 (Suppl. C), 196–207. [Google Scholar] [CrossRef]
- FAO. CropWat forWindows. In User Guide, FAO Guidelines for Computing Crop Water Requirements; FAO Irrigation and Drainage Paper No 56; FAO: Rome, Italy, 1988. [Google Scholar]
- Raes, D. Introducing Aquacrop; FAO: Rome, Italy, 2016; Available online: http://www.fao.org/documents/card/en/c/ba35b63c-596a-467d-95fe-dfcfca6da2a9/ (accessed on 22 January 2020).
- Mitchell, V.G.; Mein, R.G.; McMahon, T.A. Modelling the urban water cycle. Environ. Model. Softw. 2001, 16, 615–629. [Google Scholar] [CrossRef]
- Zhang, Y.; Grant, A.; Sharma, A.; Chen, D.; Chen, L. Alternative water resources for rural residential development in Western Australia. Water Resour. Manag. 2010, 24, 25–36. [Google Scholar] [CrossRef]
- Farley, T. Contaminant Balance Component of the Urban. In Water Volume and Quality (UVQ) Model–Technical; CSIRO Land and Water Canberra Laboratory: Canberra, Australia, 2000. [Google Scholar]
- Marleni, N.; Gray, S.; Sharma, A.; Burn, S.; Muttil, N. Scenario analysis of source management practices: Impact on sewerage networks. In Proceedings of the 19th International Congress on Modelling and Simulation—Sustaining Our Future: Understanding and Living with Uncertainty (MODSIM2011), Perth, Australia, 12 December 2011. [Google Scholar]
- Braun, H.M.H. Agro-Climatic Zone Map of Kenya. In Appendix 2 to Report no. E1; Republic of Kenya, Ministry of Agriculture Kenya Soil Survey: Nairobi, Kenya, 1980. [Google Scholar]
- Munzimi, Y.A.; Hansen, M.C.; Adusei, B.; Senay, G.B. Characterizing Congo Basin rainfall and climate using Tropical Rainfall Measuring Mission (TRMM) satellite data and limited rain gauge ground observations. J. Appl. Meteorol. Climatol. 2015, 54, 541–555. [Google Scholar] [CrossRef]
- Prakash, S.; Mitra, A.K.; Momin, I.M.; Pai, D.S.; Rajagopal, E.N.; Basu, S. Comparison of TMPA-3B42 versions 6 and 7 precipitation products with gauge-based data over India for the southwest monsoon period. J. Hydrometeorol. 2015, 16, 346–362. [Google Scholar] [CrossRef]
- Ciabatta, L.; Brocca, L.; Moramarco, T.; Wagner, W. Comparison of different satellite rainfall products over the Italian territory. In Engineering Geology for Society and Territory; Springer: New York, NY, USA, 2015; Volume 3, pp. 623–626. [Google Scholar]
- Li, D.; Ding, X.; Wu, J. Simulating the regional water balance through hydrological model based on TRMM satellite rainfall data. Hydrol. Earth Syst. Sci. Discuss. 2015, 12, 2497–2525. [Google Scholar] [CrossRef]
- NASA. NASA Power Data Access Viewer. 2019. Available online: https://power.larc.nasa.gov/data-access-viewer/ (accessed on 1 October 2019).
- FAO. CLIMWAT. 2019. Available online: http://www.fao.org/land-water/databases-and-software/climwat-for-cropwat/en/ (accessed on 19 November 2019).
- WMO. World Weather Information Service: Nakuru, Kenya. 2019. Available online: http://worldweather.wmo.int/en/city.html?cityId=518 (accessed on 4 December 2019).
- CHC. CHIRPS: Rainfall Estimates from Rain Gauge and Satellite Observations. 2019. Available online: https://www.chc.ucsb.edu/data/chirps (accessed on 19 November 2019).
- Funk, C.; Peterson, P.; Landsfeld, M.; Pedreros, D.; Verdin, J.; Shukla, S.; Husak, G.; Rowland, J.; Harrison, L.; Hoell, A.; et al. The climate hazards infrared precipitation with stations—A new environmental record for monitoring extremes. Sci. Data 2015, 2, 150066. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Foeken, D.W.J.; Owuor, S.; Klaver, W. Crop cultivation in Nakuru town, Kenya: Practice and potential. ASC Working Paper. 2002. Available online: https://www.ascleiden.nl/publications/crop-cultivation-nakuru-town-kenya-practice-and-potential (accessed on 19 November 2019).
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. FAO 56: Crop evapotranspiration-Guidelines for computing crop water requirements. In Irrigation and drainage; FAO: Rome, Italy, 1998; p. D05109. [Google Scholar]
- Carolina, F.; Eduardo, C.J. Reference evapotranspiration estimation inside greenhouses. Sci. Agric. 2003, 60. [Google Scholar] [CrossRef]
- WHO. Fact Sheet: Healthy Diet. 2018. Available online: https://www.who.int/en/news-room/fact-sheets/detail/healthy-diet (accessed on 29 September 2019).
- NHMRC. Australian Dietary Guidelines: Summary. 2013. Available online: https://eatforhealth.govcms.gov.au/sites/default/files/content/The%20Guidelines/n55_agthe_large.pdf (accessed on 30 September 2019).
- NHMRC. Eat for Health: Serve-Sizes. 2015. Available online: https://www.eatforhealth.gov.au/food-essentials/how-much-do-we-need-each-day/serve-sizes (accessed on 30 September 2019).
- Iannotti, M. How Much to Plant per Person in the Vegetable Garden. 2019. Available online: https://www.thespruce.com/how-many-vegetables-per-person-in-garden-1403355 (accessed on 29 September 2019).
- Sotheycan Empowering African Communities Through Education. 2019. Available online: https://www.sotheycan.org/ (accessed on 4 November 2019).
- Hajani, E.; Rahman, A.S.; Al-Amin, M.; Rahman, A. Reliability Analysis for Rainwater Harvesting System in Peri-Urban. In Proceedings of the 20th International Congress on Modelling and Simulation, Adelaide, Australia, 1–6 December 2013. [Google Scholar]
- Fewkes, A.; Butler, D. Simulating the performance of rainwater collection and reuse systems using behavioural models. Build. Serv. Eng. Res. Technol. 2000, 21, 99–106. [Google Scholar] [CrossRef]
- Eccel, E. Estimating air humidity from temperature and precipitation measures for modelling applications. Meteorol. Appl. 2012, 19, 118–128. [Google Scholar] [CrossRef]
- Doorenbos, J.; Kassam, A. FAO 33: Yield response to water. Irrig. Drain. Pap. 1979, 33, 257. [Google Scholar]
- Van Wart, J.; Grassini, P.; Yang, H.; Claessens, L.; Jarvis, A.; Cassman, K.G. Creating long-term weather data from thin air for crop simulation modeling. Agric. For. Meteorol. 2015, 209, 49–58. [Google Scholar] [CrossRef]
- Westberg, D.; Barnett, A.J.; Bristow, T.; Macpherson, B.; Hoell, J.M.; Stackhouse, J.; W, P.; Zhang, T. POWER Release 8.0.1 Methodology; NASA Langley Research Center: Hampton, VA, USA, 2018. [Google Scholar]
- NSW Education Standards: Teaching Agriculture. 2019. Available online: https://educationstandards.nsw.edu.au/wps/portal/nesa/k-10/learning-areas/technologies/teaching-agriculture (accessed on 19 November 2019).
- PIEF. Farm Diaries—An Educational Unit for Junior Primary Schools. 2015. Available online: https://cottonaustralia.com.au/cotton-classroom/lessons-and-units (accessed on 15 December 2019).
- FAO. Integrating Agriculture and Nutrition Education for Improved Young Child Nutrition—Program Lessons; Food and Agriculture Organization of the United Nations (FAO): Rome, Italy, 2016. [Google Scholar]
- Oguge, N.; Oremo, F. Fostering the Use of Rainwater for Off.-Season Small-Scale Irrigation in Arid and Semi-arid Areas of Kenya. In Rainwater-Smart Agriculture in Arid and Semi-Arid Areas; Springer: Berlin, Germany, 2018; pp. 159–174. [Google Scholar]
- Galhena, D.; Freed, R.; Maredia, K. Home gardens: A promising approach to enhance household food security and wellbeing. Agric. Food Secur. 2013, 2, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Milligan, C.; Gatrell, A.; Bingley, A. Cultivating health: Therapeutic landscapes and older people in northern England. Soc. Sci. Med. 2004, 58, 1781–1793. [Google Scholar] [CrossRef] [Green Version]
- Hamilton, A.J.; Burry, K.; Mok, H.F.; Barker, S.F.; Grove, J.R.; Williamson, V.G. Give peas a chance? Urban agriculture in developing countries: A review. Agron. Sustain. Dev. 2014, 34, 45–73. [Google Scholar] [CrossRef] [Green Version]
- Peeters, G.; van Gellecum, Y.R.; van Uffelen, J.G.; Burton, N.W.; Brown, W.J. Contribution of house and garden work to the association between physical activity and well-being in young, mid-aged and older women. Br. J. Sports Med. 2014, 48, 996–1001. [Google Scholar] [CrossRef]
- Heise, T.L.; Romppel, M.; Molnar, S.; Buchberger, B.; van den Berg, A.; Gartlehner, G.; Lhachimi, S.K. Community gardening, community farming and other local community-based gardening interventions to prevent overweight and obesity in high-income and middle-income countries: Protocol for a systematic review. BMJ Open 2017, 7, e016237. [Google Scholar] [CrossRef]
- Christian, M.S.; Evans, C.E.; Nykjaer, C.; Hancock, N.; Cade, J.E. Evaluation of the impact of a school gardening intervention on children’s fruit and vegetable intake: A randomised controlled trial. Int. J. Behav. Nutr. Phys. Act. 2014, 11, 99. [Google Scholar] [CrossRef] [Green Version]
- Davis, J.N.; Spaniol, M.R.; Somerset, S. Sustenance and sustainability: Maximizing the impact of school gardens on health outcomes. Public Health Nutr. 2014, 18, 2358–2367. [Google Scholar] [CrossRef]
- Keatinge, J.D.; Chadha, M.L.; Hughes, J.D.A.; Easdown, W.J.; Holmer, R.J.; Tenkouano, A.; Yang, R.Y.; Mavlyanova, R.; Neave, S.; Afari-Sefa, V.; et al. Vegetable gardens and their impact on the attainment of the Millennium Development Goals. Biol. Agric. Hortic. 2012, 28, 71–85. [Google Scholar] [CrossRef]
- FAO. Setting Up and Running a School Garden—Toolkit; FAO: Rome, Italy, 2009. [Google Scholar]
- Hossain, S.; Rahman, A. Water, women and climate change: A review on Dhaka Metropolitan City, Bangladesh. In Proceedings of the 1st International Conference on Water and Environmental Engineering (ICWEE2017), Sydney, Australia, 20–22 November 2017. [Google Scholar]
- Lin, B.B.; Philpott, S.M.; Jha, S. The future of urban agriculture and biodiversity-ecosystem services: Challenges and next steps. Basic Appl. Ecol. 2015, 16, 189–201. [Google Scholar] [CrossRef]
- De Wit, M.M. Are we losing diversity? Navigating ecological, political, and epistemic dimensions of agrobiodiversity conservation. Agric. Hum. Values 2016, 33, 625–640. [Google Scholar] [CrossRef]
- Altieri, M.A.; Anderson, M.K.; Merrick, L.C. Peasant agriculture and the conservation of crop and wild plant resources. Conserv. Biol. 1987, 1, 49–58. [Google Scholar] [CrossRef]
- Boelee, E.; Yohannes, M.; Poda, J.N.; McCartney, M.; Cecchi, P.; Kibret, S.; Hagos, F.; Laamrani, H. Options for water storage and rainwater harvesting to improve health and resilience against climate change in Africa. Reg. Environ. Chang. 2013, 13, 509–519. [Google Scholar] [CrossRef]
- Jongman, M.; Korsten, L. Microbial quality and suitability of roof-harvested rainwater in rural villages for crop irrigation and domestic use. J. Water Health 2016, 14, 961–971. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moglia, M.; Gan, K.; Delbridge, N. Exploring methods to minimize the risk of mosquitoes in rainwater harvesting systems. J. Hydrol. 2016, 543, 324–329. [Google Scholar] [CrossRef]
- Helmreich, B.; Horn, H. Opportunities in rainwater harvesting. Desalination 2009, 248, 118–124. [Google Scholar] [CrossRef]
- Mac Kirby, M.U.D.A.; Mainuddin, M.; Palash, W.; Qadir, E.; Shah-Newaz, S.M. Bangladesh Integrated Water Resources Assessment Supplementary Report: Approximate Regional Water Balances; CSIRO: Canberra, Australia, 2014. [Google Scholar]
- Amos, C.C.; Rahman, A.; Karim, F.; Gathenya, J.M. Sustainable Development: Economic and Feasibility Analysis of Roof Harvested Rainwater Use in Urban and Peri Urban Agriculture: Comparing Developed and Developing Nations. In Proceedings of the International Conference on Water and Environmental Engineering (iCWEE2019), Dhaka, Bangladesh, 19–23 January 2019; Research Publications Repository: Dhaka, Bangladesh, 2019. [Google Scholar]
Location | Moisture Zone | Rainfall mm/year | 1 Eo mm/year | Crop Growth Potential | 2 Crop Failure | Temp Zone | Temp Mean Annual °C | Temp Mean Max. °C | Temp Mean Min. °C | Incident of Frost | Altitude |
---|---|---|---|---|---|---|---|---|---|---|---|
Nakuru | semi-humid | 800–1400 | 1450–2200 | high to medium | fairly low 5%–10% | cool-temperate | 16–18 | 22–24 | 10–12 | very rare | 1850–2150 |
East Poket | semi-arid | 450–900 | 1650–2300 | medium to low | high 25%–75% | warm | 22–24 | 28–30 | 16–18 | none | 900–1200 |
Location | Statistic | Plot Size (m2) | Yield (kg/m2/year) | Area (m2) Req to Provide 1 Person 3 |
---|---|---|---|---|
Nakuru, Kenya 1 | mean | <10 | 20.17 | 7 |
Nakuru, Kenya 1 | mean | 10–99 | 4.73 | 31 |
Nakuru, Kenya 1 | mean | 100–999 | 0.51 | 286 |
Nakuru, Kenya 1 | mean | 1000+ | 0.22 | 664 |
Nakuru, Kenya 1 | mean | All | 0.31 | 471 |
New Jersey, USA 2 | Max. | Mixed stand | 21.97 | 7 |
New Jersey, USA 2 | Upper | Mixed stand | 6.35 | 23 |
New Jersey, USA 2 | Lower | Mixed stand | 0.98 | 149 |
New Jersey, USA 2 | Min. | Mixed stand | 0.44 | 332 |
New Jersey, USA 2 | mode | Mixed stand | 7.32 | 20 |
Any location | Failure | All | 0 | - |
Source | Min. Temp | Max. Temp | Humidity | Wind | Rad | ETo | Rain | Rain |
---|---|---|---|---|---|---|---|---|
°C | °C | % | km/day | MJ/m2/day | mm/day | mm | Days | |
CLIMWAT (airfield) | 8.1 | 25.5 | 71 | 161 | 19.3 | 3.94 | 951 | - |
ERain (NASA-MMV) * | 11.33 | 23.69 | - | 181 | 20.27 | 3.81 | 1086 | 363 |
ERain (CHIRPS-MMV) * | - | - | - | - | - | - | 833 | 57 |
WMO (Nakuru) | 9.8 | 25.6 | - | - | - | - | 963 | 132 |
Nakuru Lanet Police Post (KE0914) | - | - | - | - | - | - | 896 | - |
Crop Area | Max. Crop Yield | Hypothetical Actual Crop Yield (Mixed Vegetables) (Total and Per m2) | |||||||
---|---|---|---|---|---|---|---|---|---|
Nakuru (GH) | East Poket (GH) | Nakuru (GH_Evap) | East Poket (GH_Evap) | ||||||
(m2) | (kg/y) | (kg) | (kg/m2/y) | (kg/y) | (kg/m2/y) | (kg/y) | (kg/m2/y) | (kg/y) | (kg/m2/y) |
10 | 73 | 72 | 7.21 | 72 | 7.21 | 71 | 7.07 | 55 | 5.54 |
20 | 145 | 144 | 7.21 | 144 | 7.21 | 141 | 7.06 | 109 | 5.45 |
40 | 291 | 288 | 7.21 | 288 | 7.21 | 277 | 6.93 | 211 | 5.29 |
60 | 436 | 433 | 7.21 | 433 | 7.21 | 407 | 6.78 | 308 | 5.14 |
80 | 581 | 577 | 7.21 | 577 | 7.21 | 531 | 6.64 | 399 | 4.99 |
100 | 727 | 721 | 7.21 | 721 | 7.21 | 650 | 6.50 | 484 | 4.84 |
120 | 872 | 865 | 7.21 | 865 | 7.21 | 764 | 6.36 | 565 | 4.71 |
160 | 1163 | 1153 | 7.21 | 1153 | 7.21 | 968 | 6.05 | 712 | 4.45 |
200 | 1454 | 1442 | 7.21 | 1442 | 7.21 | 1154 | 5.77 | 845 | 4.23 |
240 | 1744 | 1730 | 7.21 | 1730 | 7.21 | 1320 | 5.50 | 962 | 4.01 |
300 | 2181 | 2163 | 7.21 | 2163 | 7.21 | 1545 | 5.15 | 1114 | 3.71 |
500 | 3634 | 3586 | 7.17 | 3406 | 6.81 | 2097 | 4.19 | 1485 | 2.97 |
1000 | 7269 | 4708 | 4.71 | 3453 | 3.45 | 2777 | 2.78 | 1875 | 1.87 |
1500 | 10,903 | 4587 | 3.06 | 3238 | 2.16 | 2981 | 1.99 | 1929 | 1.29 |
2000 | 14,537 | 4397 | 2.20 | 2987 | 1.49 | 2974 | 1.49 | 1822 | 0.91 |
4000 | 29,074 | 3431 | 0.86 | 1949 | 0.49 | 2202 | 0.55 | 994 | 0.25 |
8000 | 58,149 | 1361 | 0.17 | 274 | 0.03 | 564 | 0.07 | 13 | 0.00 |
10,000 | 72,686 | 655 | 0.07 | 30 | 0.00 | 171 | 0.02 | 0 | 0.00 |
15,000 | 109,029 | 32 | 0.00 | 0 | 0.00 | 0 | 0.00 | 0 | 0.00 |
20,000 | 145,372 | 0 | 0.00 | 0 | 0.00 | 0 | 0.00 | 0 | 0.00 |
Nakuru (RF Reliability of 34%) | East Poket (RF Reliability of 26%) | ||||||||
---|---|---|---|---|---|---|---|---|---|
Roof Area (m2) | Garden Area (m2) | Crop Yield (kg/y) | People Supported with 100 g/day | CropYield (kg/y) | People Supported with 100 g/day | ||||
RF | OF | Increase | RF | OF | Increase | ||||
500 | 40 | 74 | 288 | 214 | 8 | 51 | 288 | 238 | 8 |
1000 | 40 | 74 | 288 | 214 | 8 | 51 | 288 | 238 | 8 |
1500 | 40 | 74 | 288 | 214 | 8 | 51 | 288 | 238 | 8 |
2000 | 40 | 74 | 288 | 214 | 8 | 51 | 288 | 238 | 8 |
500 | 100 | 185 | 721 | 536 | 20 | 127 | 719 | 592 | 20 |
1000 | 100 | 185 | 721 | 536 | 20 | 127 | 721 | 594 | 20 |
1500 | 100 | 185 | 721 | 536 | 20 | 127 | 721 | 594 | 20 |
2000 | 100 | 185 | 721 | 536 | 20 | 127 | 721 | 594 | 20 |
500 | 160 | 297 | 1149 | 852 | 31 | 203 | 1078 | 874 | 30 |
1000 | 160 | 297 | 1153 | 857 | 32 | 203 | 1154 | 950 | 32 |
1500 | 160 | 297 | 1153 | 857 | 32 | 203 | 1154 | 950 | 32 |
2000 | 160 | 297 | 1153 | 857 | 32 | 203 | 1154 | 950 | 32 |
500 | 200 | 371 | 1415 | 1044 | 39 | 254 | 1164 | 910 | 32 |
1000 | 200 | 371 | 1442 | 1071 | 39 | 254 | 1437 | 1183 | 39 |
1500 | 200 | 371 | 1442 | 1071 | 39 | 254 | 1442 | 1188 | 39 |
2000 | 200 | 371 | 1442 | 1071 | 39 | 254 | 1442 | 1188 | 39 |
500 | 300 | 556 | 1707 | 1150 | 47 | 381 | 1301 | 920 | 36 |
1000 | 300 | 556 | 2156 | 1599 | 59 | 381 | 1976 | 1595 | 54 |
1500 | 300 | 556 | 2163 | 1606 | 59 | 381 | 2124 | 1743 | 58 |
2000 | 300 | 556 | 2163 | 1606 | 59 | 381 | 2155 | 1774 | 59 |
500 | 500 | 927 | 2103 | 1176 | 58 | 635 | 1559 | 924 | 43 |
1000 | 500 | 927 | 3112 | 2185 | 85 | 635 | 2429 | 1794 | 66 |
1500 | 500 | 927 | 3496 | 2569 | 96 | 635 | 2923 | 2288 | 80 |
2000 | 500 | 927 | 3582 | 2655 | 98 | 635 | 3141 | 2506 | 86 |
500 | 1000 | 1854 | 3051 | 1196 | 84 | 1270 | 2197 | 927 | 60 |
1000 | 1000 | 1854 | 4202 | 2348 | 115 | 1270 | 3119 | 1849 | 85 |
1500 | 1000 | 1854 | 5195 | 3340 | 142 | 1270 | 3920 | 2650 | 107 |
2000 | 1000 | 1854 | 5855 | 4001 | 160 | 1270 | 4483 | 3213 | 123 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Amos, C.C.; Rahman, A.; Gathenya, J.M.; Friedler, E.; Karim, F.; Renzaho, A. Roof-Harvested Rainwater Use in Household Agriculture: Contributions to the Sustainable Development Goals. Water 2020, 12, 332. https://doi.org/10.3390/w12020332
Amos CC, Rahman A, Gathenya JM, Friedler E, Karim F, Renzaho A. Roof-Harvested Rainwater Use in Household Agriculture: Contributions to the Sustainable Development Goals. Water. 2020; 12(2):332. https://doi.org/10.3390/w12020332
Chicago/Turabian StyleAmos, Caleb Christian, Ataur Rahman, John Mwangi Gathenya, Eran Friedler, Fazlul Karim, and Andre Renzaho. 2020. "Roof-Harvested Rainwater Use in Household Agriculture: Contributions to the Sustainable Development Goals" Water 12, no. 2: 332. https://doi.org/10.3390/w12020332
APA StyleAmos, C. C., Rahman, A., Gathenya, J. M., Friedler, E., Karim, F., & Renzaho, A. (2020). Roof-Harvested Rainwater Use in Household Agriculture: Contributions to the Sustainable Development Goals. Water, 12(2), 332. https://doi.org/10.3390/w12020332