A Screening Model to Predict Entrapped LNAPL Depletion
Abstract
:1. Introduction
2. Materials and Methods
2.1. Numerical Model to Simulate the LNAPL Depletion
2.1.1. Prediction of the BTEX Concentration in Groundwater
2.1.2. Prediction of the BTEX Concentration in LNAPL
2.2. Case Study
3. Results and Discussion
3.1. Prediction of LNAPL Depletion
3.2. Simulation of the BTEX Concentration Drop in LNAPL
3.2.1. Concentration in Aqueous and Non-Aqueous Phases
3.2.2. Depletion with a Change in the LNAPL Saturation
3.2.3. Depletion with a Change in Flow Rate
3.2.4. Depletion with the Change in Biodegradation Rate
3.3. Applications in Real Contamination Cases
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Baedecker, M.J.; Eganhouse, R.P.; Bekins, B.A.; Delin, G.N. Loss of volatile hydrocarbons from an LNAPL oil source. J. Contam. Hydrol. 2011, 126, 140–152. [Google Scholar] [CrossRef] [PubMed]
- Kulkarni, P.R.; McHugh, T.E.; Newell, C.J.; Garg, S. Evaluation of source-zone attenuation at LUFT sites with mobile LNAPL. Soil Sediment Contam. Int. J. 2015, 24, 917–929. [Google Scholar] [CrossRef]
- McCoy, K.; Zimbron, J.; Sale, T.; Lyverse, M. Measurement of natural losses of LNAPL using CO2 traps. Groundwater 2015, 53, 658–667. [Google Scholar] [CrossRef] [PubMed]
- Garg, S.; Newell, C.J.; Kulkarni, P.R.; King, D.C.; Adamson, D.T.; Renno, M.I.; Sale, T. Overview of natural source zone depletion: Processes, controlling factors, and composition change. Groundw. Monit. Remediat. 2017, 37, 62–81. [Google Scholar] [CrossRef] [Green Version]
- Mackay, D.; Hathaway, E.; de Sieyes, N.; Zhang, H.; Rasa, E.; Paradis, C.; Sihota, N. Comparing natural source zone depletion pathways at a fuel release site. Groundw. Monit. Remediat. 2018, 38, 24–39. [Google Scholar] [CrossRef]
- Kemblowski, M.W.; Chiang, C.Y. Hydrocarbon thickness fluctuations in monitoring wells. Groundwater 1990, 28, 244–252. [Google Scholar] [CrossRef]
- Marinelli, F.; Durnford, D.S. LNAPL thickness in monitoring wells considering hysteresis and entrapment. Groundwater 1996, 34, 405–414. [Google Scholar] [CrossRef]
- Jeong, J.; Charbeneau, R.J. An analytical model for predicting LNAPL distribution and recovery from multi-layered soils. J. Contam. Hydrol. 2014, 156, 52–61. [Google Scholar] [CrossRef]
- Farr, A.M.; Houghtalen, R.J.; McWhorter, D.B. Volume estimation of light nonaqueous phase liquids in porous media. Groundwater 1990, 28, 48–56. [Google Scholar] [CrossRef]
- Durnford, D.; Brookman, J.; Billica, J.; Milligan, J. LNAPL distribution in a cohesionless soil: A field investigation and cryogenic sampler. Groundw. Monit. Remediat. 1991, 11, 115–122. [Google Scholar] [CrossRef]
- Oostrom, M.; Hofstee, C.; Wietsma, T.W. Behavior of a viscous LNAPL under variable water table conditions. Soil Sediment Contam. 2006, 15, 543–564. [Google Scholar] [CrossRef]
- Lenhard, R.J.; Sookhak, L.K.; Rayner, J.L.; Davis, G.B. Evaluating an analytical model to predict subsurface LNAPL distributions and transmissivity from current and historic fluid levels in groundwater wells: Comparing results to numerical simulations. Groundw. Monit. Remediat. 2018, 38, 75–84. [Google Scholar] [CrossRef] [Green Version]
- Flores, G.; Katsumi, T.; Eua-Apiwatch, S.; Lautua, S.; Inui, T. Migration of different LNAPLs in subsurface under groundwater fluctuating conditions by the simplified image analysis method. J. Geo-Eng. Sci. 2016, 3, 15–30. [Google Scholar] [CrossRef]
- Suthersan, S.; Koons, B.; Schnobrich, M. Contemporary management of sites with petroleum LNAPL presence. Groundw. Monit. Remediat. 2015, 35, 23–29. [Google Scholar] [CrossRef]
- Teramoto, E.H.; Chang, H.K. Field data and numerical simulation of btex concentration trends under water table fluctuations: Example of a jet fuel-contaminated site in Brazil. J. Contam. Hydrol. 2017, 198, 37–47. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gatsios, E.; García-Rincón, J.; Rayner, J.L.; McLaughlan, R.G.; Davis, G.B. LNAPL transmissivity as a remediation metric in complex sites under water table fluctuations. J. Environ. Manag. 2018, 215, 40–48. [Google Scholar] [CrossRef]
- Eberhardt, C.; Grathwohl, P. Time scales of organic contaminant dissolution from complex source zones: Coal tar pools vs. blobs. J. Contam. Hydrol. 2002, 59, 45–66. [Google Scholar] [CrossRef]
- Saba, T.; Illangasekare, T.H.; Ewing, J. Investigation of surfactant-enhanced dissolution of entrapped nonaqueous phase liquid chemicals in a two-dimensional groundwater flow field. J. Contam. Hydrol. 2001, 51, 63–82. [Google Scholar] [CrossRef]
- Miller, C.T.; Poirier-McNeil, M.M.; Mayer, A.S. Dissolution of trapped nonaqueous phase liquids: Mass transfer characteristics. Water Resour. Res. 1990, 26, 2783–2796. [Google Scholar] [CrossRef]
- Neto, D.C.; Chang, H.K.; van Genuchten, M.T. A mathematical view of water table fluctuations in a shallow aquifer in Brazil. Groundwater 2016, 54, 82–91. [Google Scholar] [CrossRef]
- Isler, E.; Baessa, M.P.M.; Teramoto, E.H.; Pede, M.A.Z.; Kiang, C.H. Trapeamento de LNAPL observado por meio da técnica de fluorescência induzida por laser (LIF). Águas Subterr. 2018, 32, 315–324. [Google Scholar] [CrossRef] [Green Version]
- Banerjee, S. Solubility of organic mixtures in water. Environ. Sci. Technol. 1984, 18, 587–591. [Google Scholar] [CrossRef] [PubMed]
- Mackay, D.; Shiu, W.Y.; Maijanen, A.; Feenstra, S. Dissolution of non-aqueous phase liquids in groundwater. J. Contam. Hydrol. 1991, 8, 23–42. [Google Scholar] [CrossRef]
- Huntley, D.; Beckett, G.D. Persistence of LNAPL sources: Relationship between risk reduction and LNAPL recovery. J. Contam. Hydrol. 2002, 59, 3–26. [Google Scholar] [CrossRef]
- Thornton, S.F.; Tobin, K.; Smith, J.W. Comparison of constant and transient-source zones on simulated contaminant plume evolution in groundwater: Implications for hydrogeological risk assessment. Groundw. Monit. Remediat. 2013, 33, 78–91. [Google Scholar] [CrossRef]
- Lari, K.S.; Moeini, M. A single-pole approximation to interfacial mass transfer in porous media augmented with bulk reactions. Transp. Porous Media 2015, 109, 781–797. [Google Scholar] [CrossRef]
- Mobile, M.; Widdowson, M.; Stewart, L.; Nyman, J.; Deeb, R.; Kavanaugh, M.; Gallagher, D. In-situ determination of field-scale NAPL mass transfer coefficients: Performance, simulation and analysis. J. Contam. Hydrol. 2016, 187, 31–46. [Google Scholar] [CrossRef]
- Seagren, E.A.; Rittmann, B.E.; Valocchi, A.J. A critical evaluation of the local-equilibrium assumption in modeling NAPL-pool dissolution. J. Contam. Hydrol. 1999, 39, 109–135. [Google Scholar] [CrossRef]
- Lekmine, G.; Lari, K.S.; Johnston, C.D.; Bastow, T.P.; Rayner, J.L.; Davis, G.B. Evaluating the reliability of equilibrium dissolution assumption from residual gasoline in contact with water saturated sands. J. Contam. Hydrol. 2017, 196, 30–42. [Google Scholar] [CrossRef]
- Nambi, I.M.; Powers, S.E. NAPL dissolution in heterogeneous systems: An experimental investigation in a simple heterogeneous system. J. Contam. Hydrol. 2000, 44, 161–184. [Google Scholar] [CrossRef]
- Chrysikopoulos, C.V. Three-dimensional analytical models of contaminant transport from nonaqueous phase liquid pool dissolution in saturated subsurface formations. Water Resour. Res. 1995, 31, 1137–1145. [Google Scholar] [CrossRef]
- Holman, H.Y.; Javandel, I. Evaluation of transient dissolution of slightly water-soluble compounds from a light nonaqueous phase liquid pool. Water Resour. Res. 1996, 32, 915–923. [Google Scholar] [CrossRef]
- Chrysikopoulos, C.V.; Lee, K.Y. Contaminant transport resulting from multicomponent nonaqueous phase liquid pool dissolution in three-dimensional subsurface formations. J. Contam. Hydrol. 1998, 31, 1–21. [Google Scholar] [CrossRef]
- Zhu, J.; Sykes, J.F. The influence of NAPL dissolution characteristics on field-scale contaminant transport in subsurface. J. Contam. Hydrol. 2000, 41, 133–154. [Google Scholar] [CrossRef]
- Liu, L.; Maier, U.; Grathwohl, P.; Haderlein, S.B. Contaminant mass transfer from NAPLs to water studied in a continuously stirred flow-through reactor. J. Environ. Eng. 2012, 138, 826–832. [Google Scholar] [CrossRef]
- Pruess, K.; Battistelli, A. TMVOC, a Numerical Simulator for Three-Phase Non-Isothermal Flows of Multicomponent Hydrocarbon Mixtures in Saturated-Unsaturated Heterogeneous Media; Technical Report LBNL-49375; Lawrence Berkeley National Laboratory: Berkeley, CA, USA, April 2002. [Google Scholar]
- Saenton, S.; Illangasekare, T.H.; Soga, K.; Saba, T.A. Effects of source zone heterogeneity on surfactant-enhanced NAPL dissolution and resulting remediation end-points. J. Contam. Hydrol. 2002, 59, 27–44. [Google Scholar] [CrossRef]
- Sarikurt, D.A.; Gokdemir, C.; Copty, N.K. Sherwood correlation for dissolution of pooled NAPL in porous media. J. Contam. Hydrol. 2017, 206, 67–74. [Google Scholar] [CrossRef]
- Lari, K.S.; Davis, G.B.; Rayner, J.L.; Bastow, T.P.; Puzon, G.J. Natural source zone depletion of LNAPL: A critical review supporting modelling approaches. Water Res. 2019, 157, 630–646. [Google Scholar] [CrossRef]
- Cline, P.V.; Delfino, J.J.; Rao, P.; Suresh, C. Partitioning of aromatic constituents into water from gasoline and other complex solvent mixtures. Environ. Sci. Technol. 1991, 25, 914–920. [Google Scholar] [CrossRef]
- Luthy, R.G.; Ramaswami, A.; Ghoshal, S.; Merkel, W. Interfacial films in coal tar nonaqueous-phase liquid-water systems. Environ. Sci. Technol. 1993, 27, 2914–2918. [Google Scholar] [CrossRef]
- Pede, M.A.Z. Flutuação do lençol freático e sua implicação na recuperação de hidrocarbonetos: Um estudo de caso. Ph.D. Thesis, São Paulo State University, Rio Claro, Brazil, 2009. (In Portuguese with English abstract). [Google Scholar]
- Teramoto, E.H. Estudo da efetividade da atenuação natural de compostos BTEX em área contaminada por querosene de aviação. Ph.D. Thesis, São Paulo State University, Rio Claro, Brazil, 2015. (In Portuguese with English abstract). [Google Scholar]
- Bordignon, R.; Teramoto, E.H.; Chang, H.K.; Hespanhol, E.C.B. Caracterização isotópica de CO2 dissolvido em águas subterrâneas em área contaminada por querosene de aviação, município de Paulínia (SP). Águas Subterr. 2016, 29, 301–314. [Google Scholar] [CrossRef] [Green Version]
- Teramoto, E.H.; Chang, H.K. Métodos WTF e simulação numérica de fluxo para estimativa de recarga–exemplo Aquífero Rio Claro em Paulínia/SP. Águas Subterr. 2018, 32, 173–180. [Google Scholar] [CrossRef]
- Teramoto, E.H.; Chang, H.K. Geochemical conceptual model of BTEX biodegradation in an iron-rich aquifer. Appl. Geochem. 2019, 100, 293–304. [Google Scholar] [CrossRef]
- Teramoto, E.H.; Chang, H.K.; Caetano-Chang, M.R. Caracterização do aquífero rio claro no município de paulínia/sp. Geociências 2019, 38, 575–586. [Google Scholar]
- Hidalgo, K.M.; Teramoto, E.H.; Soriano, A.; Baessa, M.P.; Chang, H.K.; Vogt, C.; Richnow, H.H. Taxonomic and functional diversity of the microbiome in a jet fuel contaminated site as revealed by combined application of in situ microcosms with metagenomic analysis. Sci. Total Environ. 2020, 708, 135152. [Google Scholar] [CrossRef] [PubMed]
- Teramoto, E.H.; Isler, E.; Polese, L.; Baessa, M.P.M.; Chang, H.K. LNAPL saturation derived from laser induced fluorescence method. Sci. Total Environ. 2019, 683, 762–772. [Google Scholar] [CrossRef] [PubMed]
- Held, R.J.; Celia, M.A. Modeling support of functional relationships between capillary pressure, saturation, interfacial area and common lines. Adv. Water Resour. 2001, 24, 325–343. [Google Scholar] [CrossRef]
- Culligan, K.A.; Wildenschild, D.; Christensen, B.S.; Gray, W.G.; Rivers, M.L.; Tompson, A.F. Interfacial area measurements for unsaturated flow through a porous medium. Water Resour. Res. 2004, 40, 1–12. [Google Scholar] [CrossRef]
- Brusseau, M.L.; Narter, M.; Schnaar, G.; Marble, J. Measurement and estimation of organic-liquid/water interfacial areas for several natural porous media. Environ. Sci. Technol. 2009, 43, 3619–3625. [Google Scholar] [CrossRef] [Green Version]
- Geller, J.T.; Hunt, J.R. Mass transfer from nonaqueous phase organic liquids in water-saturated porous media. Water Resour. Res. 1993, 29, 833–845. [Google Scholar] [CrossRef]
- Powers, S.E.; Abriola, L.M.; Weber, W.J. An experimental investigation of nonaqueous phase liquid dissolution in saturated subsurface systems: Transient mass transfer rates. Water Resour. Res. 1994, 30, 321–332. [Google Scholar] [CrossRef]
Compound | Concentration in Jet Fuel (mg/L) | Effective Solubility (mg/L) |
---|---|---|
Benzene | 28 | 0.1316 |
Toluene | 423 | 0.5066 |
Ethylbenzene | 1199 | 0.3540 |
m,p-xylenes | 2921 | 1.7738 |
o-xylene | 2546 | 2.7660 |
Parameter | Values |
---|---|
Initial benzene mass (moles) | 0.0173 |
LNAPL mass (moles) | 234.67 |
A (m2) | 22 |
γi,o | 1 |
Vw (m3) | 0.3432 |
Ki (m/day) | 4.0 × 10−4 |
Q (m3/day) | 0.059 |
(day−1) | 0.014 |
Parameter | LNAPL Saturation | ||
---|---|---|---|
22% | 38% | 53% | |
Compound mass (moles) | 0.0173 | 0.030 | 0.042 |
LNAPL mass (moles) | 234.67 | 405.33 | 565 |
A (m2) | 22 | 9.68 | 8 |
1 | 1 | 1 | |
Vw (m3) | 0.3432 | 0.2728 | 0.21 |
Ki (m/day) | 4.0 × 10−4 | 4.0 × 10−4 | 4.0 × 10−4 |
Qin (m3/day) | 0.059 | 0.051 | 0.049 |
λ (days−1) | 0.014 | 0.014 | 0.014 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Teramoto, E.H.; Chang, H.K. A Screening Model to Predict Entrapped LNAPL Depletion. Water 2020, 12, 334. https://doi.org/10.3390/w12020334
Teramoto EH, Chang HK. A Screening Model to Predict Entrapped LNAPL Depletion. Water. 2020; 12(2):334. https://doi.org/10.3390/w12020334
Chicago/Turabian StyleTeramoto, Elias Hideo, and Hung Kiang Chang. 2020. "A Screening Model to Predict Entrapped LNAPL Depletion" Water 12, no. 2: 334. https://doi.org/10.3390/w12020334
APA StyleTeramoto, E. H., & Chang, H. K. (2020). A Screening Model to Predict Entrapped LNAPL Depletion. Water, 12(2), 334. https://doi.org/10.3390/w12020334