Effects of Capping Strategy and Water Balance on Salt Movement in Oil Sands Reclamation Soils
Abstract
:1. Introduction
2. Materials and Methods
2.1. Column Experiment
2.1.1. Experimental Design
2.1.2. Instrumentation and Regular Monitoring
2.1.3. Final Sampling and Data Analysis
2.2. Numerical Modeling
2.2.1. Model Description
2.2.2. Parameterization and Model Validation
2.2.3. Scenarios for Salinization Risk Assessment
3. Results and Discussion
3.1. Experimental Results
3.1.1. Treatment Effects on Soil Water Dynamics
3.1.2. Treatment Effects on Soil Salinity
3.1.3. Plant Response
3.2. Modeling Salinity Evolution in Reclaimed Soils
3.2.1. Validation of the Soil Water and Salt Movement Model
3.2.2. Modeling of Long-Term Soil Salinity Evolution
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Alberta. Government of. Oil Sands Mine Reclamation and Disturbance Tracking by Year, 2017-12-31 ed.; Government of Alberta: Edmonton, AB, Canada, 2019.
- Leskiw, L.A. Land Capability Classification for Forest Ecosystems in the Oil sands Volume 1-Field Manual; Cumulative Environmental Management Association, Ed.; Cumulative Environmental Management Association: Fort McMurray, AB, Canada, 2003. [Google Scholar]
- Barbour, L.; Macyk, T. Soil Capping Research in the Athabasca Oil Sands Region; Syncrude Canada Limited: Fort McMurray, AB, Canada, 2010. [Google Scholar]
- Kessel, E.; Ketcheson, S.; Price, J. The distribution and migration of sodium from a reclaimed upland to a constructed fen peatland in a post-mined oil sands landscape. Sci. Total Environ. 2018, 630, 1553–1564. [Google Scholar] [CrossRef] [PubMed]
- Kessler, S.; Barbour, S.L.; van Rees, K.C.J.; Dobchuk, B.S. Salinization of soil over saline-sodic overburden from the oil sands in Alberta. Can. J. Soil Sci. 2010, 90, 637–647. [Google Scholar] [CrossRef]
- Committee, Alberta Soils Advisory. Soil Quality Criteria Relative to Disturbance and Reclamation; Soils Branch, Alberta Agriculture: Greensboro, NC, USA, 1987. [Google Scholar]
- Howat, D. Acceptable Salinity, Sodicity and pH Values for boreal Forest Reclamation; Environmental Sciences Division: Edmonton, AB, Canada, 2000. [Google Scholar]
- Biagi, K.M.; Oswald, C.J.; Nicholls, E.M.; Carey, S.K. Increases in salinity following a shift in hydrologic regime in a constructed wetland watershed in a post-mining oil sands landscape. Sci. Total Environ. 2019, 653, 1445–1457. [Google Scholar] [CrossRef] [PubMed]
- Purdy, B.G.; Ellen Macdonald, S.; Lieffers, V.J. Naturally saline boreal communities as models for reclamation of saline oil sand tailings. Restor. Ecol. 2005, 13, 667–677. [Google Scholar] [CrossRef]
- Renault, S.; Zwiazek, J.; Fung, M.; Tuttle, S. Effects of oil sand tailings on plant species of the boreal forest. Environ. Pollut. 2000, 107, 357–365. [Google Scholar] [CrossRef]
- Price, A.C.R. Evaluation of Groundwater Flow and Salt Transport within an Undrained Tailings Sand Dam; University of Alberta: Edmonton, AB, Canada, 2005. [Google Scholar]
- Olatuyi, S.O.; Leskiw, L.A. Long-term changes in soil salinity as influenced by subsoil thickness in a reclaimed coal mine in east-central Alberta. Can. J. Soil Sci. 2014, 94, 605–620. [Google Scholar] [CrossRef] [Green Version]
- Huang, M.; Barbour, S.L.; Carey, S.K. The impact of reclamation cover depth on the performance of reclaimed shale overburden at an oil sands mine in Northern Alberta, Canada. Hydrol. Process. 2015, 29, 2840–2854. [Google Scholar] [CrossRef]
- Wu, S. Soil and Vegetation Properties on Reclaimed Oil Sands in Alberta, Canada: A Synthetic Review; University of British Columbia: Vancouver, BC, Canada, 2015. [Google Scholar]
- Li, X.; Chang, S.; Salifu, F. Soil texture and layering effects on water and salt dynamics in the presence of a water table: A review. Environ. Rev. 2014, 22, 1–10. [Google Scholar] [CrossRef]
- Spennato, H.M.; Ketcheson, S.J.; Mendoza, C.A.; Carey, S.K. Water table dynamics in a constructed wetland, Fort McMurray, Alberta. Hydrol. Process. 2018, 32, 3824–3836. [Google Scholar] [CrossRef]
- Volik, O.; Petrone, R.M.; Hall, R.I.; Macrae, M.L.; Wells, C.M.; Elmes, M.C.; Price, J.S. Long-term precipitation-driven salinity change in a saline, peat-forming wetland in the Athabasca Oil Sands Region, Canada: A diatom-based paleolimnological study. J. Paleolimnol. 2017, 58, 1–18. [Google Scholar] [CrossRef]
- Ketcheson, S. Hydrology of A Constructed Fen Watershed in A Post-Mined Landscape in the Athabasca Oil Sands Region; University of Waterloo: Waterloo, ON, Canada, 2016. [Google Scholar]
- Leatherdale, J.; Chanasyk, D.; Quideau, S. Soil water regimes of reclaimed upland slopes in the oil sands region of Alberta. Can. J. Soil Sci. 2012, 92, 117–129. [Google Scholar] [CrossRef]
- Hilhorst, M.A. A pore water conductivity sensor. Soil Sci. Soc. Am. J. 2000, 64, 6–1925. [Google Scholar] [CrossRef] [Green Version]
- Hothorn, T.; Hornik, K.; Zeileis, A. Unbiased recursive partitioning: A conditional inference framework. J. Comput. Graph. Stat. 2006, 15, 651–674. [Google Scholar] [CrossRef] [Green Version]
- Šimůnek, J.; Šejna, M.; Saito, H.; Sakai, M.; van Genuchten, M.T. The Hydrus-1d Software Package for Simulating the Movement of Water, Heat, and Multiple Solutes in Variably Saturated Media; Version 4.17; Department of Environmental Sciences, University of California Riverside: Riverside, CA, USA, 2013. [Google Scholar]
- Boese, C.D. The Design and Installation of a Field Instrumentation Program for the Evaluation of Soil-Atmosphere Water Fluxes in a Vegetated Cover over Saline/Sodic Shale Overburden; University of Saskatchewan: Saskatoon, SK, Canada, 2003. [Google Scholar]
- Shurniak, R.E. Predictive Modelling of Moisture Movement with Soil Cover Systems for Saline/Sodic Overburden Piles; University of Saskatchewan: Saskatoon, SK, Canada, 2003. [Google Scholar]
- McCloud, D. Water requirements of field crops in Florida as influenced by climate. Proc. Soil Sci. Soc. Fla. 1955, 15, 165–172. [Google Scholar]
- Anderson, M.P.; Woessner, W.W. Applied Groundwater Modeling; Academic Press: San Diego, CA, USA, 2002; pp. 343–372. [Google Scholar]
- Dobchuk, B.S.; Shurniak, R.E.; Barbour, S.L.; O’’Kane, M.A.; Song, Q. Long-term monitoring and modelling of a reclaimed watershed cover on oil sands tailings. Int. J. Min. Reclam. Environ. 2013, 27, 180–201. [Google Scholar] [CrossRef]
- Naeth, M.; Chanasyk, D.; Burgers, T. Vegetation and soil water interactions on a tailings sand storage facility in the Athabasca oil sands region of Alberta Canada. Phys. Chem. Earth Parts A/B/C 2011, 36, 19–30. [Google Scholar] [CrossRef]
- Meiers, G.P.; Barbour, S.L.; Qualizza, C.V.; Dobchuk, B.S. Evolution of the hydraulic conductivity of reclamation covers over sodic/saline mining overburden. J. Geotech. Geoenviron. 2011, 137, 968–976. [Google Scholar] [CrossRef] [Green Version]
- Diamantopoulos, E.; Durner, W.; Reszkowska, A.; Bachmann, J. Effect of soil water repellency on soil hydraulic properties estimated under dynamic conditions. J. Hydrol. 2013, 486, 175–186. [Google Scholar] [CrossRef]
Materials 1 | Texture | Bulk Density (g cm−3) | EC (dS m−1) | pH | Porosity (cm3 cm−3) |
---|---|---|---|---|---|
PMM | Sandy clay loam, | 0.89 | 1.42 | 7.52 | 0.66 |
TS | Sand | 1.37 | 2.59 | 8.14 | 0.48 |
OB | Silty clay | 1.65 | 1.55 | 7.53 | 0.30 |
Treatment 1 | Barrier Material | Barrier Layer Thickness (cm) | Saline GW Depth (cm) 2 | Water Balance 3 |
---|---|---|---|---|
CK_TS+ | TS | 50 | No saline GW | + |
CK_TS− | TS | 50 | No saline GW | − |
CK_OB+ | OB | 50 | No saline GW | + |
CK_OB− | OB | 50 | No saline GW | − |
NC+ | NC | 0 | 50 | + |
NC− | NC | 0 | 50 | − |
20TS+ | TS | 20 | 70 | + |
20TS− | TS | 20 | 70 | − |
50TS+ | TS | 50 | 100 | + |
50TS− | TS | 50 | 100 | − |
100TS+ | TS | 100 | 150 | + |
100TS− | TS | 100 | 150 | − |
20OB+ | OB | 20 | 70 | + |
20OB− | OB | 20 | 70 | − |
50OB+ | OB | 50 | 100 | + |
50OB− | OB | 50 | 100 | − |
100OB+ | OB | 100 | 150 | + |
100OB− | OB | 100 | 150 | − |
Barrier Material | Barrier Thickness | Water Balance | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
NC | OB | TS | 0 cm | 20 cm | 50 cm | 100 cm | CK | − | + | ||
Soil VWC (cm3 cm−3) | 20 cm | 0.46 | 0.31 | 0.29 | 0.46 | 0.34 | 0.30 | 0.28 | 0.28 | 0.31 | 0.33 |
40 cm | 0.59 | 0.37 | 0.35 | 0.59 | 0.49 | 0.35 | 0.28 | 0.28 | 0.38 | 0.38 | |
60 cm | 0.23 | 0.16 | 0.27 | 0.19 | 0.17 | 0.15 | 0.20 | 0.20 | |||
90 cm | 0.24 | 0.21 | 0.30 | 0.19 | 0.20 | 0.23 | 0.24 | ||||
140 cm | 0.23 | 0.38 | 0.33 | 0.22 | 0.29 | 0.29 | |||||
Soil EC (dS m−1) | 20 cm | 6.00 | 2.79 | 2.42 | 6.00 | 7.24 | 0.85 | 0.71 | 0.88 | 3.00 | 2.97 |
40 cm | 4.76 | 3.27 | 2.83 | 4.76 | 6.88 | 2.66 | 1.00 | 0.90 | 3.12 | 3.43 | |
60 cm | 5.78 | 3.82 | 7.71 | 7.26 | 2.66 | 1.29 | 4.34 | 5.69 | |||
90 cm | 6.59 | 3.72 | 8.44 | 4.59 | 2.18 | 5.56 | 5.53 | ||||
140 cm | 8.13 | 7.45 | 9.94 | 4.73 | 7.89 | 7.83 | |||||
Plant (g) | AGB 1 | 117.25 | 255.52 | 182.86 | 117.25 | 265.20 | 226.67 | 205.00 | 197.33 | 196.05 | 235.47 |
TR 2 | 42.31 | 90.55 | 69.65 | 42.31 | 81.93 | 88.44 | 78.55 | 79.30 | 73.35 | 83.10 |
Material 2 | BD 3 (cm3 cm−3) | Qr (cm3 cm−3) | Qs (cm3 cm−3) | α | n | Ks (cm hr−1) | Disp (cm) | Diffw (cm2 hr−1) |
---|---|---|---|---|---|---|---|---|
PMM | 0.89 | 0.18/0.25 4 | 0.66 | 0.044 | 1.89 | 5.44 | 10 | 0.01 |
TS | 1.37 | 0.08 | 0.48 | 0.071 | 2.70 | 4.00 | 50 | 0.01 |
OB | 1.65 | 0.17 | 0.30 | 0.022 | 1.55 | 0.10 | 10 | 0.01 |
Soil Property | Depth (cm) | PMM | PMM + TS | PMM + OB | ||||||
---|---|---|---|---|---|---|---|---|---|---|
ME | MAE | RMSE | ME | MAE | RMSE | ME | MAE | RMSE | ||
VWC 1 (cm3 cm−3) | 20 | 0.00 | 0.02 | 0.02 | −0.01 | 0.03 | 0.03 | −0.02 | 0.03 | 0.03 |
40 | 0.01 | 0.02 | 0.02 | 0.02 | 0.02 | 0.03 | 0.00 | 0.01 | 0.02 | |
60 | −0.02 | 0.02 | 0.02 | 0.00 | 0.01 | 0.01 | ||||
90 | 0.02 | 0.02 | 0.02 | 0.00 | 0.01 | 0.01 | ||||
140 | 0.03 | 0.03 | 0.04 | −0.02 | 0.02 | 0.02 | ||||
TDS 2 (g L−1) | 20 | −0.01 | 0.34 | 0.40 | 0.98 | 0.98 | 1.03 | −0.21 | 0.34 | 0.41 |
40 | −0.53 | 0.54 | 0.73 | 1.20 | 1.20 | 1.37 | −0.35 | 0.50 | 0.68 | |
60 | 0.30 | 1.63 | 1.99 | −0.24 | 0.40 | 0.53 | ||||
90 | −1.18 | 1.18 | 1.23 | −0.22 | 0.22 | 0.35 | ||||
140 | −0.49 | 0.49 | 0.54 | −0.22 | 0.26 | 0.32 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, X.; Ma, B.; Drozdowski, B.; Salifu, F.; Chang, S.X. Effects of Capping Strategy and Water Balance on Salt Movement in Oil Sands Reclamation Soils. Water 2020, 12, 512. https://doi.org/10.3390/w12020512
Li X, Ma B, Drozdowski B, Salifu F, Chang SX. Effects of Capping Strategy and Water Balance on Salt Movement in Oil Sands Reclamation Soils. Water. 2020; 12(2):512. https://doi.org/10.3390/w12020512
Chicago/Turabian StyleLi, Xiaopeng, Bin Ma, Bonnie Drozdowski, Francis Salifu, and Scott X. Chang. 2020. "Effects of Capping Strategy and Water Balance on Salt Movement in Oil Sands Reclamation Soils" Water 12, no. 2: 512. https://doi.org/10.3390/w12020512
APA StyleLi, X., Ma, B., Drozdowski, B., Salifu, F., & Chang, S. X. (2020). Effects of Capping Strategy and Water Balance on Salt Movement in Oil Sands Reclamation Soils. Water, 12(2), 512. https://doi.org/10.3390/w12020512