Natural Nitrogen Isotope Ratios as a Potential Indicator of N2O Production Pathways in a Floodplain Fen
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description
2.2. Soil and Gas Isotope Analysis
46R = 18R + (15Rα + 15Rβ) 17R +15Rα 15Rβ
31R = 15Rα + 17R
32R = 18R +15Rα 17R
3. Results and Discussion
3.1. N2O Emissions Varying with Soil Chemistry
3.2. N2O Emissions Varying with Water Table
3.3. N2O Emissions Varying with Flooding Time.
3.4. N2O Emissions Varying with Oxygen Content
3.5. Variation of Soil δ15Nbulk soil
3.6. δ15Ngas and Site Preference in N2O
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Mander, Ü.; Tournebize, J.; Tonderski, K.; Verhoeven, J.T.A.; Mitsch, J.W. Planning and establishment principles for constructed wetlands and riparian buffer zones in agricultural catchments. Ecol. Eng. 2017, 103, 296–300. [Google Scholar] [CrossRef]
- Teiter, S.; Mander, Ü. Emission of N2O, N2, CH4 and CO2 from constructed wetlands for wastewater treatment and from riparian buffer zones. Ecol. Eng. 2005, 25, 528–541. [Google Scholar] [CrossRef]
- Verhoeven, J.T.A.; Arheimer, B.; Yin, C.G.; Hefting, M.M. Regional and global concerns over wetlands and water quality. Trends Ecol. Evol. 2006, 21, 96–103. [Google Scholar] [CrossRef] [PubMed]
- Stocker, T.F.; Qin, D.; Plattner, G.K.; Tignor, M.; Allen, S.K.; Boschung, J.; Nauels, A.; Xia, Y.; Bex, V.; Midgley, P.M. Climate Change 2013: The Physical Science Basis; Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; IPCC: Cambridge, UK; New York, NY, USA, 2013; pp. 1437–1446. [Google Scholar]
- Lu, Y.; Hongwen, X. Effects of Soil Temperature, Flooding, and Organic Matter addition on N2O Emissions from a soil of Hongze Lake Wetland, China. Sci. World J. 2014, 2014, 272684. [Google Scholar] [CrossRef] [PubMed]
- Yano, M.; Toyoda, S.; Tokida, T.; Hayashi, K.; Hasegawa, T.; Makabe, A.; Yoshida, N. Isotopomer analysis of production, consumption and soil-to-atmosphere emission processes of N2O at the beginning of paddy field irrigation. Soil Biol. Biochem. 2013, 70, 66–78. [Google Scholar] [CrossRef]
- Pärn, J.; Verhoeven, J.T.A.; Butterbach-Bahl, K.; Dise, N.B.; Ullah, S.; Aasa, A.; Egorov, S.; Espenberg, M.; Järveoja, J.; Jauhiainen, J.; et al. Nitrogen-rich organic soils under warm well-drained conditions are global nitrous oxide emission hotspots. Nat. Commun. 2018, 9, 1135. [Google Scholar] [CrossRef] [Green Version]
- Rubol, S.; Silver, W.L.; Bellin, A. Hydrologic control on redox and nitrogen dynamics in a peatland soil. Sci. Total Environ. 2012, 432, 37–46. [Google Scholar] [CrossRef]
- Dobbie, K.E.; Smith, K.A. The effects of temperature, water-filled pore space and land use on N2O emissions from an imperfectly drained gleysol. Eur. J. Soil Sci. 2001, 52, 667–673. [Google Scholar] [CrossRef]
- Inubushi, K.; Furukawa, Y.; Hadi, A.; Purnomo, E.; Tsuruta, H. Seasonal changes of CO2, CH4 and N2O fluxes in realtion to land use change in tropical peatlands located in coastal area of South Kalimantan. Chemosphere 2003, 52, 603–608. [Google Scholar] [CrossRef]
- Toyoda, S.; Yano, M.; Nishimura, S.; Akiyama, H.; Hayakawa, A.; Koba, K.; Sudo, S.; Yagi, K.; Makabe, A.; Tobari, Y.; et al. Characterization and production and consumption processes of N2O emitted from temperate agricultural soils determined via isotopomer ratio analysis. Glob. Biogeochem. Cycles 2011, 25, 1–17. [Google Scholar] [CrossRef]
- Toyoda, S.; Yoshida, N. Determination of Nitrogen Isotopomers of Nitrous Oxide on a Modified Isotope Ration Mass Spectrometer. Anal. Chem. 1999, 71, 4711–4718. [Google Scholar] [CrossRef]
- Yoshida, N.; Toyoda, S. Constraining the atmospheric N2O budget from the intermolecular site preference in N2O isotopomers. Nature 2000, 405, 330–334. [Google Scholar] [CrossRef] [PubMed]
- Yung, Y.L.; Miller, C.E. Isotopic fractionation of stratospheric nitrous oxide. Science 1997, 278, 1778–1780. [Google Scholar] [CrossRef] [PubMed]
- Popp, B.N.; Westley, M.B.; Toyoda, S.; Miwa, T.; John, E.D.; Yoshida, N.; Rust, T.M.; Sansone, F.J.; Russ, M.E.; Ostrom, N.E.; et al. Nitrogen and oxygen isotopomeric constraints on the origins and sea-to-air flux of N2O in the oligotrophic subtropical North Pacific gyre. Glob. Biogeochem. Cycles 2002, 16, 1064. [Google Scholar] [CrossRef]
- Schmidt, H.L.; Werner, R.A.; Yoshida, N.; Well, R. Is the isotopic composition of nitrous oxide an indicator for its origin from nitrification or denitrification? A Theoretical approach from referred data and microbiological and enzyme kinetic aspects. Rapid Commun. Mass Spectrosc. 2004, 18, 2036–2040. [Google Scholar] [CrossRef]
- Well, R.; Flessa, H. Isotopologue signatures of N2O produced by denitrificaiton in soils. J. Geophys. Res. 2009, 114, 1–11. [Google Scholar] [CrossRef]
- Yamulki, S.; Bol, R.; Wolf, I.; Grant, B.; Brumme, R.; Veldkamp, E.; Jarvis, S.C. Effects of dung and urine amendments on the isotopic content of N2O released from grasslands. Rapid Commun. Mass Spectrosc. 2000, 14, 1356–1360. [Google Scholar] [CrossRef]
- Perez, T.; Trumbore, S.E.; Tyler, S.C.; Matson, P.A.; Monasterio, O.; Rahn, T.; Griffith, D.W.T. Identifying the agricultural imprint on the global N2O budget using stable isotopes. J. Geophys. Res. 2001, 106, 9869–9878. [Google Scholar] [CrossRef] [Green Version]
- Sutka, R.L.; Ostrom, N.E.; Ostrom, P.H.; Gandhi, H.; Breznak, J.A. Nitrogen isotopomer site preference of N2O produced by Nitrosomonas europaea and Methylococcus capsulatus bath. Rapid Commun. Mass Spectrosc. 2004, 18, 1411–1412. [Google Scholar] [CrossRef]
- Sutka, R.L.; Ostrom, N.E.; Ostrom, P.H.; Breznak, J.A.; Gandhi, H.; Pitt, A.J.; Li, F. Distinguishing nitrous oxide production from nitrificaton and denitrification on basis of isotopomer abundances. Appl. Environ. Microbiol. 2005, 72, 638–644. [Google Scholar] [CrossRef] [Green Version]
- Toyoda, S.; Motube, M.H.; Yamagishi, H.; Yoshida, N.; Tanji, Y. Fractionation of N2O isotopomers during production by denitrifiers. Soil Biol. Biochem. 2005, 37, 1535–1545. [Google Scholar] [CrossRef]
- Well, R.; Flessa, H.; Lu, X.; Ju, X.; Römheld, V. Isotopologue ratios of N2O emitted from microcosms with NH4 fertilizer arable soils under conditions favouring nitrification. Soil Biol. Biochem. 2008, 40, 2416–2426. [Google Scholar] [CrossRef]
- Bol, R.; Toyoda, S.; Yamulki, S.; Hawkins, J.M.B.; Cardenas, L.M.; Yoshida, N. Dual isotope and isotopomer rations of N2O emitted from a temperate grassland soil after fertiliser application. Rapid Commun. Mass Spectrom. 2003, 17, 2550–2556. [Google Scholar] [CrossRef] [PubMed]
- Well, R.; Kurganova, I.; de Gerenyu, V.L.; Flessa, H. Isotopomer signatures of soil emitted N2O under different moisture conditions—A micrososm study with arable losses soil. Soil Biol. Biochem. 2006, 38, 2923–2933. [Google Scholar] [CrossRef]
- Denk, T.R.A.; Mohn, J.; Decock, C.; Szczebak, D.L.; Harris, E.; Bahl, K.B.; Kiese, R.; Wolf, B. The nitrogen cycle: A review of isotope effects and isotope modelling approaches. Soil Biol. Biochem. 2017, 105, 121–137. [Google Scholar] [CrossRef] [Green Version]
- Pérez, T.; Garcia-Montiel, D.; Trumbore, S.; Tyler, S.; de Camargo, P.; Moreira, M.; Piccolo, M.; Cerri, C. Nitrous oxide nitrification and denitrification 15N enrichment factors from amazon forest soils. Ecol. Appl. 2006, 16, 2153–2167. [Google Scholar] [CrossRef] [Green Version]
- Cardena, L.M.; Chadwick, D.; Scholefield, D.; Fychan, R.; Marley, C.L.; Jones, R.; Bol, R.; Well, R.; Vallejo, A. The effect of diet manipulation on nitrous oxide and methane emissions from manure application to incubated grassland soils. Atmos. Environ. 2007, 33, 7096–7107. [Google Scholar] [CrossRef]
- Rückauf, U.; Augustin, J.; Russow, R.; Merbach, W. Nitrate removal from drained and reflooded fen soils affected by soil N transformation processes and plant uptake. Soil Biol. Biochem. 2004, 36, 77–90. [Google Scholar] [CrossRef]
- Tauchnitz, N.; Spott, O.; Russow, R.; Bernsdorf, S.; Glaser, B.; Meissner, R. Release of nitrous oxide and dinitrogen from a transition bog under drained and rewetted conditions due to denitrification: Results from a 15N-nitrate–bromide double-tracer study. Isot. Environ. Health Stud. 2015, 51, 300–321. [Google Scholar] [CrossRef]
- Yang, W.H.; Teh, Y.A.; Silver, W.L. A test of a field-based 15N–nitrous oxide pool dilution technique to measure gross N2O production in soil. Glob. Chang. Biol. 2011, 17, 3577–3588. [Google Scholar] [CrossRef]
- FAO Organization. Physical Properties|FAO Soils Portal|Food and Agriculture Organization of the United Nations. 2020. Available online: http://www.fao.org/soils-portal/soil-survey/soil-properties/physical-properties/en/ (accessed on 21 January 2020).
- Silc, T.; Stanek, W. Bulk density estimation of several peats in northern Ontario using the von post humification scale. Can. J. Soil Sci. 1977, 57, 75. [Google Scholar] [CrossRef]
- Hyodo, A.; Malghani, S.; Zhou, Y.; Mushinski, R.M.; Toyoda, S.; Yoshida, N.; Boutton, T.W.; West, J.B. Biochar and amendment suppresses N2O emissions but has no impact on 15N site preference in an anaerobic soil. Rapid Commun. Mass Spectrosc. 2018, 33, 165–175. [Google Scholar] [CrossRef] [PubMed]
- Potter, K.E.; Ono, S.O.; Prinn, R.G. Fully automated, high-precision instrumentation for the isotopic analysis of tropospheric N2O using continuous flow isotope ratio mass spectrometry. Rapid Commun. Mass Spectrom. 2013, 27, 1723–1738. [Google Scholar] [CrossRef] [PubMed]
- Klemedtsson, L.; Arnold, V.; Weslien, K.; Gundersen, P. Soil C/N ratio as a scalar parameter to predict nitrous oxide emissions. Glob. Chang. Biol. 2005, 11, 1142–1147. [Google Scholar] [CrossRef] [Green Version]
- Leifeld, J. Distribution of nitrous oxide emissions from managed organic soils under different land uses estimated by the peat C/N ratio to improve national GHG inventories. Sci. Total Environ. 2018, 631, 23–26. [Google Scholar] [CrossRef]
- Liu, H.; Zak, D.; Rezanezhad, F.; Lennartz, B. Soil degradation determines release of nitrous oxide and dissolved organic carbon from peatlands. Environ. Res. Lett. 2019, 14, 094009. [Google Scholar] [CrossRef]
- FAO. World Reference Base for Soil Resources; FAO: Rome, Italy, 2007. [Google Scholar]
- Dobbie, K.E.; Smith, K.A. Nitrous oxide emission factors for agricultural soils in Great Britain: Then impact of soil water filled pore space and other controlling variables. Glob. Chang. Biol. 2003, 9, 204–218. [Google Scholar] [CrossRef]
- Dobbie, K.E.; Smith, K.A. The effect of water table depth on emissions of N2O from grassland soil. Soil Use Manag. 2006, 22, 22–28. [Google Scholar] [CrossRef]
- Goldberg, S.D.; Knorr, K.H.; Blodau, C.; Lischeid, G.; Gebauer, G. Impact of altering the water table height of an acidic fen on N2O and NO fluxes and soil concentrations. Glob. Chang. Biol. 2009, 16, 220–223. [Google Scholar] [CrossRef]
- Schaufler, G.; Kitzler, B.; Schindlbacher, A.; Skiba, U.; Sutton, A.; Zechmeister-Boltenstern, S. Greenhouse gas emissions from European soils under different land use: Effects of Soil Moisture and Temperature. Eur. J. Soil Sci. 2010, 61, 683–696. [Google Scholar] [CrossRef]
- Berglund, Ö.; Berglund, K. Influence of water table and soil properties on emissions of greenhouse gases from cultivated peat soil. Soil Biol. Biochem. 2011, 43, 923–931. [Google Scholar] [CrossRef] [Green Version]
- Henault, C.; Grossel, A.; Mary, B.; Roussel, M.; Leonard, J. Nitrous oxide emission by agricultural soils: A review of spatial and temporal variability for mitigation. Pedosphere 2012, 22, 426–433. [Google Scholar] [CrossRef]
- Hansen, M.; Clough, T.J.; Elberling, B. Flooding-induced N2O emissions bursts controlled by pH and nitrite in agricultural soils. Soil Biol. Biochem. 2014, 69, 17–24. [Google Scholar] [CrossRef] [Green Version]
- Xing, G.X.; Shi, S.L.; Shen, G.Y.; Du, L.J.; Xiong, Z.Q. Nitrous oxide emissions from paddy soil in three rice based cropping systems in China. Nutr. Cycl. Agroecosyst. 2002, 64, 135–143. [Google Scholar] [CrossRef]
- Purwanto, B.H.; Sari, N.N.; Utami, S.N.H.; Hanudin, E.; Sunarminto, B.H. Effect of flooding duration on nitrous oxide emissions from organic and conventional rice cultivation system in Central Java, Indonesia. IOP Conf. Ser. Earth Environ. Sci. 2018, 215, 1–6. [Google Scholar] [CrossRef]
- Vor, T.; Dyckmans, J.; Loftfield, N.; Beese, F.; Flessa, H. Aeration effects on CO2, N2O and CH4 emission and leachate composition of a forest soil. J. Plant Nutr. Soil Sci. 2003, 166, 39–46. [Google Scholar] [CrossRef]
- Bollman, A.; Conrad, R. Influence of O2 availability on NO and N2O release by nitrification and denitrification in soils. Glob. Chang. Biol. 1998, 4, 387–396. [Google Scholar] [CrossRef]
- Zhua, X.; Burger, M.; Doane, T.A.; Horwath, W.R. Ammonia oxidation pathways and nitrifier denitrification are significant sources of N2O and NO under low oxygen availability. Proc. Natl. Acad. Sci. USA 2013, 110, 6328–6333. [Google Scholar] [CrossRef] [Green Version]
- Brenner, D.L.; Amundson, R.; Baisden, W.T.; Kendall, C.; Harden, J. Soil N and 15N variation with time in a California annual grassland ecosystem. Geochim. Cosmochim. Acta 2001, 65, 4171–4186. [Google Scholar] [CrossRef]
- Snider, D.M.; Schiff, S.L.; Spoelstra, J. 15N/14N and 18O/16O stable isotope ratios of nitrous oxide produced during denitrification in temperate forest soils. Geochim. Cosmochim. Acta 2009, 73, 877–888. [Google Scholar] [CrossRef]
- Köster, J.R.; Well, R.; Dittert, K.; Giesemann, A.; Lewicka-Szczebak, D.; Mühling, K.H.; Herrmann, A.; Lammel, J.; Senbayram, M. Soil denitrification potential and its influence on N2O reduction and N2O isotopomer ratios. Rapid Commun. Mass Spectrosc. 2013, 27, 2363–2373. [Google Scholar]
- Mothet, A.; Sebilo, M.; Laverman, A.M.; Vaury, V.; Mariotti, M. Is site preference of N2O a tool to identify benthic denitrifier N2O. Environ. Chem. 2013, 10, 281–284. [Google Scholar] [CrossRef]
- Mander, Ü.; Well, R.; Weymann, D.; Soosar, K.; Maddison, M.; Kanal, A.; Lõhmus, K.; Truu, J.; Augustin, J.; Tournebize, J. Isotopologue ratios of N2O and N2 measurements underpin the importance of denitrification in differently N-loaded riparian alder forests. Environ. Sci. Technol. 2014, 48, 11910–11918. [Google Scholar] [CrossRef] [PubMed]
- Lewicka-Szczebak, D.; Augustin, J.; Giesemann, A.; Well, R. Quantifying N2O reduction to N2 based on N2O isotopocules validation with independent methods. Biogeosciences 2017, 14, 711–732. [Google Scholar] [CrossRef] [Green Version]
- Ostrom, N.E.; Pitt, A.; Sutka, R.; Ostrom, P.H.; Grandy, A.S.; Huizinga, K.M.; Robertson, G.P. Isotopologue effects during N2O reduction in soils and in pure cultures of denitrifiers. J. Geophys. Res. 2007, 112, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Menyailo, O.V.; Hungate, B.A. Stable isotope discrimination during soil denitirification: Production and consumption of nitrous oxide. Glob. Biogeochem. Cycles 2006, 20, 1–10. [Google Scholar] [CrossRef]
- Butterbach-Bahl, K.; Baggs, E.M.; Dannenmann, M.; Kiese, R.; Zechmeister-Boltenstern, S. Nitrous oxide emissions from soils: How well do we understand the processes and their controls? Philos. Trans. R. Soc. B Biol. Sci. 2013, 368, 20130122. [Google Scholar] [CrossRef]
- Hu, H.W.; Chen, D.; He, J.Z. Microbial regulation of terrestrial nitrous oxide formation: Understanding the biological pathways for prediction of emission rates. FEMS Microbiol. Rev. 2015, 39, 729–749. [Google Scholar] [CrossRef]
- Wrage-Mönnig, N.; Horn, M.A.; Well, R.; Müller, C.; Velthof, G.; Oenema, O. The role of nitrifier denitrification in the production of nitrous oxide revisited. Soil Biol. Biochem. 2018, 123, A3–A16. [Google Scholar] [CrossRef]
- Tiemeyer, B.; Borraz, E.A.; Augustin, J.; Bechtold, M.; Beetz, S.; Beyer, C.; Drösler, M.; Ebli, M.; Eickenscheidt, T.; Fiedler, S.; et al. High emissions of greenhouse gases from grasslands on peat and other organic soils. Glob. Chang. Biol. 2016, 22, 4134–4149. [Google Scholar] [CrossRef]
- Poyda, A.; Reinsch, T.; Kluss, C.; Loges, R.; Taube, F. Greenhouse gas emissions from fen soils used for forage production in northern Germany. Biogeosciences 2016, 13, 5221–5244. [Google Scholar] [CrossRef] [Green Version]
- Zaman, M.; Müller, C.; Sanz-Cobena, A.; Kim, D.G.; Ding, W.; Borzouei, A.; Dawar, K.; Urquiaga, S.; Heng, L.K. The role of nuclear techniques in developing mitigation options for agricultural derived greenhouse gases. Geophys. Res. Abstr. 2018, 20, 15355. [Google Scholar]
Position and Depth | Bulk Density g/cm3 | DM % | pHKCl | Organic Matter % | Total Carbon % | N % | NH4-N mg/kg | NO3-N mg/kg | C/N Ratio |
---|---|---|---|---|---|---|---|---|---|
A 0–10 cm | 1.5 | 49.0 | 5.5 | 22.7 | 12.7 | 1.3 | 3.2 | 5.7 | 10.1 |
A 10–20 cm | 1.8 | 59.1 | 5.9 | 15.8 | 8.8 | 0.9 | 1.9 | 16.0 | 9.9 |
A 20–30 cm | 1.8 | 61.9 | 6.1 | 12.6 | 7.0 | 0.7 | 2.1 | 14.4 | 10.0 |
A 30–40 cm | 2.0 | 71.7 | 6.4 | 7.7 | 4.3 | 0.4 | 1.2 | 11.4 | 10.7 |
B 0–10 cm | 1.1 | 35.4 | 5.7 | 51.0 | 28.5 | 2.6 | 5.1 | 14.1 | 10.9 |
B 10–20 cm | 1.1 | 35.3 | 6.1 | 51.9 | 29.0 | 2.8 | 5.5 | 15.0 | 10.5 |
B 20–30 cm | 1.1 | 30.4 | 6.0 | 54.5 | 30.4 | 2.8 | 6.5 | 28.8 | 10.7 |
B 30–40 cm | 1.1 | 30.2 | 6.2 | 55.8 | 31.2 | 2.9 | 10.1 | 35.1 | 10.6 |
B 40–50 cm | 1.1 | 28.6 | 6.5 | 47.6 | 26.6 | 2.4 | 3.6 | 28.2 | 10.9 |
C 0–10 cm | 1.4 | 44.1 | 5.2 | 30.1 | 16.8 | 1.5 | 5.5 | 20.6 | 11.0 |
C 10–20 cm | 1.6 | 52.8 | 5.1 | 20.9 | 11.7 | 1.2 | 2.9 | 29.1 | 9.5 |
C 20–30 cm | 1.8 | 59.8 | 5.0 | 12.3 | 6.9 | 0.7 | 2.6 | 11.6 | 9.5 |
C 30–40 cm | 1.4 | 42.5 | 4.9 | 29.2 | 16.3 | 1.5 | 6.0 | 45.0 | 10.7 |
C 40–50 cm | 1.7 | 51.4 | 5.1 | 15.4 | 8.6 | 0.8 | 2.8 | 19.5 | 11.0 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Masta, M.; Sepp, H.; Pärn, J.; Kirsimäe, K.; Mander, Ü. Natural Nitrogen Isotope Ratios as a Potential Indicator of N2O Production Pathways in a Floodplain Fen. Water 2020, 12, 409. https://doi.org/10.3390/w12020409
Masta M, Sepp H, Pärn J, Kirsimäe K, Mander Ü. Natural Nitrogen Isotope Ratios as a Potential Indicator of N2O Production Pathways in a Floodplain Fen. Water. 2020; 12(2):409. https://doi.org/10.3390/w12020409
Chicago/Turabian StyleMasta, Mohit, Holar Sepp, Jaan Pärn, Kalle Kirsimäe, and Ülo Mander. 2020. "Natural Nitrogen Isotope Ratios as a Potential Indicator of N2O Production Pathways in a Floodplain Fen" Water 12, no. 2: 409. https://doi.org/10.3390/w12020409
APA StyleMasta, M., Sepp, H., Pärn, J., Kirsimäe, K., & Mander, Ü. (2020). Natural Nitrogen Isotope Ratios as a Potential Indicator of N2O Production Pathways in a Floodplain Fen. Water, 12(2), 409. https://doi.org/10.3390/w12020409