Change of Contributions from Different Natural Processes to the Ionic Budget in the Yarlung Tsangpo River
Abstract
:1. Introduction
2. Materials and Methods
2.1. Hydrologic and Geologic Setting of the Study Area
2.2. Sampling and Chemical Analysis
2.3. Historical Chemical Data Collection
3. Results and Discussion
3.1. Major Ion Chemistry and Variation During the Period of 1975 to 2015
3.2. Anthropogenic Impact on Riverine Dissolved Ions
3.3. Atmospheric Contribution to Riverine Dissolved Ions
3.4. Contribution of Chemical Weathering to Riverine Dissolved Ions
3.4.1. Contribution from Halite and Non-Silicate Sodium Salts
3.4.2. Contribution from Evaporites and Sulfides
3.4.3. Silicate and Carbonate Weathering
3.5. Variation of Different Process Contributions During the Period of 1975 to 2015
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Gaillardet, J.; Duprè, B.; Louvat, P.; Allègre, C.J. Global silicate weathering and CO2 consumption rates deduced from the chemistry of large rivers. Chem. Geol. 1999, 159, 3–30. [Google Scholar] [CrossRef]
- Gibbs, R.J. Mechanisms controlling world water chemistry. Science 1970, 170, 1088–1990. [Google Scholar] [CrossRef]
- Galy, A.; France–Lanord, C. Weathering processes in the Ganges–Brahmaputra basin and the riverine alkalinity budget. Chem. Geol. 1999, 159, 31–60. [Google Scholar] [CrossRef]
- Amiotte–Suchet, P.; Probst, J.L.; Ludwig, W. Worldwide distribution of continental rock lithology: Implications for the atmospheric/soil CO2 uptake by continental weathering and alkalinity river transport to the oceans. Glob. Biogeochem. Cycles 2003, 17, 1038. [Google Scholar] [CrossRef] [Green Version]
- Li, S.Y.; Zhang, Q.F. Geochemistry of the upper Han River basin, China. 2: seasonal variations in major ion compositions and contribution of precipitation chemistry to the dissolved load. J. Hazard Mater. 2009, 170, 605–611. [Google Scholar] [CrossRef] [PubMed]
- Li, S.Y.; Lu, X.X.; Bush, R.T. Chemical weathering and CO2 consumption in the Lower Mekong River. Sci. Total Environ. 2014, 472, 162–177. [Google Scholar] [CrossRef]
- Jiang, L.G.; Yao, Z.J.; Wang, R.; Liu, Z.F.; Wang, L.; Wu, S.S. Hydrochemistry of the middle and upper reaches of the Yarlung Tsangpo River system: Weathering processes and CO2 consumption. Environ. Earth Sci. 2015, 74, 2369–2379. [Google Scholar] [CrossRef]
- Beaulieu, E.; Goddéris, Y.; Donnadieu, L.; Labat, D.; Roelandt, C. High sensitivity of the continental–weathering carbon dioxide sink to future climate change. Nat. Clim. Chang. 2012, 2, 346–349. [Google Scholar] [CrossRef]
- Moses, C.; Robinson, D.; Barlow, J. Methods for measuring rock surface weathering and erosion: A critical review. Earth Sci. Rev. 2014, 135, 141–161. [Google Scholar] [CrossRef]
- Meybeck, M. Global chemical weathering of surficial rocks estimated from river dissolved loads. Am. J. Sci. 1987, 287, 401–428. [Google Scholar] [CrossRef]
- Mortatti, J.; Probst, J.L. Silicate rock weathering and atmospheric/soil CO2 uptake in the Amazon basin estimated from river water geochemistry: Seasonal and spatial variations. Chem. Geol. 2003, 197, 177–196. [Google Scholar] [CrossRef] [Green Version]
- Gao, Q.Z.; Tao, Z.; Huang, X.K.; Nan, L.; Yu, K.F.; Wang, Z.G. Chemical weathering and CO2 consumption in the Xijiang River basin, South China. Geomorphology 2009, 106, 324–332. [Google Scholar] [CrossRef]
- Wu, W.H.; Zheng, H.B.; Yang, J.D.; Luo, C.; Zhou, B. Chemical weathering, atmospheric CO2 consumption, and the controlling factors in a subtropical metamorphic–hosted watershed. Chem. Geol. 2013, 356, 141–150. [Google Scholar] [CrossRef]
- Conceição, F.T.; Santos, C.M.; Sardinha, D.S.; Navarro, G.R.; Godoy, L.H. Chemical weathering rate, denudation rate, and atmospheric and soil CO2 consumption of Paraná flood basalts in São Paulo State, Brazil. Geomorphology 2015, 233, 41–51. [Google Scholar] [CrossRef]
- Wang, R.; Liu, Z.F.; Jiang, L.G.; Yao, Z.J.; Wang, J.B.; Ju, J.T. Comparison of surface water chemistry and weathering effects of two lake basins in the Changtang Nature Reserve, China. J. Environ. Sci. 2016, 41, 183–194. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Raymo, M.E.; Ruddiman, W.F. Tectonic forcing of late Cenozoic climate. Nature 1992, 359, 117–122. [Google Scholar] [CrossRef]
- Sarin, M.M.; Krishnaswamy, S.; Dilli, K.; Somayajulu, B.L.K.; Moore, W.S. Major ion chemistry of Ganga–Brahmaputra river system: Weathering processes and fluxes of the Bay of Bengal. Geochim. Cosmochim. Acta 1989, 53, 997–1009. [Google Scholar] [CrossRef]
- Singh, S.K.; Sarin, M.M.; France-Lanord, C. Chemical erosion in the eastern Himalaya: Major ion composition of the Brahmaputra and 13C of dissolved inorganic carbon. Geochim. Cosmochim. Acta 2005, 69, 3573–3588. [Google Scholar] [CrossRef]
- Hren, M.T.; Chamberlain, C.P.; Hilley, G.E.; Blisniuk, P.M.; Bookhagen, B. Major ion chemistry of the Yarlung Tsangpo–Brahmaputra river: Chemical weathering, erosion, and CO2 consumption in the southern Tibetan plateau and eastern syntaxis of the Himalaya. Geochim. Cosmochim. Acta 2007, 71, 2907–2935. [Google Scholar] [CrossRef] [Green Version]
- Tripathy, G.R.; Singh, S.K. Chemical erosion rates of river basins of the Ganga system in the Himalaya: Reanalysis based on inversion of dissolved major ions, Sr, and 87Sr/86Sr. Geochem. Geophys. Geosyst. 2010, 11, Q03013. [Google Scholar] [CrossRef]
- Hu, M.H.; Stallard, R.F.; Edmond, J.M. Major ion chemistry of some large Chinese rivers. Nature 1982, 298, 550–553. [Google Scholar]
- Chen, J.S.; Wang, F.Y.; Xia, X.H.; Zhang, L.T. Major element chemistry of the Changjiang (Yangtze River). Chem. Geol. 2002, 187, 231–255. [Google Scholar] [CrossRef]
- Chetelat, B.; Liu, C.Q.; Zhao, Z.Q.; Wang, Q.L.; Li, S.L.; Li, J. Geochemistry of the dissolved load of the Changjiang Basin rivers: Anthropogenic impacts and chemical weathering. Geochim. Cosmochim. Acta 2008, 72, 4254–4277. [Google Scholar] [CrossRef]
- Li, S.Y.; Zhang, Q.F. Geochemistry of the upper Han River basin, China, 1: Spatial distribution of major ion compositions and their controlling factors. Appl. Geochem. 2008, 23, 3535–3544. [Google Scholar] [CrossRef]
- Müller, B.; Berg, M.; Pernet–Coudrier, B.; Qi, W.X.; Liu, H.J. The geochemistry of the Yangtze River: Seasonality of concentrations and temporal trends of chemical loads. Glob. Biogeochem. Cycles 2012, 26, GB2028. [Google Scholar] [CrossRef]
- Jiang, L.G.; Yao, Z.J.; Liu, Z.F.; Wang, R.; Wu, S.S. Hydrochemistry and its controlling factors of rivers in the source region of the Yangtze River on the Tibetan Plateau. J. Geochem. Explor. 2015, 155, 76–83. [Google Scholar] [CrossRef]
- Chen, J.S.; Wang, F.Y.; Meybeck, M.; He, D.W.; Xia, X.H.; Zhang, L.T. Spatial and temporal analysis of water chemistry records (1958–2000) in the Huanghe (Yellow River) basin. Glob. Biogeochem. Cycles 2005, 19, GB3016.1–GB3016.24. [Google Scholar] [CrossRef]
- Li, J.Y.; Zhang, J. Chemical weathering processes and atmospheric CO2 consumption of Huanghe River and Changjiang River basins. Chin. Geogr. Sci. 2005, 15, 16–21. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, L.J.; Cai, W.J.; Wang, B.S.; Yu, Z.G. Consumption of atmospheric CO2 via chemical weathering in the Yellow River basin: The Qinghai–Tibet Plateau is the main contributor to the high dissolved inorganic carbon in the Yellow River. Chem. Geol. 2016, 430, 34–44. [Google Scholar] [CrossRef] [Green Version]
- Pande, K.; Sarin, M.M.; Trivedi, J.R.; Krishnaswami, S.; Sharma, K.K. The Indus system (India–Pakistan): Major ion chemistry, uranium and strontium isotopes. Chem. Geol. 1994, 116, 245–259. [Google Scholar] [CrossRef]
- Karim, A.; Veizer, J. Weathering processes in the Indus River Basin: Implications from riverine carbon, sulfur, oxygen, and strontium isotopes. Chem. Geol. 2000, 170, 153–177. [Google Scholar] [CrossRef]
- Dalai, T.K.; Krishnaswami, S.; Sarin, M.M. Major ion chemistry in the headwaters of the Yamuna river system: Chemical weathering, its temperature dependence and CO2 consumption in the Himalaya. Geochim. Cosmochim. Acta 2002, 66, 3397–3416. [Google Scholar] [CrossRef]
- Moon, S.; Huh, Y.; Qin, J.; Pho, N.V. Chemical weathering in the Hong (Red) River basin: Rates of silicate weathering and their controlling factors. Geochim. Cosmochim. Acta 2007, 71, 1411–1430. [Google Scholar] [CrossRef]
- Huang, X.; Sillanpaa, M.; Gjessing, E.T.; Peraniemi, S.; Vogt, R.D. Water quality in the southern Tibetan Plateau: Chemical evaluation of the Yarlung Tsangpo (Brahmaputra). River Res. Appl. 2011, 27, 113–121. [Google Scholar] [CrossRef]
- Qin, J.H.; Huh, Y.; Edmond, J.M.; Du, G.; Ran, J. Chemical and physical weathering in the Min Jiang, a headwater tributary of the Yangtze River. Chem. Geol. 2006, 227, 53–69. [Google Scholar] [CrossRef]
- Tibetan Plateau comprehensive expedition of the Chinese Academy of Sciences. Tibetan Water Conservation; Science Press: Beijing, China, 1981. (In Chinese) [Google Scholar]
- Munetsugu, K.; Takashi, N. Salt concentrations and chemical types of lake, river, snow, and hot spring waters from the Tibetan Plateau. Jpn. J. Limnol. 1989, 50, 93–104. [Google Scholar]
- Meybeck, M.; Helmer, R. The quality of rivers: From pristine stage to global pollution. Palaeogeogr. Palaeoclimatol. Palaeoecol. 1989, 175, 283–309. [Google Scholar] [CrossRef]
- Meybeck, M. Concentrations des eaux fluviales en elements majeurs et apports en solution aux oceans. Rev Geol. Dynam. Geogr. Phys. 1979, 21, 5–46. [Google Scholar]
- Han, G.L.; Tang, X.; Xu, Z.F. Fluvial geochemistry of rivers draining karst terrain in South west China. J. Asian Earth Sci. 2010, 38, 65–75. [Google Scholar] [CrossRef]
- Rashid, I.; Romshoo, S.A. Impact of anthropogenic activities on water quality of Lidder River in Kashmir Himalayas. Environ. Monit. Assess. 2013, 185, 4705–4719. [Google Scholar] [CrossRef]
- Wang, R.; Yao, Z.J.; Liu, Z.F.; Wu, S.S.; Jiang, L.G. Spatial–temporal patterns of major ion chemistry and its controlling factors in the Manasarovar Basin, Tibet. J. Geogr. Sci. 2015, 25, 687–700. [Google Scholar]
- Liu, J.; Zhao, Y.; Li, Z.; Guo, H. Quantitative source apportionment of water solutes and CO2 consumption of the whole Yarlung Tsangpo River basin in Tibet, China. Environ. Sci. Pollut. R. 2019, 26, 28243–28255. [Google Scholar] [CrossRef] [PubMed]
- Qu, B.; Zhang, Y.; Kang, S.; Sillanpaa, M. Water chemistry of the southern Tibetan Plateau: An assessment of the Yarlung Tsangpo river basin. Environ. Earth Sci. 2017, 76, 74. [Google Scholar] [CrossRef]
- Li, F.; Xu, Z.; Feng, Y.; Liu, M.; Liu, W. Changes of land cover in the Yarlung Tsangpo River basin from 1985 to 2005. Environ. Earth Sci. 2013, 68, 181–188. [Google Scholar] [CrossRef]
- Cuo, L.; Li, N.; Liu, Z.; Ding, J.; Liang, L.; Zhang, Y.; Gong, T. Warming and human activities induced changes in the Yarlung Tsangpo basin of the Tibetan plateau and their influences on streamflow. J. Hydrol. Reg. Stud. 2019, 25, 100625. [Google Scholar] [CrossRef]
- Wang, D.X.; Li, H.Z.; Ding, G.A. The preliminary discussion on atmospheric environment background in Mt. Everest area. In Scientific Investigating Report of Mt. Everest Area; Science Press: Beijing, China, 1980; pp. 171–188. (In Chinese) [Google Scholar]
- Zhang, D.D.; Peart, M.; Jim, C.Y.; He, Y.Q.; Li, B.S.; Chen, J.A. Precipitation chemistry of Lhasa and other remote towns. Tibet. Atmos. Environ. 2003, 37, 231–240. [Google Scholar] [CrossRef] [Green Version]
- Stallard, R.F.; Edmond, J.M. Geochemistry of the Amazon 1. Precipitation chemistry and the marine contribution to the dissolved load at the time of peak discharge. J. Geophys. Res. 1981, 86, 9844–9858. [Google Scholar] [CrossRef]
- Drever, J.I. The Geochemistry of Natural Waters: Surface and Groundwater Environments; Prentice Hall: Upper Saddle River, NJ, USA, 1997. [Google Scholar]
- Zhao, P.; Dor, J.; Jian, J. A new geochemical model of the Yangbajin geothermal field, Tibet. In Proceedings of the World Geothermal Congress, Kyushu-Tohoku, Japan, 28 May 2000. [Google Scholar]
- Noh, H.; Huh, Y.; Qin, J.H.; Ellis, A. Chemical weathering in the three rivers region of Eastern Tibet. Geochim. Cosmochim. Acta 2009, 73, 1857–1877. [Google Scholar] [CrossRef]
- Wu, W.H.; Xu, S.J.; Yang, J.D.; Yin, H.W. Silicate weathering and CO2 consumption deduced from the seven Chinese rivers originating in the Qinghai–Tibet Plateau. Chem. Geol. 2008, 249, 307–320. [Google Scholar] [CrossRef]
- Wang, R.; Yao, Z.J.; Liu, Z.F.; Wu, S.S.; Jiang, L.G. Changes in climate and runoff in the middle course area of the Yarlung Zangbo River Basin. Resour. Sci. 2015, 37, 0619–0628. (In Chinese) [Google Scholar]
- Goldsmith, S.T.; Harmon, R.S.; Lyons, W.B. Evaluation of controls on silicate eathering in tropical mountainous rivers: Insights from the Isthmus of Panama. Geology 2015, 43, 563–566. [Google Scholar] [CrossRef]
Station | River | Elevation (m) | Distance Downstream (km) | Drainage Area (104 km2) | Annual Runoff (108 m3) |
---|---|---|---|---|---|
Lazi | main stream | 3974 | 619.4 | 4.34 | 53.6 |
Nugesha | main stream | 3839 | 833.7 | 7.46 | 163.8 |
Yangcun | main stream | 3590 | 1049.5 | 13.00 | 304.7 |
Nuxia | main stream | 2918 | 1333.2 | 16.81 | 585.1 |
Shigatse | Nianchu River | 3836 | 215.5 | 1.42 | 16.9 |
Lhasa | Lhasa River | 3656 | 408.1 | 2.59 | 97.1 |
Gengzhang | Nyang River | 3062 | 206.3 | 1.78 | 145.8 |
pH | TDS mg/L | Ca2+ μmol/L | Mg2+ μmol/L | Na+ μmol/L | K+ μmol/L | HCO3− μmol/L | SO42− μmol/L | Cl− μmol/L | NO3− μmol/L | ||
---|---|---|---|---|---|---|---|---|---|---|---|
Mainstream | Average | 8.1 | 142.9 | 783.3 | 240.0 | 438.3 | 40.0 | 1930.0 | 305.8 | 177.5 | 46.8 |
SD | 0.4 | 18.7 | 110.6 | 41.4 | 115.3 | 7.1 | 466.5 | 71.3 | 40.7 | 49.8 | |
Upstream | Average | 8.1 | 156.0 | 893.3 | 275.0 | 433.3 | 43.0 | 2107.5 | 325.0 | 198.3 | 27.7 |
SD | 0.4 | 37.8 | 231.0 | 106.1 | 116.9 | 8.4 | 556.6 | 153.0 | 79.3 | 22.6 | |
Midstream | Average | 8.1 | 146.7 | 758.3 | 246.7 | 499.2 | 37.0 | 1953.3 | 332.5 | 178.3 | 63.7 |
SD | 0.4 | 25.1 | 126.5 | 58.6 | 173.4 | 4.5 | 634.6 | 129.1 | 27.1 | 79.1 | |
Downstream | Average | 8.1 | 119.2 | 617.5 | 192.5 | 360.0 | 33.3 | 1647.5 | 271.3 | 122.5 | 31.7 |
SD | 0.6 | 11.2 | 73.3 | 15.5 | 134.7 | 5.8 | 532.1 | 77.9 | 35.9 | 19.7 | |
Dogxung Tsangpo | Average | 8.2 | 190.7 | 1151.0 | 291.5 | 594.0 | 35.0 | 1661.0 | 700.5 | 138.0 | 37.5 |
SD | 0.3 | 108.3 | 917.9 | 252.8 | 284.1 | 12.9 | 437.8 | 618.5 | 102.0 | 50.9 | |
Nianchu | Average | 8.2 | 218.0 | 1188.0 | 489.5 | 541.0 | 38.8 | 2513.0 | 635.0 | 243.0 | 52.0 |
SD | 0.4 | 26.5 | 251.5 | 139.6 | 249.6 | 8.9 | 492.9 | 283.3 | 72.4 | 32.1 | |
Lhasa | Average | 8.2 | 125.5 | 632.0 | 212.5 | 383.0 | 32.5 | 1849.0 | 238.0 | 170.0 | 32.1 |
SD | 0.5 | 17.1 | 123.2 | 48.9 | 241.7 | 7.1 | 262.3 | 110.1 | 100.0 | 32.5 | |
Nyang | Average | 7.9 | 72.5 | 345.8 | 120.0 | 238.3 | 35.0 | 946.7 | 138.3 | 200.0 | 19.7 |
SD | 1.4 | 24.4 | 205.2 | 28.4 | 140.3 | 28.3 | 821.4 | 35.0 | 186.1 | 7.9 | |
Po Tsangpo | Average | 7.5 | 100.7 | 615.0 | 166.7 | 106.7 | 65.0 | 1426.7 | 245.0 | 30.0 | 22.4 |
SD | 2.5 | 42.4 | 194.5 | 155.6 | 21.2 | 12.1 | 226.3 | 254.6 | 42.4 | 24.6 |
River | pH | TDS mg/L | Ca2+ μmol/L | Mg2+ μmol/L | Na+ μmol/L | K+ μmol/L | HCO3− μmol/L | SO42− μmol/L | Cl− μmol/L | NO3− μmol/L | |
---|---|---|---|---|---|---|---|---|---|---|---|
1975 a | Mainstream | 7.7 | 124.7 | 625 | 200 | 640 | 1550 | 270 | 200 | ||
Dx Tsangpo b | 7.9 | 98.7 | 485 | 140 | 580 | 1260 | 200 | 140 | |||
Nianchu | 7.7 | 208.4 | 905 | 605 | 1000 | 3070 | 295 | 350 | |||
Lhasa | 7.8 | 126.3 | 535 | 220 | 760 | 1760 | 180 | 310 | |||
Nyang | 7.0 | 62.0 | 230 | 145 | 350 | 530 | 200 | 160 | |||
Po Tsangpo | 5.7 | 67.0 | 465 | 95 | 140 | 980 | 115 | 70 | |||
1985 | Mainstream | 7.7 | 124.5 | 790 | 195 | 340 | 50 | 1810 | 190 | 160 | |
Dx Tsangpo | |||||||||||
Nianchu | 8.2 | 199.1 | 1215 | 390 | 370 | 30 | 2110 | 655 | 280 | ||
Lhasa | |||||||||||
Nyang | |||||||||||
Po Tsangpo | |||||||||||
2005 | Mainstream | 7.8 | 164.6 | 795 | 295 | 360 | 40 | 2770 | 290 | 110 | 13.8 |
Dx Tsangpo | 8.0 | 375.4 | 2755 | 740 | 240 | 20 | 2300 | 1775 | 10 | 2.0 | |
Nianchu | |||||||||||
Lhasa | 8.0 | 160.3 | 685 | 195 | 350 | 40 | 3400 | 90 | 180 | 2.0 | |
Nyang | 7.6 | 84.3 | 390 | 110 | 170 | 30 | 1680 | 80 | 60 | 14.2 | |
Po Tsangpo | 108.0 | 640 | 90 | 70 | 80 | 2000 | 145 | 10 | 5.0 | ||
2008 | Mainstream | 8.6 | 145.9 | 810 | 230 | 360 | 30 | 1940 | 335 | 190 | 25.0 |
Dx Tsangpo | 8.7 | 143.1 | 900 | 180 | 400 | 30 | 1440 | 480 | 70 | 10.3 | |
Nianchu | 8.7 | 230.2 | 1300 | 450 | 350 | 30 | 2650 | 750 | 150 | 47.9 | |
Lhasa | 8.4 | 108.5 | 630 | 210 | 180 | 20 | 1540 | 245 | 80 | 23.6 | |
Nyang | |||||||||||
Po Tsangpo | |||||||||||
2013 c | Mainstream | 8.3 | 165.0 | 960 | 283 | 500 | 40 | 2040 | 378 | 230 | 121.0 |
Dx Tsangpo | 8.2 | 191.3 | 973 | 230 | 905 | 40 | 1925 | 608 | 205 | 112.5 | |
Nianchu | 7.8 | 226.4 | 1290 | 493 | 485 | 45 | 2480 | 695 | 225 | 85.9 | |
Lhasa | 8.0 | 125.4 | 723 | 233 | 340 | 35 | 1460 | 325 | 165 | 78.3 | |
Nyang | |||||||||||
Po Tsangpo | |||||||||||
2015 c | Mainstream | 8.6 | 132.6 | 720 | 238 | 430 | 40 | 1470 | 373 | 175 | 27.4 |
Dx Tsangpo | 8.4 | 145.0 | 643 | 168 | 845 | 50 | 1380 | 440 | 265 | 25.5 | |
Nianchu | 8.5 | 225.7 | 1230 | 510 | 500 | 50 | 2255 | 780 | 210 | 22.1 | |
Lhasa | 8.95 | 106.9 | 588 | 205 | 285 | 35 | 1085 | 350 | 115 | 24.4 | |
Nyang | 9 | 71.1 | 418 | 105 | 195 | 40 | 630 | 135 | 380 | 25.3 | |
Po Tsangpo | 9.2 | 127.0 | 740 | 315 | 110 | 50 | 1300 | 475 | 10 | 39.8 |
Year | Location | Ca2+ | Mg2+ | Na+ | K+ | HCO3− | SO42− | Cl− | NO3− |
---|---|---|---|---|---|---|---|---|---|
1975 [47] | Nyalam County | 77.5 | 15.2 | 37.8 | 24.1 | 155.8 | 30 | 31.5 | - |
1987–988 [48] | Lhasa | 75.15 | 2.83 | 88.96 | 14.8 | 288.9 | 1.235 | 21.7 | 1.96 |
1998–2000 [48] | Lhasa | 98.7 | 5.5 | 11.2 | 5.14 | 231.7 | 2.6 | 9.7 | 6.9 |
2015 | Gongbogvamda | 27.35 | 2.2 | 5.1 | 0.9 | 34.8 | 8.65 | 13 | 16.34 |
Ca2+/Cl− | Mg2+/Cl− | Na+/Cl− | K+/Cl− | HCO3−/Cl− | SO42−/Cl− | NO3−/Cl− | |||
1975 | 2.46 | 0.48 | 1.20 | 0.77 | 4.95 | 0.95 | - | - | |
1987–1988 | 3.46 | 0.13 | 4.10 | 0.68 | 13.31 | 0.06 | - | 0.09 | |
1998–2000 | 10.18 | 0.57 | 1.15 | 0.53 | 23.89 | 0.27 | - | 0.71 | |
2015 | 2.10 | 0.17 | 0.39 | 0.07 | 2.68 | 0.67 | - | 1.26 |
TDS | Ca2+ | Mg2+ | Na+ | K+ | HCO3− | SO42− | Cl− | Runoff | |
---|---|---|---|---|---|---|---|---|---|
TDS | - | ||||||||
Ca2+ | 0.96 * | - | |||||||
Mg2+ | 0.92 * | 0.86 * | - | ||||||
Na+ | 0.48 | 0.28 | 0.65 * | - | |||||
K+ | 0.38 | 0.30 | 0.39 | 0.69 * | - | ||||
HCO3− | 0.80 * | 0.64 * | 0.66 * | 0.48 | 0.22 | - | |||
SO42− | 0.81 * | 0.91 * | 0.76 * | 0.13 | 0.30 | 0.32 | - | ||
Cl− | 0.22 | 0.15 | 0.32 | 0.59 * | 0.49 | 0.11 | 0.04 | - | |
Runoff | −0.95 * | −0.90 * | −0.93* | −0.60 * | −0.33 | −0.69 * | −0.79 * | 0.35 | - |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, R.; Yao, Z.; Liu, Z. Change of Contributions from Different Natural Processes to the Ionic Budget in the Yarlung Tsangpo River. Water 2020, 12, 616. https://doi.org/10.3390/w12030616
Wang R, Yao Z, Liu Z. Change of Contributions from Different Natural Processes to the Ionic Budget in the Yarlung Tsangpo River. Water. 2020; 12(3):616. https://doi.org/10.3390/w12030616
Chicago/Turabian StyleWang, Rui, Zhijun Yao, and Zhaofei Liu. 2020. "Change of Contributions from Different Natural Processes to the Ionic Budget in the Yarlung Tsangpo River" Water 12, no. 3: 616. https://doi.org/10.3390/w12030616
APA StyleWang, R., Yao, Z., & Liu, Z. (2020). Change of Contributions from Different Natural Processes to the Ionic Budget in the Yarlung Tsangpo River. Water, 12(3), 616. https://doi.org/10.3390/w12030616