Evaluating Bank-Filtration Occurrence in the Province of Quebec (Canada) with a GIS Approach
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Set
2.1.1. Well Data
2.1.2. Surface Water Bodies and Other Data
2.2. Description of the GISc Framework
2.2.1. Processing and Homogenization of Spatial Data Sets
2.2.2. Performing Distance Calculation
3. Results and Discussion
3.1. Overview of the Province
3.1.1. Municipal Drinking Water Supply: Surface Water vs. Groundwater
3.1.2. Water Bodies Distribution around Wells
3.1.3. Insights into the Potential Population Supplied by IBF
3.2. Insights on Selected Sub-Basins
3.2.1. Area #1: Laurentides
3.2.2. Area #2: Nicolet
3.2.3. Area #3: Vaudreuil–Soulanges
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Umar, D.; Ramli, M.; Aris, A.; Sulaiman, W.; Kura, N.; Tukur, A. An overview assessment of the effectiveness and global popularity of some methods used in measuring riverbank filtration. J. Hydrol. 2017, 550, 497–515. [Google Scholar] [CrossRef]
- Llamas, M.R.; Custodio, E. Intensive Use of Groundwater: Challenges and Opportunities; CRC Press: Boca Raton, FL, USA, 2002. [Google Scholar]
- Gillefalk, M.; Massmann, G.; Nützmann, G.; Hilt, S. Potential Impacts of Induced Bank Filtration on Surface Water Quality: A Conceptual Framework for Future Research. Water 2018, 10, 1240. [Google Scholar] [CrossRef] [Green Version]
- Hiscock, K.; Grischek, T. Attenuation of groundwater pollution by bank filtration. J. Hydrol. 2002, 266, 139–144. [Google Scholar] [CrossRef] [Green Version]
- Tufenkji, N.; Ryan, J.; Elimelech, M. The Promise of Bank Filtration. Environ. Sci. Technol. 2002, 36, 422A–428A. [Google Scholar] [CrossRef] [Green Version]
- Sprenger, C.; Lorenzen, G.; Hülshoff, I.; Grützmacher, G.; Ronghang, M.; Pekdeger, A. Vulnerability of bank filtration systems to climate change. Sci. Total Environ. 2011, 409, 655–663. [Google Scholar] [CrossRef]
- Hellauer, K.; Karakurt, S.; Sperlich, A.; Burke, V.; Massmann, G.; Hübner, U.; Drewes, J. Establishing sequential managed aquifer recharge technology (SMART) for enhanced removal of trace organic chemicals: Experiences from field studies in Berlin, Germany. J. Hydrol. 2018, 563, 1161–1168. [Google Scholar] [CrossRef]
- Stefan, C.; Ansems, N. Web-based global inventory of managed aquifer recharge applications. Sustain. Water Resour. Manag. 2018, 4, 153–162. [Google Scholar] [CrossRef] [Green Version]
- Dillon, P.; Stuyfzand, P.; Grischek, T.; Lluria, M.; Pyne, R.; Jain, R.; Bear, J.; Schwarz, J.; Wang, W.; Fernandez, E.; et al. Sixty years of global progress in managed aquifer recharge. Hydrogeol. J. 2019, 27, 1–30. [Google Scholar] [CrossRef] [Green Version]
- Sprenger, C.; Hartog, N.; Hernández, M.; Vilanova, E.; Grützmacher, G.; Scheibler, F.; Hannappel, S. Inventory of managed aquifer recharge sites in Europe: Historical development, current situation and perspectives. Hydrogeol. J. 2017, 25, 1909–1922. [Google Scholar] [CrossRef] [Green Version]
- Stefan, C.; Ansems, N. Web-GIS of global inventory of managed aquifer recharge applications. In Proceedings of the 9th International Symposium on Managed Aquifer Recharge (ISMAR9), Mexico City, Mexico, 20–24 June 2016. [Google Scholar]
- MDDELCC. Rapport sur l’état de l’eau et des écosystèmes aquatiques au Québec; Government of Quebec: Quebec City, QC, Canada, 2014.
- Boyer, M. Freshwater Exports for the Development of Quebec’s Blue Gold; Montreal Economic Institute: Montreal, QC, Canada, 2008. [Google Scholar]
- Government of Quebec. Water withdrawal and Protection Regulation-Environment Quality Act; Publications Quebec: Québec, QC, Canada, 2019; Volume Q-2, p. 56.
- Ministère de l’Environnement et Lutte contre les changements climatiques. Guide de Conception des Installations de Production d’eau Potable; Direction générale des politiques de l’eau, Government of Quebec: Quebec, QC, Canada, 2019; Volume 1, p. 297.
- Stuyfzand, P.J. Hydrology and water quality aspects of rhine bank groundwater in The Netherlands. J. Hydrol. 1989, 106, 341–363. [Google Scholar] [CrossRef]
- Massmann, G.; Dünnbier, U.; Heberer, T.; Taute, T. Behaviour and redox sensitivity of pharmaceutical residues during bank filtration-Investigation of residues of phenazone-type analgesics. Chemosphere 2008, 71, 1476–1485. [Google Scholar] [CrossRef] [PubMed]
- Masse-Dufresne, J.; Baudron, P.; Barbecot, F.; Patenaude, M.; Pontoreau, C.; Proteau-Bédard, F.; Menou, M.; Pasquier, P.; Veuille, S.; Barbeau, B. Anthropic and Meteorological Controls on the Origin and Quality of Water at a Bank Filtration Site in Canada. Water 2019, 11, 2510. [Google Scholar] [CrossRef] [Green Version]
- Paufler, S.; Grischek, T.; Benso, M.; Seidel, N.; Fischer, T. The Impact of River Discharge and Water Temperature on Manganese Release from the Riverbed during Riverbank Filtration: A Case Study from Dresden, Germany. Water 2018, 10, 1476. [Google Scholar] [CrossRef] [Green Version]
- Paufler, S.; Grischek, T.; Bartak, R.; Ghodeif, K.; Wahaab, R.; Boernick, H. Riverbank filtration in Cairo, Egypt: Part II-detailed investigation of a new riverbank filtration site with a focus on manganese. Environ. Earth Sci. 2018, 77, 318. [Google Scholar] [CrossRef]
- Paufler, S.; Grischek, T. Herkunft und Verhalten von Mangan bei der Uferfiltration. Grundwasser 2018, 23, 277–296. [Google Scholar] [CrossRef]
- Grischek, T.; Paufler, S. Prediction of Iron Release during Riverbank Filtration. Water 2017, 9, 317. [Google Scholar] [CrossRef] [Green Version]
- Romero-Esquivel, L.; Grischek, T.; Pizzolatti, B.; Mondardo, R.; Sens, M. Bank filtration in a coastal lake in South Brazil: Water quality, natural organic matter (NOM) and redox conditions study. Clean Technol. Environ. Policy 2017, 19, 2007–2020. [Google Scholar] [CrossRef]
- Lee, H.; Koo, M.; Kim, Y. Impacts of Seasonal Pumping on Stream-Aquifer Interactions in Miryang, Korea. Groundwater 2017, 55, 906–916. [Google Scholar] [CrossRef]
- van Driezum, I.; Derx, J.; Oudega, T.; Zessner, M.; Naus, F.; Saracevic, E.; Kirschner, A.; Sommer, R.; Farnleitner, A.; Blaschke, A. Spatiotemporal resolved sampling for the interpretation of micropollutant removal during riverbank filtration. Sci. Total Environ. 2019, 649, 212–223. [Google Scholar] [CrossRef]
- Dragon, K.; Górski, J.; Kruć, R.; Drożdżyński, D.; Grischek, T. Removal of Natural Organic Matter and Organic Micropollutants during Riverbank Filtration in Krajkowo, Poland. Water 2018, 10, 1457. [Google Scholar] [CrossRef] [Green Version]
- Trásy, B.; Kovács, J.; Hatvani, I.; Havril, T.; Németh, T.; Scharek, P.; Szabó, C. Assessment of the interaction between surface-and groundwater after the diversion of the inner delta of the River Danube (Hungary) using multivariate statistics. Anthropocene 2018, 22, 51–65. [Google Scholar] [CrossRef] [Green Version]
- Moeck, C.; Radny, D.; Popp, A.; Brennwald, M.; Stoll, S.; Auckenthaler, A.; Berg, M.; Schirmer, M. Characterization of a managed aquifer recharge system using multiple tracers. Sci. Total Environ. 2017, 609, 701–714. [Google Scholar] [CrossRef] [PubMed]
- Rose, A.; Fabbro, L.; Kinnear, S. Cyanobacteria breakthrough: Effects of Limnothrix redekei contamination in an artificial bank filtration on a regional water supply. Harmful Algae 2018, 76, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Pazouki, P.; Prevost, M.; McQuaid, N.; Barbeau, B.; de Boutray, M.L.; Zamyadi, A.; Dorner, S. Breakthrough of cyanobacteria in bank filtration. Water Res. 2016, 102, 170–179. [Google Scholar] [CrossRef]
- Grützmacher, G.; Wessel, G.; Klitzke, S.; Chorus, I. Microcystin Elimination during Sediment Contact. Environ. Sci. Technol. 2010, 44, 657–662. [Google Scholar] [CrossRef]
- Kumar, P.; Mehrotra, I.; Gupta, A.; Kumari, S. Riverbank Filtration: A sustainable process to attenuate contaminants during drinking water production. J. Sustain. Dev. Energy 2018, 6, 150–161. [Google Scholar] [CrossRef] [Green Version]
- Sallwey, J.; Bonilla Valverde, J.; Vásquez López, F.; Junghanns, R.; Stefan, C. Suitability maps for managed aquifer recharge: A review of multi-criteria decision analysis studies. Environ. Rev. 2018, 27, 138–150. [Google Scholar] [CrossRef]
- Wang, L.; Ye, X.; Du, X. Suitability evaluation of river bank filtration along the Second Songhua River, China. Water 2016, 8, 176. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.-I.; Lee, S.-S. Development of site suitability analysis system for riverbank filtration. Water Sci. Eng. 2010, 3, 85–94. [Google Scholar] [CrossRef]
- Jaramillo Uribe, M. Evaluation of the Potential for Riverbank Filtration in Colombia. Ph.D. Thesis, Universidad Nacional de Colombia-Sede Medellín, Medellin, CO, USA, 2015. [Google Scholar]
- Singleton, A.; Spielman, S.; Brunsdon, C. Establishing a framework for Open Geographic Information science. Int. J. Geogr. Inf. Sci. 2016, 30, 1507–1521. [Google Scholar] [CrossRef] [Green Version]
- Malczewski, J.; Rinner, C. GIScience, Spatial Analysis, and Decision Support. In Multicriteria Decision Analysis in Geographic Information Science; Malczewski, J., Rinner, C., Eds.; Springer: Berlin/Heidelberg, Germany, 2015; pp. 3–21. [Google Scholar] [CrossRef]
- MELCC. Système d’information Hydrogéologique; MELCC, Ed.; MELCC: Quebec, QC, Canada, 2018.
- Sterckx, A. Étude des facteurs influençant le rendement des puits d’alimentation de particuliers qui exploitent le roc fracturé en Outaouais, Québec, Canada. Master’s Thesis, Université Laval, Québec, QC, Canada, 2013. [Google Scholar]
- INRS-ETE. Protocole pour la préparation des livrables: 15-Estimation de l’épaisseur des formations superficielles et 16-Topographie du roc. In Programme d’acquisition de Connaissances sur les eaux Souterraines du Québec; INRS-ETE: Quebec City, QC, Canada, 2012; Unpublished work. [Google Scholar]
- Ministère de l’Environnement et Lutte contre les changements climatiques. Programme d’acquisition de Connaissances sur les Eaux Souterraines (PACES); Government of Quebec: Quebec City, QC, Canada, 2009–2015.
- Ghesquière, O.; Walter, J.; Chesnaux, R.; Rouleau, A. Scenarios of groundwater chemical evolution in a region of the Canadian Shield based on multivariate statistical analysis. J. Hydrol. Reg. Stud. 2015, 4, 246–266. [Google Scholar] [CrossRef] [Green Version]
- Beaudry, C.; Lefebvre, R.; Rivard, C.; Cloutier, V. Conceptual model of regional groundwater flow based on hydrogeochemistry (Montérégie Est, Québec, Canada). Can. Water Resour. J. Rev. Canadienne des Ressources Hydriques 2018, 43, 152–172. [Google Scholar] [CrossRef]
- Nadeau, S.; Rosa, E.; Cloutier, V. Stratigraphic sequence map for groundwater assessment and protection of unconsolidated aquifers: A case example in the Abitibi-Témiscamingue region, Québec, Canada. Can. Water Resour. J. Rev. Canadienne des Ressources Hydriques 2018, 43, 113–135. [Google Scholar] [CrossRef]
- Gagné, S.; Larocque, M.; Pinti, D.; Saby, M.; Meyzonnat, G.; Méjean, P. Benefits and limitations of using isotope-derived groundwater travel times and major ion chemistry to validate a regional groundwater flow model: Example from the Centre-du-Québec region, Canada. Can. Water Resour. J. Rev. Canadienne des Ressources Hydriques 2018, 43, 195–213. [Google Scholar] [CrossRef]
- MELCC. Demande d’accès no. 2017-09-151: Sites de prelevement d’eau municipa ux et installations alimentées.xlsx; MELCC, Ed.; Ministère de l’environnement et lutte contre les changements climatiques: Québec, QC, Canada, 2017.
- NRCAN. Canvec; Canada, N.R., Ed.; Government of Canada: Ottawa, ON, Canada, 2016.
- Team, Q.D. QGIS Geographic Information System; Open Source Geospatial Foundation: Beaverton, OR, USA, 2020. [Google Scholar]
- Geomatic Solutions. Georepository-NAD83/Quebec Lambert. Available online: https://georepository.com/crs_32198/NAD83-Quebec-Lambert.html (accessed on 16 November 2019).
- Conrad, O.; Bechtel, B.; Bock, M.; Dietrich, H.; Fischer, E.; Gerlitz, L.; Wehberg, J.; Wichmann, V.; Böhner, J. System for automated geoscientific analyses (SAGA) v. 2.1. 4. Geosci. Model. Dev. 2015, 8, 1991–2007. [Google Scholar] [CrossRef] [Green Version]
- Team, R.C. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2019. [Google Scholar]
- Larocque, M.; Fortin, V.; Pharand, M.; Rivard, C. Groundwater contribution to river flows-using hydrograph separation, hydrological and hydrogeological models in a southern Quebec aquifer. Hydrol. Earth Syst. Sci. Discuss. 2010, 2010, 7809–7838. [Google Scholar] [CrossRef] [Green Version]
- Stuyfzand, P.; Juhàsz-Holterman, M.; de Lange, W. Riverbank Filtration in the Netherlands: Well Fields, Clogging and Geochemical Reactions. In Proceedings of Riverbank Filtration Hydrology; Springer: Dordrecht, The Netherlands, 2006; pp. 119–153. [Google Scholar]
- Grischek, T.; Schoenheinz, D.; Syhre, C.; Saupe, K. Bank filtration practise in the German Federal State of Saxony. Available online: https://www.researchgate.net/publication/265098211_Bank_filtration_practise_in_the_German_Federal_State_of_Saxony (accessed on 26 February 2020).
- Rousseau, A.N.; Mailhot, A.; Slivitzky, M.; Villeneuve, J.-P.; Rodriguez, M.J.; Bourque, A. Usages et approvisionnement en eau dans le sud du Qubec Niveau des connaissances et axes de recherche privilgier dans une perspective de changements climatiques. Can. Water Resour. J. Rev. Canadienne des Ressources Hydriques 2004, 29, 121–134. [Google Scholar] [CrossRef] [Green Version]
- Ministère de l’Environnement et Lutte contre les changements climatiques. Aires protégées au Québec: Les Provinces Naturelles-Niveau I du Cadre écologique de référence du Québec-Les Principaux Descripteurs des Provinces Naturelles. Available online: http://www.environnement.gouv.qc.ca/biodiversite/aires_protegees/provinces/partie3.htm (accessed on 16 November 2019).
- Lajoie, P.G. Les sols des Comtés d’Argenteuil, Deux-Montagnes et Terrebonne (Québec); Service de recherches, ministere de l’Agriculture de Quebec et le College Macdonald, Universite, McGill: Montreal, QC, Canada, 1960. [Google Scholar]
- Institute de recherche et de développement en agroenvironnement. Études pédologiques. Available online: https://www.irda.qc.ca/fr/services/protection-ressources/sante-sols/information-sols/etudes-pedologiques/ (accessed on 20 November 2019).
- Larocque, M.; Gagné, S.; Barnetche, D.; Meyzonnat, G.; Graveline, M.; Ouellet, M. Projet de connaissance des eaux souterraines de la zone Nicolet et de la partie basse de la zone Saint-François; Université du Québec à Montréal: Québec, QC, Canada, 2015. [Google Scholar]
- Larocque, M.; Meyzonnat, G.; Barbecot, F.; Pinti, D.; Gagné, S.; Barnetche, D.; Ouellet, M.; Graveline, M. Projet de connaissance des eaux souterraines de la zone de Vaudreuil-Soulanges; Université du Québec à Montréal: Québec, QC, Canada, 2015. [Google Scholar]
Information | SIH | PACES * | Municipal * |
---|---|---|---|
Number of wells | ~216,000 | ~180,000 | ~2000 |
Depth of well | X | X | |
Depth of screen | X | ||
Geology | (X) | (X) | |
Chemistry | (X) | ||
Population Served | X | ||
Type of aquifer | (X) | X | |
Type of well | X | X | |
Type of treatment | X | ||
Coordinates | X | X | X |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Patenaude, M.; Baudron, P.; Labelle, L.; Masse-Dufresne, J. Evaluating Bank-Filtration Occurrence in the Province of Quebec (Canada) with a GIS Approach. Water 2020, 12, 662. https://doi.org/10.3390/w12030662
Patenaude M, Baudron P, Labelle L, Masse-Dufresne J. Evaluating Bank-Filtration Occurrence in the Province of Quebec (Canada) with a GIS Approach. Water. 2020; 12(3):662. https://doi.org/10.3390/w12030662
Chicago/Turabian StylePatenaude, Marc, Paul Baudron, Laurence Labelle, and Janie Masse-Dufresne. 2020. "Evaluating Bank-Filtration Occurrence in the Province of Quebec (Canada) with a GIS Approach" Water 12, no. 3: 662. https://doi.org/10.3390/w12030662
APA StylePatenaude, M., Baudron, P., Labelle, L., & Masse-Dufresne, J. (2020). Evaluating Bank-Filtration Occurrence in the Province of Quebec (Canada) with a GIS Approach. Water, 12(3), 662. https://doi.org/10.3390/w12030662