Can Soil Hydraulic Parameters be Estimated from the Stable Isotope Composition of Pore Water from a Single Soil Profile?
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description and Data Availability
2.2. Model Description
2.2.1. Water Flow
2.2.2. δ2H Transport
2.2.3. Initial and Boundary Conditions
2.3. Sensitivity Analyses
2.3.1. The Morris Method
2.3.2. The Sobol Method
2.3.3. Implementation of the Sensitivity Analyses
2.4. Model Calibration
2.4.1. Data Types
- The one-profile approach uses a single depth profile of the water content at a single sampling time (case 1) or one depth profile of both the water content and pore water isotope composition at a given time (case 2) to calibrate the soil hydraulic parameters. This approach does not require continuous monitoring data as it is only based on profiles at a given sampling time. Such a method facilitates model calibration by avoiding the time, cost, and effort associated with long-term soil water content measurements, since only one sampling campaign is needed to obtain the soil samples;
- The monthly approach (case 3) uses the monthly water content and pore water isotope composition at a 15 cm depth, plus one depth profile of both the water content and pore water isotope composition at a given time (as in case 2), to calibrate the soil hydraulic parameters;
- The daily approach (case 4) uses daily monitoring of the water content at four different depths (10, 20, 50, and 100 cm), and one depth profile of both the water content and pore water isotope composition at a single time to calibrate the soil hydraulic parameters. [18] used this approach.
2.4.2. Multi-Objective Optimization Procedure
3. Results and Discussion
3.1. Sensitivity Analyses
3.2. Model Parametrization
3.3. Field Case Study
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Aeschbach, W.; Gleeson, T. Regional strategies for the accelerating global problem of groundwater depletion. Nat. Geosci. 2012, 5, 853–861. [Google Scholar] [CrossRef]
- Taylor, R.; Scanlon, B.; Doell, P.; Rodell, M.; van Beek, R.; Wada, Y.; Longuevergne, L.; Leblanc, M.; Famiglietti, J.S.; Edmunds, M.; et al. Ground water and climate change. Nat. Clim. Chang. 2013, 3, 322–329. [Google Scholar] [CrossRef] [Green Version]
- Famiglietti, J. The global groundwater crisis. Nat. Clim. Chang. 2014, 4, 945–948. [Google Scholar] [CrossRef]
- Farthing, M.W.; Ogden, F. Numerical Solution of Richards’ Equation: A Review of Advances and Challenges. Soil Sci. Soc. Am. J. 2017, 81, 1257–1269. [Google Scholar] [CrossRef] [Green Version]
- Corwin, D.L.; Hopmans, J.; de Rooij, G.H. From Field- to Landscape-Scale Vadose Zone Processes: Scale Issues, Modeling, and Monitoring. Vadose Zo. J. 2006, 5, 129–139. [Google Scholar] [CrossRef]
- Mermoud, A.; Xu, D. Comparative Analysis of Three Methods to Generate Soil Hydraulic Functions. Soil Tillage Res. 2006, 87, 89–100. [Google Scholar] [CrossRef]
- Isch, A.; Montenach, D.; Hammel, F.; Ackerer, P.; Coquet, Y. A Comparative Study of Water and Bromide Transport in a Bare Loam Soil Using Lysimeters and Field Plots. Water 2019, 11, 1199. [Google Scholar] [CrossRef] [Green Version]
- Ritter, A.; Hupet, F.; Muñoz-Carpena, R.; Lambot, S.; Vanclooster, M. Using inverse methods for estimating soil hydraulic properties from field data as an alternative to direct methods. Agric. Water Manag. 2003, 59, 77–96. [Google Scholar] [CrossRef]
- Mertens, J.; Stenger, R.; Barkle, G.F. Multiobjective Inverse Modeling for Soil Parameter Estimation and Model Verification. Vadose Zo. J. 2006, 5, 917–933. [Google Scholar] [CrossRef]
- Groh, J.; Stumpp, C.; Lücke, A.; Pütz, T.; Vanderborght, J.; Vereecken, H. Inverse Estimation of Soil Hydraulic and Transport Parameters of Layered Soils from Water Stable Isotope and Lysimeter Data. Vadose Zo. J. 2018, 17. [Google Scholar] [CrossRef] [Green Version]
- Pachepsky, Y.; Smettem, K.; Vanderborght, J.; Herbst, M.; Vereecken, H.; Wösten, H. Reality and Fiction of Models and Data in Soil Hydrology. In Unsaturated-zone Modeling: Progress, Challenges and Applications; Feddes, R.A., de Rooij, G.H., van Dam, J.C., Eds.; Springer: New York, NY, USA, 2004; Volume 6, pp. 233–260. [Google Scholar]
- Lu, X.; Jin, M.; van Genuchten, M.T.; Wang, B. Groundwater Recharge at Five Representative Sites in the Hebei Plain, China. Groundwater 2011, 49, 286–294. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Franz, T.E.; Yue, W.; Szilagyi, J.; Zlotnik, V.A.; You, J.; Chen, X.; Shulski, M.D.; Young, A. Feasibility analysis of using inverse modeling for estimating natural groundwater recharge from a large-scale soil moisture monitoring network. J. Hydrol. 2016, 533, 250–265. [Google Scholar] [CrossRef]
- Wohling, T.; Vrugt, J.A.; Barkle, G.F. Comparison of Three Multiobjective Optimization Algorithms for Inverse Modeling of Vadose Zone Hydraulic Properties. Soil Sci. Soc. Am. J. 2008, 72, 305–319. [Google Scholar] [CrossRef] [Green Version]
- Groh, J.; Puhlmann, H.; Wilpert, K. Calibration of a soil-water balance model with a combined objective function for the optimization of the water retention curve. Hydrol. Wasserbewirtsch. 2013, 57, 152–162. [Google Scholar]
- Abbasi, F.; Simunek Jirka, J.; Feyen, J.; Shouse, P.J. Simultaneous Inverse Estimation of Soil Hydraulic and Solute Transport Parameters from Transient Field Experiments: Homogeneous Soil. Am. Soc. Agric. Eng. 2003, 46, 1085–1095. [Google Scholar] [CrossRef] [Green Version]
- Stumpp, C.; Stichler, W.; Kandolf, M.; Šimůnek, J. Effects of Land Cover and Fertilization Method on Water Flow and Solute Transport in Five Lysimeters: A Long-Term Study Using Stable Water Isotopes. Vadose Zone J. 2012, 11. [Google Scholar] [CrossRef]
- Sprenger, M.; Volkmann, T.H.M.; Blume, T.; Weiler, M. Estimating flow and transport parameters in the unsaturated zone with pore water stable isotopes. Hydrol. Earth Syst. Sci. 2015, 19, 2617–2635. [Google Scholar] [CrossRef] [Green Version]
- Koeniger, P.; Leibundgut, C.; Link, T.; Marshall, J.D. Stable isotopes applied as water tracers in column and field studies. Org. Geochem. 2010, 41, 31–40. [Google Scholar] [CrossRef]
- Zimmermann, U.; MüNnich, K.O.; Roether, W. Downward Movement of Soil Moisture Traced by Means of Hydrogen Isotopes. In Isotopes in Hydrology; IAEA, Isotopes in Hydrology: Vienna, Austria, 14–18 November 1966; International Atomic Energy Agency: Vienna, Austria, 1967; pp. 567–585. [Google Scholar]
- Gehrels, J.C.; Peeters, J.E.M.; Vries, J.J.D.E.; Dekkers, M. The mechanism of soil water movement as inferred from 18O stable isotope studies. Hydrol. Sci. J. 1998, 43, 579–594. [Google Scholar] [CrossRef] [Green Version]
- Souchez, R.; Lorrain, R.; Tison, J.L. Stable water isotopes and the physical environment. Belgeo. Revue Belge Géographie 2002, 2, 133–144. [Google Scholar] [CrossRef] [Green Version]
- Goblet, P. Simulation D’écoulement et de Transport Miscible en Milieu Poreux et Fracturé; Manual: Fontainebleau, France, 2010. [Google Scholar]
- Campolongo, F.; Cariboni, J.; Saltelli, A. An effective screening design for sensitivity analysis of large models. Environ. Model. Softw. 2007, 22, 1509–1518. [Google Scholar] [CrossRef]
- Sobol, I.M. Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates. Math. Comput. Simul. 2001, 55, 271–280. [Google Scholar] [CrossRef]
- Larocque, M.; Meyzonnat, G.; Ouellet, M.A.; Graveline, M.H.; Gagné, S.; Barnetche, D.; Dorner, S. Projet de connaissance des eaux souterraines de la zone de Vaudreuil-Soulanges; Rapport Final déposé au Ministère du Développement durable, de l’Environnement et de la Lutte Contre les Changements Climatiques: Quebec, QC, Canada, 2015. [Google Scholar]
- Mattei, A.; Barbecot, F.; Guillon, S.; Goblet, P.; Hélie, J.-F.; Meyzonnat, G. Improved accuracy and precision of water stable isotope measurements using the direct vapour equilibration method. Rapid Commun. Mass Spectrom. 2019, 33, 1613–1622. [Google Scholar] [CrossRef] [PubMed]
- Mesinger, F.; DiMego, G.; Kalnay, E.; Mitchell, K.; Shafran, P.C.; Ebisuzaki, W.; Jović, D.; Woollen, J.; Rogers, E.; Berbery, E.H.; et al. North American Regional Reanalysis. Bull. Am. Meteorol. Soc. 2006, 87, 343–360. [Google Scholar] [CrossRef] [Green Version]
- Folk, R.L.; Ward, W.C. Brazos River bar: a study in the significance of grain size parameters. J. Sediment. Petrol. 1957, 27, 3–26. [Google Scholar] [CrossRef]
- Mualem, Y. A new model for predicting the hydraulic conductivity of unsaturated porous media. Water Resour. Res. 1976, 12, 513–522. [Google Scholar] [CrossRef] [Green Version]
- Van Genuchten, M.T. A Closed Form Equation for Predicting the Hydraulic Conductivity of Unsaturated Soils 1. Soil Sci. Soc. Am. J. 1980, 44, 892–898. [Google Scholar] [CrossRef] [Green Version]
- Feddes, R.A.; Kowalik, P.; Kolinska-Malinka, K.; Zaradny, H. Simulation of field water uptake by plants using a soil water dependent root extraction function. J. Hydrol. 1976, 31, 13–26. [Google Scholar] [CrossRef]
- Šimůnek, J.; Šejna, M.; Saito, H.; Sakai, M.; van Genuchten, M.T. The HYDRUS-1D Software Package for Simulating the One-Dimensional Movement of Water, Heat, and Multiple Solutes in Variably-Saturated Media; University of California Riverside: Riverside, CA, USA, 2013. [Google Scholar]
- Hargreaves, G.H.; Samani, Z.A. Estimating Potential Evapotranspiration. Appl. Eng. Agric. 1982, 1, 96–99. [Google Scholar]
- Ritchie, J.A. Model for Predicting Evaporation From a Low Crop With Incomplete Cover. Water Resour. Res. 1972, 8, 1204–1213. [Google Scholar] [CrossRef] [Green Version]
- Sutanto, S.; Wenninger, J.; Coenders-Gerrits, M.; Uhlenbrook, S. Partitioning of evaporation into transpiration, soil evaporation and interception: A comparison between isotope measurements and a HYDRUS-1D model. Hydrol. Earth Syst. Sci. 2012, 16, 2605–2616. [Google Scholar] [CrossRef] [Green Version]
- Valéry, A. Modélisation Précipitations–Débit sous Influence Nivale: Elaboration d’un Module Neige et Evaluation sur 380 Bassins Versants. Ph.D. Thesis, AgroParisTech, Antony, France, 2010. [Google Scholar]
- Vanderborght, J.; Vereecken, H. One-Dimensional Modeling of Transport in Soils with Depth-Dependent Dispersion, Sorption and Decay. Vadose Zone J. 2007, 6, 140–148. [Google Scholar] [CrossRef]
- Gonfiantini, R. Chapter 3—Environmental isotopes in lake studies. In The Terrestrial Environment, B; Fritz, P., Fontes, J.C., Eds.; Handbook of Environmental Isotope Geochemistry; Elsevier: Amsterdam, The Netherlands, 1986; pp. 113–168. ISBN 978-0-444-42225-5. [Google Scholar]
- Skrzypek, G.; Mydłowski, A.; Dogramaci, S.; Hedley, P.; Gibson, J.J.; Grierson, P.F. Estimation of evaporative loss based on the stable isotope composition of water using Hydrocalculator. J. Hydrol. 2015, 523, 781–789. [Google Scholar] [CrossRef] [Green Version]
- Gat, J.R.; Levy, Y. Isotope hydrology of inland Sabkhas in the Bardawil area. Sinai. Limnol. Oceanogr. 1978, 23, 841–850. [Google Scholar] [CrossRef]
- Gibson, J.J.; Birks, S.J.; Edwards, T.W.D. Global prediction of δA and δ2H-δ18O evaporation slopes for lakes and soil water accounting for seasonality. Glob. Biogeochem. Cycles 2008, 22, GB2031. [Google Scholar] [CrossRef]
- Horita, J.; Wesolowski, D.J. Liquid-vapor fractionation of oxygen and hydrogen isotopes of water from the freezing to the critical temperature. Geochim. Cosmochim. Acta 1994, 58, 3425–3437. [Google Scholar] [CrossRef]
- Gat, J.R. Stable Isotopes of Fresh and Saline Lakes BT—Physics and Chemistry of Lakes; Lerman, A., Imboden, D.M., Gat, J.R., Eds.; Springer: Berlin/Heidelberg, Germany, 1995; pp. 139–165. ISBN 978-3-642-85132-2. [Google Scholar]
- Beven, K. A manifesto for the equifinality thesis. J. Hydrol. 2006, 320, 18–36. [Google Scholar] [CrossRef] [Green Version]
- Saltelli, A. Sensitivity Analysis for Importance Assessment. Risk Anal. 2002, 22, 579–590. [Google Scholar] [CrossRef]
- Usher, W.; Herman, J.; Mutel, C. SALib: Sensitivity Analysis Library in Python (Numpy). Contains Sobol, Morris, Fractional Factorial and FAST methods. 2015. Available online: http://SALib.github.io/SALib/ (accessed on 1 March 2019).
- Kling, H.; Fuchs, M.; Paulin, M. Runoff conditions in the upper Danube basin under an ensemble of climate change scenarios. J. Hydrol. 2012, 424–425, 264–277. [Google Scholar] [CrossRef]
- McKay, M.D.; Beckman, R.J.; Conover, W.J. A Comparison of Three Methods for Selecting Values of Input Variables in the Analysis of Output from a Computer Code. Technometrics 1979, 21, 239–245. [Google Scholar]
- Vrugt, J.A.; ter Braak, C.J.F.; Clark, M.P.; Hyman, J.M.; Robinson, B.A. Treatment of input uncertainty in hydrologic modeling: Doing hydrology backward with Markov chain Monte Carlo simulation. Water Resour. Res. 2008, 44, W00B09. [Google Scholar] [CrossRef] [Green Version]
- Mannschatz, T.; Dietrich, P. Model Input Data Uncertainty and Its Potential Impact on Soil Properties. In Sensitivity Analysis in Earth Observation Modelling; Petropoulos, G., Srivastava, P.K., Eds.; Elsevier: Oxford, UK, 2017; pp. 25–52. [Google Scholar]
- Gebler, S.; Franssen, H.-J.; Pütz, T.; Post, H.; Schmidt, M.; Vereecken, H. Actual evapotranspiration and precipitation measured by lysimeters: A comparison with eddy covariance and tipping bucket. Hydrol. Earth Syst. Sci. 2015, 19, 2145–2161. [Google Scholar] [CrossRef] [Green Version]
- Hoffmann, M.; Schwartengräber, R.; Wessolek, G.; Peters, A. Comparison of simple rain gauge measurements with precision lysimeter data. Atmos. Res. 2016, 174–175, 120–123. [Google Scholar] [CrossRef]
- Peters-Lidard, C.; Mocko, D.M.; Garcia, M.; Santanello, J.; Tischler, M.A.; Susan Moran, M.; Wu, Y. Role of precipitation uncertainty in the estimation of hydrologic soil properties using remotely sensed soil moisture in a semiarid environment. Water Resour. Res. 2008, 44, W05S18. [Google Scholar] [CrossRef] [Green Version]
- Angers, D.A.; Caron, J. Plant-induced Changes in Soil Structure: Processes and Feedbacks. Biogeochemistry 1998, 42, 55–72. [Google Scholar] [CrossRef]
SLA | SLB | ||
---|---|---|---|
Location | 45°23′5.388″ N/74°11′50.316″ W | 45°23′5.390″ N/74°11′50.320″ W | |
Elevation (m) | 104 | 104 | |
Geology | Cambrian formation | Cambrian formation | |
Soil depth (cm) | Horizon 1 | 0–20 | 0–30 |
Horizon 2 | 20–200 | 30–200 | |
Soil texture * | Horizon 1 | Medium sand | Medium sand |
Horizon 2 | Medium sand | Medium sand | |
Organic matter (%) ** | Horizon 1 | 3 | 6 |
Horizon 2 | 0 | <1 | |
Soil particle density (g cm−3) | Horizon 1 | 2.1 | 1.2 |
Horizon 2 | 2.4 | 2.4 | |
Land use | Grassland | Pine forest | |
Maximum rooting depth (cm) | 10 | 20 |
n | α | Ks | F | Smin | Smax | λ | ||
---|---|---|---|---|---|---|---|---|
(-) | (m−1) | (m s−1) | (-) | (-) | (-) | (m) | ||
Synthetic case | Horizon 1 | 2.00 | 5.00 | 1.00 × 10−3 | 0.40 | 0.02 | 0.60 | 0.01 |
Horizon 2 | 3.00 | 10.00 | 1.00 × 10−4 | 0.35 | 0.05 | 0.55 | 0.01 | |
Case 1 | Horizon 1 | 1.78 | 4.97 | 2.33 × 10−3 | 0.32 | 0.12 | 0.54 | 0.01 |
Horizon 2 | 2.37 | 21.36 | 8.63 × 10−3 | 0.23 | 0.09 | 0.29 | 0.01 | |
Case 2 | Horizon 1 | 1.31 | 8.91 | 2.94 × 10−3 | 0.37 | 0.05 | 0.51 | 0.01 |
Horizon 2 | 2.12 | 27.48 | 7.61 × 10−3 | 0.37 | 0.08 | 0.60 | 0.01 | |
Case 3 | Horizon 1 | 1.46 | 10.49 | 2.69 × 10−4 | 0.39 | 0.01 | 0.50 | 0.01 |
Horizon 2 | 2.37 | 23.80 | 1.25 × 10−4 | 0.20 | 0.04 | 0.54 | 0.01 | |
Case 4 | Horizon 1 | 1.46 | 10.49 | 2.69 × 10−4 | 0.39 | 0.01 | 0.50 | 0.01 |
Horizon 2 | 2.37 | 23.80 | 1.25 × 10−4 | 0.20 | 0.04 | 0.54 | 0.01 |
Synthetic Case | Case 1 | Case 2 | Case 3 | Case 4 | |
---|---|---|---|---|---|
2017 | 278 | 319 | 298 | 302 | 302 |
2018 | 152 | 201 | 177 | 166 | 166 |
n | α | Ks | F | Smin | Smax | λ | ||
---|---|---|---|---|---|---|---|---|
(-) | (m−1) | (ms−1) | (-) | (-) | (-) | (m) | ||
SLA | Horizon 1 | 1.87 | 11.32 | 5.46 × 10−3 | 0.21 | 0.02 | 0.44 | 0.01 |
Horizon 2 | 1.89 | 26.3 | 2.74 × 10−3 | 0.36 | 0.02 | 0.24 | 0.01 | |
SLB | Horizon 1 | 1.51 | 20.35 | 8.26 × 10−3 | 0.28 | 0.04 | 0.54 | 0.01 |
Horizon 2 | 2.16 | 10.61 | 9.49 × 10−3 | 0.39 | 0.04 | 0.37 | 0.01 |
Recharge | Evaporation | Transpiration | ||
---|---|---|---|---|
(mm) | (mm) | (mm) | ||
SLA | 2017 | 429 | 307 | 117 |
2018 | 261 | 220 | 75 | |
SLB | 2017 | 456 | 215 | 217 |
2018 | 257 | 181 | 118 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mattei, A.; Goblet, P.; Barbecot, F.; Guillon, S.; Coquet, Y.; Wang, S. Can Soil Hydraulic Parameters be Estimated from the Stable Isotope Composition of Pore Water from a Single Soil Profile? Water 2020, 12, 393. https://doi.org/10.3390/w12020393
Mattei A, Goblet P, Barbecot F, Guillon S, Coquet Y, Wang S. Can Soil Hydraulic Parameters be Estimated from the Stable Isotope Composition of Pore Water from a Single Soil Profile? Water. 2020; 12(2):393. https://doi.org/10.3390/w12020393
Chicago/Turabian StyleMattei, Alexandra, Patrick Goblet, Florent Barbecot, Sophie Guillon, Yves Coquet, and Shuaitao Wang. 2020. "Can Soil Hydraulic Parameters be Estimated from the Stable Isotope Composition of Pore Water from a Single Soil Profile?" Water 12, no. 2: 393. https://doi.org/10.3390/w12020393
APA StyleMattei, A., Goblet, P., Barbecot, F., Guillon, S., Coquet, Y., & Wang, S. (2020). Can Soil Hydraulic Parameters be Estimated from the Stable Isotope Composition of Pore Water from a Single Soil Profile? Water, 12(2), 393. https://doi.org/10.3390/w12020393