The Hydrochemistry and Recent Sediment Geochemistry of Small Lakes of Murmansk, Arctic Zone of Russia
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Water Geochemistry
3.2. Sediments Geochemistry
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Chin, A. Urban transformation of river landscapes in a global context. Geomorphology 2006, 79, 460–487. [Google Scholar] [CrossRef]
- Remor, M.B.; Sampaio, S.C.; deRijk, S.; Boas, M.A.V.; Gotardo, J.T.; Pinto, E.T.; Schardong, F.A. Sediment geochemistry of the urban Lake Paulo Gorski. Int. J. Sediment Res. 2018, 33, 406–414. [Google Scholar] [CrossRef]
- Förstner, U.; Heise, S.; Schwartz, R.; Westrich, B.; Ahlf, W. Historical contaminated sediments and soils at the river basin scale. Examples from the Elbe River catchment area. J. Soils Sediments 2004, 4, 247–260. [Google Scholar] [CrossRef]
- Moiseenko, T.I. Impact of geochemical factors of aquatic environment on the metal bioaccumulation in fish. Geochem. Int. 2015, 53, 213–223. [Google Scholar] [CrossRef]
- Wijaya, A.R.; Ouchi, A.K.; Tanaka, K.; Cohen, M.D.; Sirirattanachai, S.; Shinjo, R.; Ohde, S. Evaluation of heavy metal contents and Pb isotopic compositions in the Chao Phraya River sediments: Implications for anthropogenic inputs from urbanized areas, Bangkok. J. Geochem. Explor. 2013, 126–127, 45–54. [Google Scholar] [CrossRef]
- Dauvalter, V.; Kashulin, V.; Sandimirov, S.; Terentjev, P.; Denisov, D.; Amundsen, P.-A. Chemical composition of lake sediments along a pollution gradient in a Subarctic watercourse. J. Environ. Sci. Health Part A Toxic/Hazard. Subst. Environ. Eng. 2011, 46, 1020–1033. [Google Scholar] [CrossRef]
- Norton, S.; Dillon, P.; Evans, R. The history of atmospheric deposition of Cd, Hg and Pb in North America: Evidence from lake and peat bog sediments. Sources, Deposition and Capony Interactions. In V. III, Acidic Precipitation; Springer: New York, NY, USA, 1990; pp. 73–101. [Google Scholar] [CrossRef]
- Bartnicki, J. An Eulerian model for atmospheric transport of heavy metals over Europe: Model description and preliminary results. Water Air Soil Pollut. 1994, 75, 227–263. [Google Scholar] [CrossRef]
- Verta, M.; Tolonen, K.; Simola, H. History of heavy metal pollution in Finland as recorded by lake sediments. Sci. Total Environ. 1998, 87, 1–18. [Google Scholar] [CrossRef]
- Moiseenko, T.I.; Dauvalter, V.A.; Lukin, A.A.; Kudryavtseva, L.P.; Ilyashuk, B.P.; Ilyashuk, E.A.; Sandimirov, S.S.; Kagan, L.Y.; Vandysh, O.I.; Sharov, A.N.; et al. Anthropogenic Modifications of the Ecosystem of Lake Imandra; Nauka: Moscow, Russia, 2002; 487p. (In Russian) [Google Scholar]
- Standard Methods for Examination for Water and Wastewater, 20th ed.; Clescerl, L.S.; Greenberg, A.E.; Eaton, A.D. (Eds.) American Public Health Association USA: Washington, DC, USA, 1999; 2671p. [Google Scholar]
- Intercomparison–2016 (2016) 1630: pH, Conductivity, Alkalinity, NO3-N, Cl, SO4, Ca, Mg, Na, K, TOC, Al, Fe, Mn, Cd, Pb, Cu, Ni and Zn. ICP Waters report 129/2016; Report No. 7081,72 p; Norwegian Institute for Water Research: Oslo, Norway, 2016.
- Tessier, A.; Campbell, P.G.; Bisson, M. Sequential extraction procedure for the speciation of particulate trace metals. Anal. Chem. 1979, 51, 844–851. [Google Scholar] [CrossRef]
- Suresh, G.; Ramasamy, V.; Meenakshisundaram, V.; Venkatachalapathy, R.; Ponnusamy, V. Influence of mineralogical and heavy metal composition on natural radionuclide concentrations in the river sediments. Appl. Radiat. Isot. 2011, 69, 1466–1474. [Google Scholar] [CrossRef]
- Tomlinson, D.; Wilson, J.; Harris, C.; Jeffrey, D. Problems in the assessment of heavy metal levels in estuaries and the formation of a pollution index. Helgoländer. Meeresun 1980, 33, 566–575. [Google Scholar] [CrossRef] [Green Version]
- Müller, G. Heavy metals in the sediments of the Rhine.—Changes since 1971. Umsch. Wiss. Tech. 1979, 79, 778–783. (In German) [Google Scholar]
- Slukovskii, Z.I. Background concentrations of heavy metals and other chemical elements in the sediments of small lakes in the south of Karelia, Russia. Vestn. Mstu 2020, 23, 80–92. [Google Scholar] [CrossRef]
- Medvedev, A.; Slukovskii, Z.; Novitcky, D. Heavy Metals Pollution of Small Urban Lakes Sediments within the Onego Lake Catchment Area. Pol. J. Nat. Sci. 2019, 34, 245–256. [Google Scholar]
- Slukovskii, Z.I.; Medvedev, M.A.; Siroezhko, E.V. Long-range heavy metal aerosols transport as a factor of the formation of the geochemical characteristics of current lake bottom sediments from the southwestern republic of Karelia (exemplified by lake Ukonlampi, Lahdenpohja district). J. Elem. 2020, 25, 125–137. [Google Scholar] [CrossRef]
- Moiseenko, T.I.; Rodushkin, I.V.; Dauvalter, V.A.; Kudryavtzeva, L.P. Quality Formation of Surface Waters and Bottom Sediments under Conditions of Anthropogenic Loads on Water Catchments within the Arctic Area; Kola Science Centre RAS: Apatity, Russia, 1996; 263p. (In Russian) [Google Scholar]
- Kashulin, N.A.; Sandimirov, S.S.; Dauvalter, V.A.; Kudryavtzeva, L.P.; Terentjev, P.M.; Denisov, D.B.; Valkova, S.A. Annotated Ecological Catalogue of Lakes in the Murmansk Region: East Area of the Murmansk Region (Basin of the Barents Sea); Kola Science Centre RAS: Apatity, Russia, 2010; 249p. [Google Scholar]
- Bazova, M.M. Specifics of the elemental composition of waters in environments with operating mining and ore-processing plants in the Kola North. Geochem. Int. 2017, 55, 131–143. [Google Scholar] [CrossRef]
- Alekin, O.A. Fundamentals of Hydrochemistry; Hydrometeoizdat: Leningrad, Russia, 1970; 444p. (In Russian) [Google Scholar]
- Bolshakov, G.F. Nitrogen-Organic Compounds of Oil; Nauka: Novosibirsk, Russia, 1988. (In Russian) [Google Scholar]
- Nikanorov, A.M. Hydrochemistry; Gidrometeoizdat: Saint-Petersburg, Russia, 2000; 444p. (In Russian) [Google Scholar]
- Asmala, E.; Carstensen, J.; Räike, A. Multiple anthropogenic drivers behind upward trends in organic carbon concentrations in boreal rivers. Environ. Res. Lett. 2019, 14, 124018. [Google Scholar] [CrossRef] [Green Version]
- Kauppila, T.; Ahokas, T.; Nikolajev-Wikström, L.; Mäkinen, J.; Tammelin, M.H.; Meriläinen, J.J. Aquatic effects of peat extraction and peatland forest drainage: A comparative sediment study of two adjacent lakes in Central Finland. Environ. Earth Sci. 2016, 75, 1473. [Google Scholar] [CrossRef] [Green Version]
- Skjelkvåle, B.L.; Andersen, T.; Fjeld, E.; Mannio, J.; Wilander, A.; Johansson, K.; Jensen, J.P.; Moiseenko, T.I. Heavy Metal Surveys in Nordic Lakes. Concentrations, Geographic Patterns and Relation to Critical Limits. AMBIO 2001, 30, 2–10. [Google Scholar]
- Stankevica, K.; Vincevica-Gaile, Z.; Klavins, M. Freshwater sapropel (gyttja): Its description, properties and opportunities of use in contemporary agriculture. Agron. Res. 2016, 14, 929–947. [Google Scholar]
- Teng, Y.; Ni, S.; Zhang, C.; Wang, J.; Lin, X.; Huang, Y. Environmental geochemistry and ecological risk of vanadium pollution in Panzhihua mining and smelting area, Sichuan, China. Chin. J. Geochem. 2006, 25, 379–385. [Google Scholar] [CrossRef]
- Slukovskii, Z.I.; Svetov, S.A. Geochemical indicators of technogenic pollution of bottom sediments of small rivers in an urbanized environment. Geogr. Nat. Resour. 2016, 37, 32–38. [Google Scholar] [CrossRef]
- Nriagu, J.O. The rise and fall of leaded gasoline. Sci. Total Environ. 1990, 92, 13–28. [Google Scholar] [CrossRef]
- Thomas, V. The elimination of lead in gasoline. Annu. Rev. Energy Environ. 1995, 20, 301–324. [Google Scholar] [CrossRef]
- Keinonen, M. The isotopic composition of lead in man and the environment in Finland 1966–1987: Isotope ratios of lead as indicators of pollutant source. Sci. Total Environ. 1992, 113, 251–268. [Google Scholar] [CrossRef]
- Dauvalter, V.; Kashulin, N. Chalcophile elements (Hg, Cd, Pb, As) in lake Umbozero, Murmansk Province. Water Resour. 2010, 37, 497–512. [Google Scholar] [CrossRef]
- Escobar, J.; Whitmore, T.J.; Kamenov, G.D.; Riedinger-Whitmore, M.A. Isotope record of anthropogenic lead pollution in lake sediments of Florida, USA. J. Paleolimnol. 2013, 49, 237–252. [Google Scholar] [CrossRef]
- Hosono, T.; Alvarez, K.; Kuwae, M. Lead isotope ratios in six lake sediment cores from Japan Archipelago: Historical record of trans-boundary pollution sources. Sci. Total Environ. 2016, 559, 24–37. [Google Scholar] [CrossRef]
- Vinogradova, A.; Kotova, E.; Topchaya, V. Atmospheric transport of heavy metals to regions of the North of the European territory of Russia. Geogr. Nat. Resour. 2017, 38, 78–85. [Google Scholar] [CrossRef]
- McConnell, J.R.; Edwards, R. Coal burning leaves toxic heavy metal legacy in the Arctic. Proc. Natl. Acad. Sci. USA 2008, 34, 12140–12144. [Google Scholar] [CrossRef] [Green Version]
- McConnell, J.R.; Chellman, N.J.; Wilson, A.I.; Stohl, A.; Arienzo, M.M.; Eckhardt, S.; Steffensen, J.P. Pervasive Arctic lead pollution suggests substantial growth in medieval silver production modulated by plague, climate, and conflict. Proc. Natl. Acad. Sci. USA 2019, 116, 14910–14915. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krachler, M.; Zheng, J.; Koerner, R.; Zdanowicz, C.; Fisher, D.; Shotyk, W. Increasing atmospheric antimony contamination in the northernhemisphere: Snow and ice evidence from Devon Island, Arctic Canada. J. Environ. Monit. 2006, 7, 1169–1176. [Google Scholar] [CrossRef] [PubMed]
- Pacyna, J.M.; Pacyna, E.G. An assessment of global and regional emissions of trace metals to the atmosphere from anthropogenic sources worldwide. Environ. Rev. 2001, 9, 269–298. [Google Scholar] [CrossRef]
- Cooke, C.A.; Abbott, M.B. A paleolimnological perspective on industrial-era metal pollution in the central Andes, Peru. Sci. Total Environ. 2008, 393, 262–272. [Google Scholar] [CrossRef]
- Kuwae, M.; Tsugeki, N.K.; Agusa, T.; Toyoda, K.; Tani, Y.; Ueda, S.; Tanabe, S.; Urabe, J. Sedimentary records of metal deposition in Japanese alpine lakes for the last 250 years: Recent enrichment of airborne Sb and In in East Asia. Sci. Total Environ. 2013, 442, 189–197. [Google Scholar] [CrossRef]
- Li, X.; Shen, Z.; Wai, O.W.H.; Li, Y.-S. Chemical forms of Pb, Zn and Cu in the sediment profiles of the Pearl River Estuary. Mar. Pollut. Bull. 2001, 42, 215–223. [Google Scholar] [CrossRef]
- López, D.L.; Gierlowski-Kordesch, E.; Hollenkamp, C. Geochemical Mobility and bioavailability of heavy metals in a lake affected by acid mine drainage: Lake Hope, Vinton County, Ohio. Water Air Soil Pollut. 2010, 213, 27–45. [Google Scholar] [CrossRef]
Lake | Altitude above Sea Level, m | Lake Water Table Area, km2 | Shoreline Length, m | Lake Length, m | Depth, m | |
---|---|---|---|---|---|---|
Max. | Aver. | |||||
Lake Semenovskoe | 98 | 0.213 | 3200 | 730 | 11.30 | 2.40 |
Lake Srednee | 111 | 0.248 | 1990 | 700 | 23.50 | 7.70 |
Lake Okunevoe | 119 | 0.048 | 1270 | 550 | 5.60 | 2.30 |
Lake Ledovoe | 80 | 0.040 | 780 | 270 | 15.70 | 7.80 |
Lake Yuzhnoe | 90 | 0.053 | 1130 | 430 | 11.30 | 3.05 |
Parameters | Units | Lakes | Background [21] | ||||
---|---|---|---|---|---|---|---|
Semenovskoe | Srednee | Okunevoe | Ledovoe | Yuzhnoe | |||
pH | 6.82 | 7.27 | 6.88 | 7.79 | 8.42 | 6.20 | |
Cond20 | µS/cm | 111 | 207 | 91 | 866 | 407 | 31.8 |
Cond25 | mS/m | 12 | 23 | 10 | 95 | 45 | 3.5 |
Ca2+ | mg/L | 8.3 | 18.8 | 9.2 | 58.3 | 31.5 | 1.4 |
Mg2+ | mg/L | 2 | 3.9 | 2.1 | 10.3 | 8.5 | 0.8 |
Na+ | mg/L | 10.9 | 17.8 | 6.4 | 124.4 | 45.6 | 3.8 |
K+ | mg/L | 2.2 | 3.9 | 1.4 | 9.7 | 6.4 | 0.4 |
HCO3− | mg/L | 22 | 43 | 20 | 196 | 116 | 5.6 |
SO42– | mg/L | 9.6 | 31.5 | 14.9 | 28.4 | 16.8 | 2.5 |
Cl– | mg/L | 17.8 | 24.7 | 8.9 | 185.4 | 68.9 | 5.4 |
TDS | mg/L | 73 | 143 | 63 | 612 | 294 | 20 |
NH4+ | µgN/L | 187 | 30 | 24 | 3475 | 35 | 16 |
NO3– | µgN/L | 76 | 86.4 | 28.8 | 1.6 | 9 | 18 |
TN | µgN/L | 542 | 369 | 315 | 3711 | 275 | 250 |
PO43– | µgP/L | 4.6 | 0.8 | 2.25 | 37.8 | 4 | 2 |
TPf | µgP/L | 7.2 | 3.8 | 5.5 | 47.6 | 10.3 | 4 |
TPunf | µgP/L | 34.2 | 12.8 | 13.8 | 664 | 16.7 | 9 |
Color | Pt° | 12.6 | 8 | 53.3 | 25.4 | 10.3 | 62 |
CODMn | mg/L | 4.3 | 3.3 | 9.2 | 8 | 5.1 | 9.5 |
TOC | mgC/L | 4.8 | 4.1 | 8.6 | 7.7 | 5.5 | 7.7 |
Si | mg/L | 0.25 | 0.2 | 0.97 | 4.72 | 0.15 | 1.4 |
Element | Lakes | Bazova, 2017 | Skjelkvåle et al., 2001 | ||||
---|---|---|---|---|---|---|---|
Semenovskoe | Srednee | Okunevoe | Ledovoe | Yuzhnoe | |||
V | 1.69 | 3.43 | 2.98 | 1.24 | 0.91 | 0.67 | <0.3 |
Cr | 0.18 | 0.50 | 0.70 | 1.11 | 0.62 | 0.50 | <0.1 |
Mn | 36.3 | 9.7 | 14.8 | 13.8 | 14.2 | 2.09 | 3.43 |
Co | 0.13 | 0.10 | 0.22 | 0.90 | 0.18 | 0.47 | 0.05 |
Ni | 2.91 | 6.79 | 8.99 | 10.80 | 5.93 | 1.06 | 0.33 |
Cu | 2.49 | 2.56 | 3.59 | 4.88 | 3.05 | 0.94 | 0.41 |
Zn | 2.47 | 1.03 | 6.40 | 7.34 | 2.50 | 1.66 | 1.70 |
Mo | 0.14 | 0.20 | 0.11 | 0.62 | 0.26 | 0.55 | <0.04 |
Cd | bdl | 0.18 | 0.56 | bdl | 0.22 | 0.36 | <0.02 |
Sb | bdl | 2.31 | bdl | bdl | bdl | 0.69 | 0.03 |
W | bdl | bdl | 0.0025 | 0.4725 | 0.0005 | 0.61 | – |
Pb | bdl | 14.83 | 20.73 | 0.21 | 15.37 | 0.47 | 0.18 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Slukovskii, Z.; Dauvalter, V.; Guzeva, A.; Denisov, D.; Cherepanov, A.; Siroezhko, E. The Hydrochemistry and Recent Sediment Geochemistry of Small Lakes of Murmansk, Arctic Zone of Russia. Water 2020, 12, 1130. https://doi.org/10.3390/w12041130
Slukovskii Z, Dauvalter V, Guzeva A, Denisov D, Cherepanov A, Siroezhko E. The Hydrochemistry and Recent Sediment Geochemistry of Small Lakes of Murmansk, Arctic Zone of Russia. Water. 2020; 12(4):1130. https://doi.org/10.3390/w12041130
Chicago/Turabian StyleSlukovskii, Zakhar, Vladimir Dauvalter, Alina Guzeva, Dmitry Denisov, Alexander Cherepanov, and Evgeny Siroezhko. 2020. "The Hydrochemistry and Recent Sediment Geochemistry of Small Lakes of Murmansk, Arctic Zone of Russia" Water 12, no. 4: 1130. https://doi.org/10.3390/w12041130
APA StyleSlukovskii, Z., Dauvalter, V., Guzeva, A., Denisov, D., Cherepanov, A., & Siroezhko, E. (2020). The Hydrochemistry and Recent Sediment Geochemistry of Small Lakes of Murmansk, Arctic Zone of Russia. Water, 12(4), 1130. https://doi.org/10.3390/w12041130