Source and Mobilization Mechanism of Iron, Manganese and Arsenic in Groundwater of Shuangliao City, Northeast China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Field Work, Sample Collection and Analysis
2.3. Statistical and Spatial Analysis
3. Results
3.1. Physio-Chemical Parameters
3.2. Correlation Matrix
3.3. Factor Analysis
4. Discussion
4.1. Source of Fe and Mn
4.2. Effect of Groundwater Level Fluctuation on Fe and Mn
4.3. Effect of TDS on Fe and Mn
4.4. Effect of Residence Time on Fe and Mn
4.5. Source of Arsenic
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Zhang, B.; Song, X.; Zhang, Y.; Han, D.; Tang, C.; Yu, Y.; Ma, Y. Hydrochemical characteristics and water quality assessment of surface water and groundwater in Songnen plain, Northeast China. Water Res. 2012, 46, 2737–2748. [Google Scholar] [CrossRef] [PubMed]
- Weng, H.X.; Qin, Y.C.; Chen, X.H. Elevated iron and manganese concentrations in groundwater derived from the Holocene transgression in the Hang-Jia-Hu Plain, China. Hydrogeol. J. 2007, 15, 715–726. [Google Scholar] [CrossRef]
- Pezzetta, E.; Lutman, A.; Martinuzzi, I.; Viola, C.; Bernardis, G.; Fuccaro, V. Iron concentrations in selected groundwater samples from the lower Friulian Plain, northeast Italy: Importance of salinity. Environ. Earth Sci. 2011, 62, 377–391. [Google Scholar] [CrossRef]
- Ravenscroft, P.; Burgess, W.G.; Ahmed, K.M.; Burren, M.; Perrin, J. Arsenic in groundwater of the Bengal Basin, Bangladesh: Distribution, field relations, and hydrogeological setting. Hydrogeol. J. 2005, 13, 727–751. [Google Scholar] [CrossRef]
- Carretero, S.; Kruse, E. Iron and manganese content in groundwater on the northeastern coast of the Buenos Aires Province, Argentina. Environ. Earth Sci. 2015, 73, 1983–1995. [Google Scholar] [CrossRef]
- Silvia, Z.; Elisa, A.; Roberto, L. Neuropsychological testing for the assessment of manganese neurotoxicity: A review and a proposal. Am. J. Ind. Med. 2007, 50, 812–830. [Google Scholar]
- Guo, H.; Zhang, D.; Wen, D.; Wu, Y.; Ni, P.; Jiang, Y.; Guo, Q.; Li, F.; Zheng, H.; Zhou, Y. Arsenic mobilization in aquifers of the southwest Songnen basin, P.R. China: Evidences from chemical and isotopic characteristics. Sci. Total Environ. 2014, 490, 590–602. [Google Scholar] [CrossRef]
- Luzati, S.; Beqiraj, A.; Beqiraj Goga, E.; Jaupaj, O. Iron and Manganese in Groundwater of Rrogozhina Aquifer, Western Albania. J. Environ. Sci. Eng. B 2016, 5, 276–285. [Google Scholar]
- Champ, D.R.; Gulens, J.; Jackson, R.E. Oxidation–reduction sequences in ground water flow systems. Can. J. Earth Sci. 1979, 16, 12–23. [Google Scholar] [CrossRef]
- Petrunic, B.M.; MacQuarrie, K.T.B.; Al, T.A. Reductive dissolution of Mn oxides in river-recharged aquifers: A laboratory column study. J. Hydrol. 2005, 301, 163–181. [Google Scholar] [CrossRef]
- Brown, C.J.; Coates, J.D.; Schoonen, M.A.A. Localized sulfate-reducing zones in a coastal plain aquifer. Ground Water 1999, 37, 505–516. [Google Scholar] [CrossRef]
- Kim, M.-J.; Nriagu, J.; Haack, S. Arsenic species and chemistry in groundwater of southeast Michigan. Environ. Pollut. 2002, 120, 379–390. [Google Scholar] [CrossRef]
- Neidhardt, H.; Berner, Z.A.; Freikowski, D.; Biswas, A.; Majumder, S.; Winter, J.; Gallert, C.; Chatterjee, D.; Norra, S. Organic carbon induced mobilization of iron and manganese in a West Bengal aquifer and the muted response of groundwater arsenic concentrations. Chem. Geol. 2014, 367, 51–62. [Google Scholar] [CrossRef]
- Shakoor, M.B.; Bibi, I.; Niazi, N.K.; Shahid, M.; Nawaz, M.F.; Farooqi, A.; Naidu, R.; Rahman, M.M.; Murtaza, G.; Luttge, A. The evaluation of arsenic contamination potential, speciation and hydrogeochemical behaviour in aquifers of Punjab, Pakistan. Chemosphere 2018, 199, 737–746. [Google Scholar] [CrossRef] [PubMed]
- Rawson, J.; Siade, A.; Sun, J.; Neidhardt, H.; Berg, M.; Prommer, H. Quantifying Reactive Transport Processes Governing Arsenic Mobility after Injection of Reactive Organic Carbon into a Bengal Delta Aquifer. Environ. Sci. Technol. 2017, 51, 8471–8480. [Google Scholar] [CrossRef]
- Biswas, A.; Gustafsson, J.P.; Neidhardt, H.; Halder, D.; Kundu, A.K.; Chatterjee, D.; Berner, Z.; Bhattacharya, P. Role of competing ions in the mobilization of arsenic in groundwater of Bengal Basin: Insight from surface complexation modeling. Water Res. 2014, 55, 30–39. [Google Scholar] [CrossRef] [Green Version]
- Nickson, R.T.; Mcarthur, J.M.; Ravenscroft, P.; Burgess, W.G.; Ahmed, K.M. Mechanism of arsenic release to groundwater, Bangladesh and West Bengal. Appl. Geochem. 2000, 15, 403–413. [Google Scholar] [CrossRef]
- Zheng, Y.; Stute, M.; Van Geen, A.; Gavrieli, I.; Dhar, R.; Simpson, H.J.; Schlosser, P.; Ahmed, K.M. Redox control of arsenic mobilization in Bangladesh groundwater. Appl. Geochem. 2004, 19, 201–214. [Google Scholar] [CrossRef]
- Smedley, P.L.; Kinniburgh, D.G. A review of the source, behaviour and distribution of arsenic in natural waters. Appl. Geochem. 2002, 17, 517–568. [Google Scholar] [CrossRef] [Green Version]
- Tang, J.; Bian, J.; Li, Z.; Zhu, J.; Wang, C. A study on arsenic distribution characteristics in groundwater of Western Jilin Province, P.R. China. In Proceedings of the 4th International Conference on Bioinformatics and Biomedical Engineering iCBBE 2010, Chengdu, China, 18–20 June 2010; pp. 1–5. [Google Scholar]
- Jilin Province Soil Fertilizer Station. Soil of Jilin Province, 1st ed.; China Agricultural Press: Beijing, China, 1998; pp. 165–315. (In Chinese) [Google Scholar]
- National Standardization Administration of China. Standard Examination Methods for Drinking Water: Organoleptic and Physical Parameters (GB/T 5750.4-2006), 1st ed.; China Standard Press: Beijing, China, 2007; pp. 1–11. (In Chinese) [Google Scholar]
- State Environmental Protection Administration. Methods for Monitoring and Analyzing Water and Wastewater, 4th ed.; China Environmental Science Press: Beijing, China, 2004; pp. 120–126. (In Chinese) [Google Scholar]
- National Standardization Administration of China. Standard Examination Methods for Drinking Water: Metal Parameters (GB/T 5750.6-2006), 1st ed.; China Standard Press: Beijing, China, 2007; pp. 1–30. (In Chinese) [Google Scholar]
- National Standardization Administration of China. Standard Examination Methods for Drinking Water: Nonmetal Parameters (GB/T 5750.5-2006), 1st ed.; China Standard Press: Beijing, China, 2007; pp. 30–35. (In Chinese) [Google Scholar]
- Kumru, M.N.; Bakaç, M. R-mode factor analysis applied to the distribution of elements in soils from the Aydın basin, Turkey. J. Geochem. Explor. 2003, 77, 81–91. [Google Scholar] [CrossRef]
- Aryafar, A.; Doulati Ardejani, F. R-mod factor analysis, a popular multivariate statistical technique to evaluate water quality in Khaf-Sangan basin, Mashhad, Northeast of Iran. Arab. J. Geosci. 2011, 6, 893–900. [Google Scholar] [CrossRef]
- Krumbein, W.C.; Graybill, F.A. An Introduction to Statistical Models in Geology; McGraw-Hill: New York, NY, USA, 1965; p. 317. [Google Scholar]
- Johnson, A.R.; Wichern, W.D. Applied Multivariate Statistical Analysis, 2nd ed.; Prentice-Hall: Englewood Cliffs, NJ, USA, 1988; p. 607. [Google Scholar]
- Kshetrimayum, K.S.; Hegeu, H. The state of toxicity and cause of elevated Iron and Manganese concentrations in surface water and groundwater around Naga Thrust of Assam-Arakan basin, Northeastern India. Environ. Earth Sci. 2016, 75, 1–14. [Google Scholar] [CrossRef]
- Jia, Y.; Guo, H.; Xi, B.; Jiang, Y.; Zhang, Z.; Yuan, R.; Yi, W.; Xue, X. Sources of groundwater salinity and potential impact on arsenic mobility in the western Hetao Basin, Inner Mongolia. Sci. Total Environ. 2017, 601–602, 691–702. [Google Scholar] [CrossRef] [PubMed]
- Manning, B.A.; Fendorf, S.E.; Bostick, B.; Suarez, D.L. Arsenic(III) Oxidation and Arsenic(V) Adsorption Reactions on Synthetic Birnessite. Environ. Sci. Technol. 2002, 36, 976–981. [Google Scholar] [CrossRef] [Green Version]
- Sun, X.; Doner, H.E.; Zavarin, M. Spectroscopy Study of Arsenite (As(III)) Oxidation on Mn-Substituted Goethite. Clays Clay Miner. 1999, 47, 474–480. [Google Scholar]
- Duan, Y.; Gan, Y.; Wang, Y.; Deng, Y.; Guo, X.; Dong, C. Temporal variation of groundwater level and arsenic concentration at Jianghan Plain, Central China. J. Geochem. Explor. 2014, 149, 106–119. [Google Scholar] [CrossRef]
- Gan, Y.; Wang, Y.; Duan, Y.; Deng, Y.; Guo, X.; Ding, X. Hydrogeochemistry and arsenic contamination of groundwater in the Jianghan Plain, central China. J. Geochem. Explor. 2014, 138, 81–93. [Google Scholar] [CrossRef]
- Hem, J.D. Study and Interpretation of the Chemical Characteristics of Natural Water; U.S. Geological Survey Water-Supply Paper: Washington, DC, USA, 1985; Volume 2254, p. 363.
- Brown, C.J.; Walter, D.A.; Colabufo, S. Iron in the Aquifer System of Suffolk County, New York, 1990–1998; Water Science Center U.S. Geological Survey: New York, NY, USA, 1999.
- Opponganane, A.B. Insights into the Mechanisms of Iron Reductive Dissolution in Vadose Zone Soils and Implications for Landfill Activities: Predicting the Potential for Groundwater Pollution. Ph.D. Thesis, University of Florida, Gradworks, FL, USA, 2014. [Google Scholar]
- Huang, B.; Li, Z.; Chen, Z.; Chen, G.; Zhang, C.; Huang, J.; Nie, X.; Xiong, W.; Zeng, G. Study and health risk assessment of the occurrence of iron and manganese in groundwater at the terminal of the Xiangjiang River. Environ. Sci. Pollut. Res. 2015, 22, 19912–19921. [Google Scholar] [CrossRef]
- Matsunaga, T.; Karametaxas, G.; von Gunten, H.R.; Lichtner, P.C. Redox chemistry of iron and manganese minerals in river-recharged aquifers: A model interpretation of a column experiment. Geochim. Cosmochim. Acta 1993, 57, 1691–1704. [Google Scholar] [CrossRef]
- Bourg, A.C.M.; Berlin, C. Seasonal and Spatial Trends in Manganese Solubility in an Alluvial Aquifer. Environ. Sci. Technol. 1994, 28, 868–876. [Google Scholar] [CrossRef]
- Liang, S.; Li, Y.F.; Tang, J.; Wang, Y.J.; Li, Q.Y. Study on form distribution of soil iron in western Jilin and its correlation with soil properties. Global Geol. 2016, 35, 593–600. (In Chinese) [Google Scholar]
- Jenčo, M.; Matečný, I.; Putiška, R.; Burian, L.; Tančárová, K.; Kušnirák, D. Umbrisols at Lower Altitudes, Case Study from Borská lowland (Slovakia). Open Geosci. 2018, 10, 121–136. [Google Scholar] [CrossRef]
- Zhang, C.; Ge, Y.; Yao, H.; Chen, X.; Hu, M. Iron oxidation-reduction and its impacts on cadmium bioavailability in paddy soils: A review. Front. Environ. Sci. Eng. China 2012, 6, 509–517. [Google Scholar] [CrossRef]
- Akter, M.; Deroo, H.; De Grave, E.; Van Alboom, T.; Kader, M.A.; Pierreux, S.; Begum, M.A.; Boeckx, P.; Sleutel, S. Link between paddy soil mineral nitrogen release and iron and manganese reduction examined in a rice pot growth experiment. Geoderma 2018, 326, 9–21. [Google Scholar] [CrossRef]
- Williams, M.D.; Oostrom, M. Oxygenation of anoxic water in a fluctuating water table system: An experimental and numerical study. J. Hydrol. 2000, 230, 70–85. [Google Scholar] [CrossRef]
- Kohfahl, C.; Massmann, G.; Pekdeger, A. Sources of oxygen flux in groundwater during induced bank filtration at a site in Berlin, Germany. Hydrogeol. J. 2009, 17, 571–578. [Google Scholar] [CrossRef]
- Liu, Y.; Yamanaka, T.; Zhou, X.; Tian, F.; Ma, W. Combined use of tracer approach and numerical simulation to estimate groundwater recharge in an alluvial aquifer system: A case study of Nasunogahara area, Central Japan. J. Hydrol. 2014, 519, 833–847. [Google Scholar] [CrossRef]
- Zheng, J.; Teng, Y.; Wang, J.; Hu, L. Assessment of the Groundwater Renewability in Beijing Plain Area. In Proceedings of the 5th International Conference on Bioinformatics and Biomedical Engineering iCBBE 2011, Wuhan, China, 10–12 May 2011; pp. 1–4. [Google Scholar]
- Yamanaka, T.; Mikita, M.; Lorphensri, O.; Shimada, J.; Kagabu, M.; Ikawa, R.; Nakamura, T.; Tsujimura, M. Anthropogenic changes in a confined groundwater flow system in the Bangkok Basin, Thailand, part II: How much water has been renewed? Hydrol. Process. 2011, 25, 2734–2741. [Google Scholar] [CrossRef]
- Huang, J.H. Impact of microorganisms on arsenic biogeochemistry: A review. Water Air Soil Pollut. 2014, 225, 1848. [Google Scholar] [CrossRef]
- Meharg, A.A.; Zhao, F.J. Arsenic & Rice; Springer Science + Business Media: Berlin, Germany, 2012; ISBN 9789400729476. [Google Scholar]
- Nickson, R.; McArthur, J.; Burgess, W.; Ahmed, K.M.; Ravenscroft, P.; Rahmanñ, M. Arsenic poisoning of Bangladesh groundwater. Nature 1998, 395, 338. [Google Scholar] [CrossRef]
- Honma, T.; Ohba, H.; Kaneko-Kadokura, A.; Makino, T.; Nakamura, K.; Katou, H. Optimal Soil Eh, pH, and Water Management for Simultaneously Minimizing Arsenic and Cadmium Concentrations in Rice Grains. Environ. Sci. Technol. 2016, 50, 4178–4185. [Google Scholar] [CrossRef] [PubMed]
Sample ID | N 2 | Minimum | Maximum | Median |
---|---|---|---|---|
Well Depth (m) | 82 | 7.00 | 90.00 | 30.00 |
WLF 1(m) | 82 | 0.02 | 6.66 | 0.60 |
Fe (mg/L) | 82 | 0.245 | 46.3 | 1.37 |
Mn (mg/L) | 82 | 0.0010 | 6.16 | 0.197 |
As (mg/L) | 82 | <0.0010 | 0.112 | 0.0031 |
TDS (mg/L) | 82 | 252 | 2611 | 703 |
TH 3 (in CaCO3, mg/L) | 82 | 127 | 1250 | 321 |
pH | 82 | 7.04 | 8.38 | 7.55 |
Turbidity (NTU) | 82 | <0.5 | 8.9 | 0.7 |
(mg/L) | 82 | 136 | 1330 | 357 |
-N (mg/L) | 82 | <0.025 | 2.14 | 0.400 |
Parameters | WD | WLF | Fe | Mn | As | TDS | TH | pH | Turbidity | ||
---|---|---|---|---|---|---|---|---|---|---|---|
WD | 1.00 | ||||||||||
WLF | −0.03 | 1.00 | |||||||||
Fe | 0.08 | 0.09 | 1.00 | ||||||||
Mn | −0.15 | 0.24 | 0.19 | 1.00 | |||||||
As | −0.10 | 0.12 | 0.14 | 0.36 * | 1.00 | ||||||
TDS | 0.05 | 0.02 | 0.59 ** | 0.34 * | 0.32 * | 1.00 | |||||
TH | 0.08 | 0.09 | 0.71 ** | 0.24 | 0.15 | 0.73 ** | 1.00 | ||||
pH | 0.01 | −0.15 | −0.33 * | −0.28 | −0.18 | −0.20 | −0.19 | 1.00 | |||
Turbidity | 0.27 | 0.00 | 0.32 * | 0.18 | 0.07 | 0.26 | 0.25 | −0.20 | 1.00 | ||
0.05 | 0.10 | 0.36 * | 0.43 ** | 0.34 | 0.77 ** | 0.28 | −0.18 | 0.12 | 1.00 | ||
0.22 | 0.20 | 0.51 ** | 0.48 | 0.14 | 0.15 | 0.21 | −0.35 * | 0.26 | 0.44 | 1.00 |
Parameters | WD | WLF | Fe | Mn | As | TDS | TH | pH | Turbidity | ||
---|---|---|---|---|---|---|---|---|---|---|---|
WD | 1.00 | ||||||||||
WLF | 0.54 ** | 1.00 | |||||||||
Fe | −0.50 ** | −0.08 | 1.00 | ||||||||
Mn | −0.51 ** | −0.16 | 0.75 ** | 1.00 | |||||||
As | −0.02 | 0.21 | 0.24 | 0.25 | 1.00 | ||||||
TDS | −0.53 ** | −0.32 | 0.61 ** | 0.69 ** | −0.17 | 1.00 | |||||
TH | −0.53 ** | −0.28 | 0.58 ** | 0.69 ** | −0.17 | 0.97 ** | 1.00 | ||||
pH | 0.29 | 0.12 | −0.37 * | −0.30 | 0.23 | −0.22 | −0.26 | 1.00 | |||
Turbidity | −0.13 | −0.21 | 0.91 ** | 0.82 ** | 0.16 | 0.05 | −0.02 | −0.30 | 1.00 | ||
−0.48 ** | −0.47 ** | 0.68 ** | 0.63 ** | −0.15 | 0.79 ** | 0.67 ** | −0.19 | 0.21 | 1.00 | ||
−0.21 | −0.03 | 0.52 ** | 0.39 | −0.11 | 0.33 | 0.24 | 0.17 | 0.16 | 0.51 ** | 1.00 |
Parameters | 1 | 2 | 3 |
---|---|---|---|
TH | 0.896 | 0.063 | 0.091 |
TDS | 0.872 | 0.162 | 0.000 |
Fe | 0.813 | 0.138 | 0.206 |
Mn | 0.245 | 0.722 | −0.129 |
WLF | −0.133 | 0.635 | 0.078 |
pH | −0.178 | −0.589 | −0.244 |
As | 0.249 | 0.551 | −0.265 |
Well Depth | 0.006 | −0.160 | 0.803 |
Turbidity | 0.272 | 0.215 | 0.682 |
Parameters | 1 | 2 | 3 |
---|---|---|---|
Fe | 0.957 | 0.028 | −0.003 |
Turbidity | 0.942 | −0.161 | −0.031 |
Mn | 0.909 | 0.23 | 0.018 |
pH | −0.749 | −0.157 | −0.152 |
TH | 0.018 | 0.967 | −0.094 |
TDS | 0.026 | 0.961 | −0.123 |
Well Depth | −0.484 | −0.559 | 0.295 |
As | 0.227 | −0.009 | 0.768 |
WLF | −0.159 | −0.296 | 0.734 |
District | Q (×104 m3) | Qr (×104 m3/a) | T (a) | Mean (Fe) (mg/L) | Mean (Mn) (mg/L) |
---|---|---|---|---|---|
I | 99,368.52 | 2733.62 | 36.35 | 1.65 | 0.311 |
II | 122,690.16 | 2934.45 | 41.81 | 1.68 | 0.457 |
III | 115,636.58 | 3041.17 | 38.02 | 1.82 | 0.328 |
IV | 27,834.79 | 845.86 | 32.91 | 1.16 | 0.147 |
VI | 74,411.83 | 2539.55 | 29.30 | 1.13 | 0.166 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Z.; Xiao, C.; Adeyeye, O.; Yang, W.; Liang, X. Source and Mobilization Mechanism of Iron, Manganese and Arsenic in Groundwater of Shuangliao City, Northeast China. Water 2020, 12, 534. https://doi.org/10.3390/w12020534
Zhang Z, Xiao C, Adeyeye O, Yang W, Liang X. Source and Mobilization Mechanism of Iron, Manganese and Arsenic in Groundwater of Shuangliao City, Northeast China. Water. 2020; 12(2):534. https://doi.org/10.3390/w12020534
Chicago/Turabian StyleZhang, Zhihao, Changlai Xiao, Oluwafemi Adeyeye, Weifei Yang, and Xiujuan Liang. 2020. "Source and Mobilization Mechanism of Iron, Manganese and Arsenic in Groundwater of Shuangliao City, Northeast China" Water 12, no. 2: 534. https://doi.org/10.3390/w12020534
APA StyleZhang, Z., Xiao, C., Adeyeye, O., Yang, W., & Liang, X. (2020). Source and Mobilization Mechanism of Iron, Manganese and Arsenic in Groundwater of Shuangliao City, Northeast China. Water, 12(2), 534. https://doi.org/10.3390/w12020534