Potential for Managed Aquifer Recharge to Enhance Fish Habitat in a Regulated River
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Streamflow Response
2.3. Local Effects of Groundwater Inflow on Temperature
2.4. Water Administration
3. Results
3.1. Streamflow Response
3.2. Local Effects of Groundwater Inflow on Temperature
3.3. Water Administration
3.4. Limitations
4. Discussion
4.1. Physical and Administrative MAR Implications for Idaho and Henry’s Fork
4.2. Physical and Administrative MAR Implications for other States in the Western USA
4.3. MAR as Climate Adaptation Strategy for Fisheries Conservation
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A. Streamflow and Temperature Graphs
Appendix B. Statistical Methods
Appendix B.1. Time Series Analysis
Appendix B.2. Tukey’s Post-Hoc Test
References
- Slaughter, R.A.; Wiener, J.D. Water, adaptation, and property rights on the Snake and Klamath rivers. JAWRA 2007, 43, 308–321. [Google Scholar] [CrossRef]
- Al-Chokhachy, R.; Sepulveda, A.J.; Ray, A.M.; Thoma, D.P.; Tercek, M.T. Evaluating species-specific changes in hydrologic regimes: An iterative approach for salmonids in the Greater Yellowstone Area (USA). Rev. Fish Biol. Fish. 2017, 27, 425–441. [Google Scholar] [CrossRef]
- Van Kirk, R.; Hoffner, B.; Verbeten, A.; Yates, S. New approaches to providing instream flow for fisheries in the American West: Embracing prior appropriation and the marketplace. In Multispecies and Watershed Approaches to Freshwater Fish Conservation; Dauwalter, D.C., Birdsong, T.W., Garret, G.P., Eds.; American Fisheries Society: Bethesda, MD, USA, 2019; Symposium 91; pp. 515–564. [Google Scholar]
- Ficklin, D.L.; Abatzoglou, J.T.; Robeson, S.M.; Null, S.E.; Knouft, J.H. Natural and managed watersheds show similar responses to recent climate change. Proc. Natl. Acad. Sci. USA 2018, 115, 8553–8557. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dai, A. Increasing drought under global warming in observations and models. Nat. Clim. Chang. 2013, 3, 52–58. [Google Scholar] [CrossRef]
- Wenger, S.J.; Isaak, D.J.; Luce, C.H.; Neville, H.M.; Fausch, K.D.; Dunham, J.B.; Dauwalter, D.C.; Young, M.K.; Elsner, M.M.; Rieman, B.E.; et al. Flow regime, temperature, and biotic interactions drive differential declines of trout species under climate change. Proc. Natl. Acad. Sci. USA 2011, 108, 14175–14180. [Google Scholar] [CrossRef] [Green Version]
- Poole, G.C.; Berman, C.H. An ecological perspective on in-stream temperature: Natural heat dynamics and mechanisms of human-caused thermal degradation. Env. Manag. 2001, 27, 787–802. [Google Scholar] [CrossRef]
- Olden, J.D.; Naiman, R.J. Incorporating thermal regimes into environmental flows assessments: Modifying dam operations to restore freshwater ecosystem integrity. Freshw. Biol. 2010, 55, 86–107. [Google Scholar] [CrossRef]
- Rheinheimer, D.E.; Null, S.E.; Lund, J.R. Optimizing selective withdrawal from reservoirs to manage downstream temperatures with climate warming. J. Water Resour. Plann. Manag. 2015, 141, 04014063. [Google Scholar] [CrossRef]
- Elmore, L.R.; Null, S.E.; Mouzon, N.R. Effects of environmental water transfers on stream temperatures. River Res. Appl. 2016, 32. [Google Scholar] [CrossRef] [Green Version]
- Scherberg, J.; Baker, T.; Selker, J.S.; Henry, R. Design of managed aquifer recharge for agricultural and ecological water supply assessed through numerical modeling. Water Resour. Manag. 2014, 28, 4971–4984. [Google Scholar] [CrossRef]
- Ronayne, M.J.; Roudebush, J.A.; Stednick, J.D. Analysis of managed aquifer recharge for retiming streamflow in an alluvial river. J. Hydrol. 2017, 544, 373–382. [Google Scholar] [CrossRef]
- Dzara, J.R.; Neilson, B.T.; Null, S.E. Quantifying thermal refugia connectivity by combining temperature modeling, distributed temperature sensing, and thermal infrared imaging. Hydrol. Earth Syst. Sci. 2019, 23, 2965–2982. [Google Scholar] [CrossRef] [Green Version]
- Kløve, B.; Ala-Aho, P.; Bertrand, G.; Gurdak, J.J.; Kupfersberg, H.; Kværner, J.; Muotka, T.; Mykrä, H.; Preda, E.; Pekka, R.; et al. Climate change impacts on groundwater and dependent ecosystems. J. Hydrol. 2014, 518, 250–266. [Google Scholar] [CrossRef]
- Sophocleous, M. Interaction between groundwater and surface water: The state of the science. Hydrogeol. J. 2002, 10, 52–67. [Google Scholar] [CrossRef]
- Taylor, R.G.; Scanlon, B.; Döll, P.; Rodell, M.; van Beek, R.; Wada, Y.; Longuevergne, L.; Leblanc, M.; Famiglietti, J.S.; Edmunds, M.; et al. Ground water and climate change. Nat. Clim. Chang. 2013, 3, 322–329. [Google Scholar] [CrossRef] [Green Version]
- Dams, J.; Salvadore, E.; Van Daele, T.; Ntegeka, V.; Willems, P.; Batelaan, O. Spatio-Temporal impact of climate change on the groundwater system. Hydrol. Earth Syst. Sci. Discuss. 2011, 8, 10195–10223. [Google Scholar] [CrossRef]
- Kendy, E.; Bredehoeft, J.D. Transient effects of groundwater pumping and surface-water-irrigation returns on streamflow. Water Resour. Res. 2006, 42, W08145. [Google Scholar] [CrossRef]
- Fernald, A.; Guldan, S.; Boykin, K.; Cibils, A.; Gonzales, M.; Hurd, B.; Lopez, S.; Ochoa, C.; Ortiz, M.; Rivera, J.; et al. Linked hydrologic and social systems that support resilience of traditional irrigation communities. Hydrol. Earth Syst. Sci. 2015, 19, 293–307. [Google Scholar] [CrossRef] [Green Version]
- Niswonger, R.G.; Morway, E.D.; Triana, E.; Huntington, J.L. Managed aquifer recharge through off-season irrigation on agricultural regions. Water Resour. Res. 2017, 53, 5970–6992. [Google Scholar] [CrossRef]
- Tague, C.; Grant, G.; Farrell, M.; Choat, J.; Jefferson, A. Deep groundwater mediates streamflow response to climate warming in the Oregon Cascades. Clim. Chang. 2008, 86, 189–210. [Google Scholar] [CrossRef]
- Barber, M.E.; Hossain, A.; Covert, J.J.; Gregory, G.J. Augmentation of seasonal low stream flows by artificial recharge in the Spokane Valley-Rathdrum Prairie aquifer of Idaho and Washington, USA. Hydrogeol. J. 2009, 17, 1459–1470. [Google Scholar] [CrossRef]
- Brunke, M.; Gonser, T.O.M. The ecological significance of exchange processes between rivers and groundwater. Freshw. Biol. 1997, 37, 1–33. [Google Scholar] [CrossRef] [Green Version]
- Healy, R.W.; Cook, P.G. Using groundwater levels to estimate recharge. Hydrogeol. J. 2002, 10, 91–109. [Google Scholar] [CrossRef]
- Palmer, M.A.; Lettenmaier, D.P.; Poff, N.L.; Postel, S.L.; Richter, B.; Warner, R. Climate change and river ecosystems: Protection and adaptation options. Environ. Manag. 2009, 44, 1053–1068. [Google Scholar] [CrossRef] [PubMed]
- Fernald, A.G.; Cevik, S.Y.; Ochoa, C.G.; Tidwell, V.C.; King, J.P.; Guldan, S.J. River hydrograph retransmission functions of irrigated valley surface water-groundwater interactions. J. Irrig. Drain. Eng. ASCE 2010, 136, 823–835. [Google Scholar] [CrossRef]
- Nichols, A.J.; Willis, A.D.; Jeffres, C.A.; Deas, M.L. Water temperature patterns below large groundwater springs: Management implications for Coho Salmon in the Shasta River, California. River Res. Appl. 2014, 30, 442–455. [Google Scholar] [CrossRef]
- Snyder, C.D.; Hitt, N.P.; Young, J.A. Accounting for groundwater in stream fish thermal habitat responses to climate change. Ecol. Appl. 2015, 25, 1397–1419. [Google Scholar] [CrossRef]
- Carlson, A.K.; Taylor, W.W.; Schlee, K.M.; Zorn, T.G.; Infante, D.M. Projected impacts of climate change on stream salmonids with implications for resilience-based management. Ecol. Freshw. Fish 2017, 26, 190–204. [Google Scholar] [CrossRef]
- Cristea, N.C.; Burges, S.J. Use of thermal infrared imagery to complement monitoring and modeling of spatial stream temperatures. J. Hydrol. Eng. 2009, 14, 1080–1090. [Google Scholar] [CrossRef]
- Taylor, C.A.; Stefan, H.G. Shallow groundwater temperature response to climate change and urbanization. J. Hydrol. 2009, 375, 601–612. [Google Scholar] [CrossRef]
- Kurylyk, B.L.; MacQuarrie, K.T.B.; Voss, C.I. Climate change impacts on temperature and magnitude of groundwater discharge from shallow, unconfined aquifers. Water Resour. Res. 2014, 50, 3253–3274. [Google Scholar] [CrossRef]
- Menberg, K.; Blum, P.; Kurylyk, B.L.; Bayer, P. Observed groundwater temperature response to recent climate change. Hydrol. Earth Syst. Sci. 2014, 11, 3637–3673. [Google Scholar] [CrossRef]
- Scherberg, J.; Keller, J.; Patten, S.; Baker, T.; Milczarek, M. Modeling the impact of aquifer recharge, in-stream water savings, and canal lining on water resources in the Walla Walla Basin. Sustain. Water Resour. Manag. 2018, 4, 275–289. [Google Scholar] [CrossRef]
- Larson, R.K.; Spinazola, J. Conjunctive management analyses for endangered species flow augmentation alternatives in the Snake River. In Proceedings of the Watershed Management and Operations Management 2000, Fort Collins, CO, USA, 20–24 June 2000; Flug, M., Frevert, D., Watkins, D.W., Jr., Eds.; American Society of Civil Engineers: Reston, VA, USA, 2000. [Google Scholar] [CrossRef]
- Scanlon, B.R.; Reedy, R.C.; Faunt, C.C.; Pool, D.; Uhlman, K. Enhancing drought resilience with conjunctive use and managed aquifer recharge in California and Arizona. Environ. Res. Lett. 2016, 11, 035013. [Google Scholar] [CrossRef] [Green Version]
- Mortimer, E. Managed aquifer recharge: An overview of laws affecting aquifer recharge in several western states. Water Rep. 2014, 127, 11–25. [Google Scholar]
- California Department of Water Resources. Flood-MAR: Using Flood Water for Managed Aquifer Recharge to Support Sustainable Water Resources; White Paper: Sacramento, CA, USA, 2018. [Google Scholar]
- Davis, D.; Li, Y.; Batzle, M. Time-Lapse gravity monitoring: A systematic 4D approach with application to aquifer storage and recovery. Geophysics 2014, 73, WA61–WA69. [Google Scholar] [CrossRef]
- Szeptycki, L.; Forgle, J.; Hook, E.; Lorick, K.; Womble, P. Environmental Water Rights Transfers: A Review of State Laws; Water in the West; Stanford University: Stanford, CA, USA, 2015. [Google Scholar]
- Idaho Water Resource Board. Eastern Snake Plain Aquifer Comprehensive Aquifer Management Plan; Idaho Water Resource Board: Boise, ID, USA, 2009. [Google Scholar]
- Loomis, J. Use of survey data to estimate economic value and regional economic effects of fishery improvements. N. Am. J. Fish Manag. 2006, 26, 301–307. [Google Scholar] [CrossRef]
- Grunder, S.A.; McArthur, T.J.; Clark, S.; Moore, V.K. 2003 Economic Survey Report; Report IDFG 08-129; Idaho Department of Fish and Game: Boise, ID, USA, 2008. [Google Scholar]
- Boggs, K.G.; Van Kirk, R.W.; Johnson, G.S.; Fairley, J.P.; Porter, P.S. Analytical solutions to the linearized Boussinesq equation for assessing the effects of recharge on aquifer discharge. JAWRA 2010, 46, 1116–1132. [Google Scholar] [CrossRef]
- Johnson, G.S.; Sullivan, W.H.; Cosgrove, D.M.; Schmidt, R.D. Recharge of the snake river plain aquifer: Transitioning from incidental to managed. JAWRA 1999, 35, 123–131. [Google Scholar] [CrossRef]
- Fernald, A.G.; Guldan, S.J. Surface water-groundwater interactions between irrigation ditches, alluvial aquifers, and streams. Rev. Fish. Sci. Aquac. 2006, 14, 79–89. [Google Scholar] [CrossRef] [Green Version]
- U.S. Bureau of Reclamation. Henrys Fork Basin Study Water Needs Assessment; Technical Report PN-HFS-001; U.S. Bureau of Reclamation, Pacific Northwest Region: Boise, ID, USA, 2012.
- Wytzes, J. Development of a Groundwater Model for the Henry’s Fork and Rigby Fan Areas, Upper Snake River Basin, Idaho. Ph.D. Thesis, University of Idaho, Moscow, ID, USA, 1980. [Google Scholar]
- Apple, B.D. Predicting Groundwater Effects Due to Changing Land Practices in the Intermountain West. Master’s Thesis, Humboldt State University, Arcata, CA, USA, 2013. [Google Scholar]
- Contor, B. Delineation of Sprinkler and Gravity Application Systems. Eastern Snake Plain Aquifer Model Enhancement Project Scenario Document DDW-022; Technical Report 04-005; Idaho Water Resources Research Institute, University of Idaho: Moscow, ID, USA, 2004. [Google Scholar]
- Hortness, J.; Vidmar, P. Seepage Study on the Henrys Fork and Snake River, Idaho.; U.S. Geological Survey Idaho Water Science Center: Boise, ID, USA, 2003. [Google Scholar]
- Idaho Department of Water Resources. Enhanced Snake Plain Aquifer Model Version 2.1 Final Report; Idaho Department of Water Resources: Boise, ID, USA, 2013. [Google Scholar]
- Joint Committee. Henry’s Fork Drought Management Plan; Fremont-Madison Irrigation District: St. Anthony, ID, USA, 2018. [Google Scholar]
- Flinders, J.; Keen, D.; High, B.; Garren, D. Fishery Management Annual Report, Upper Snake Region 2014; Report IDFG 16-108; Idaho Department of Fish and Game: Boise, ID, USA, 2016. [Google Scholar]
- Morrisett, C.; Van Kirk, R.; Loibman, A. Lower Henry’s Fork Hydrology and Habitat Assessment; Progress Report Submitted to Meet Conditions of Ora Bridge Mitigation Agreement; Local Highway Technical Assistance Council: Boise, ID, USA, 2019. [Google Scholar]
- Raleigh, R.F.; Zuckerman, L.D.; Nelson, P.C. Habitat Suitability Index Models and Instream Flow Suitability Curves: Brown Trout; U.S. Fish and Wildlife Service: Washington, DC, USA, 1984; 82(10.124).
- Benjamin, L.; Van Kirk, R.W. Assessing instream flows and reservoir operations on an eastern Idaho river. JAWRA 1999, 35, 899–909. [Google Scholar] [CrossRef]
- Laatsch, J.; Van Kirk, R.; Morrisett, C.; Manishin, K.; DeRito, J. Angler perception of fishing experience in a highly technical catch-and-release fishery: How closely does perception align with biological reality? In Science, Politics, and Wild Trout Management: Who’s Driving and Where are We Going? Proceedings of Wild Trout XII Symposium, West Yellowstone, MT, USA, 26–29 September 2017; Carline, R.F., LoSapio, C., Eds.; pp. 47–53. Available online: https://www.wildtroutsymposium.com/proceedings-12.pdf (accessed on 21 February 2020).
- McClaren, J.S.; Royer, T.V.; Van Kirk, R.W.; Muradian, M.L. Management and limnology interact to drive water temperature in a Middle Rockies river-reservoir. JAWRA 2019, 55, 1323–1334. [Google Scholar] [CrossRef]
- Doherty, J. PEST Model-Independent Parameter Estimation Users Manual; Watermark Numerical Computing: Brisbane, Australia, 2004. [Google Scholar]
- Beach, T.; Null, S.E.; Gray, C.A. An affordable method of thermal infrared remote sensing of wadeable rivers using a weather balloon. J. Undergrad. Res. 2016, 7, 26–31. [Google Scholar]
- CH2M and Henry’s Fork Foundation. Eastern Snake Plain Aquifer (ESPA) Review of Comprehensive Managed Aquifer Recharge Program; Final Report; Idaho Water Resource Board: Boise, ID, USA, 2016. [Google Scholar]
- Olenichak, T. Concepts, Practices, and Procedures Used to Distribute Water within Water District #1 Upper Snake River Basin Idaho; Idaho Department of Water Resources Water District 01: Idaho Falls, ID, USA, 2015. [Google Scholar]
- Idaho Department of Water Resources. Water District 1 Rental Pool Rules; Idaho Department of Water Resources: Idaho Falls, ID, USA, 2019. [Google Scholar]
- Idaho Code Title 42, Chapter 17, Sections 1761–1766. Boise, Idaho, USA. Available online: https://legislature.idaho.gov/statutesrules/idstat/Title42/T42CH17/ (accessed on 17 November 2019).
- Ward, F.A.; Pulido-Velazquez, M. Water conservation in irrigation can increase water use. Proc. Natl. Acad. Sci. USA 2008, 105, 18215–18220. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grafton, R.Q.; Williams, J.; Perry, C.J.; Molle, F.; Ringler, C.; Steduto, P.; Udall, B.; Wheeler, S.A.; Wang, Y.; Garrick, D.; et al. The paradox of irrigation efficiency. Science 2018, 361, 748–750. [Google Scholar] [CrossRef] [Green Version]
- Fullerton, A.H.; Torgersen, C.E.; Lawler, J.J.; Steel, E.A.; Ebersole, J.L.; Lee, S.Y. Longitudinal thermal heterogeneity in rivers and refugia for coldwater species: Effects of scale and climate change. Aquat. Sci. 2018, 80, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Dillon, P.; Kumar, A.; Kookana, R.; Leijs, R.; Reed, D.; Parsons, S.; Ingerson, G. Managed Aquifer Recharge—Risks to Groundwater Dependent Ecosystems—A review; Water for a Healthy Country Flagship Report to Land & Water Australia; Commonwealth Scientific and Industrial Research Organisation: Canberra, Australia, 2009. [Google Scholar]
- Scanlon, B.R.; Reedy, R.C.; Stonstrom, D.A.; Prudic, D.E.; Dennehy, K.F. Impact of land use and land cover change on groundwater recharge and quality in the southwestern US. Glob. Chang. Biol. 2005, 11, 1577–1593. [Google Scholar] [CrossRef]
- Morway, E.D.; Gates, T.K.; Niswonger, R.G. Appraising options to reduce shallow groundwater tables and enhance flow conditions over regional scales in an irrigated alluvial aquifer system. J. Hydrol. 2013, 495, 216–237. [Google Scholar] [CrossRef]
- Fienen, M.N.; Arshad, M. The international scale of the groundwater issue. In Integrated Groundwater Management; Jakeman, A.J., Barreteau, O., Hunt, R.J., Rinaudo, J.-D., Ross, A., Eds.; Springer Open: Basel, Switzerland, 2016; pp. 21–42. [Google Scholar]
- Low, W.H. Solute Distribution in Ground and Surface Water in the Snake River Basin, Idaho and Eastern Oregon; United States Geologic Survey Hydrologic Atlas 696; United States Geological Survey: Reston, VA, USA, 2017. [CrossRef]
- Langridge, R. Drought and groundwater: Legal hurdles to establishing groundwater drought reserves in California. Environs 2012, 36, 91–113. [Google Scholar]
- Jacobs, K.L.; Holway, J.M. Managing for sustainability in an arid climate: Lessons learned from 20 years of groundwater management in Arizona, USA. Hydrogeol. J. 2004, 12, 52–65. [Google Scholar] [CrossRef]
- Iwata, Y.; Hayashi, M.; Hirota, T. Comparison of snowmelt infiltration under different soil-freezing conditions influenced by snow cover. Vadose Zone J. 2008, 7, 79–86. [Google Scholar] [CrossRef]
- Easterling, D.R.; Meehl, G.A.; Parmesan, C.; Changnon, S.A.; Karl, T.R.; Mearns, L.O. Climate extremes: Observations, modeling, and impacts. Science 2000, 289, 2068–2074. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rheinheimer, D.E.; Null, S.E.; Viers, J.H. Climate-Adaptive water year typing for instream flow requirements in California’s Sierra Nevada. J. Water Resour. Plann. Manag. 2016, 142, 04016049. [Google Scholar] [CrossRef]
- Null, S.E.; Prudencio, L. Climate change effects on water allocations with season dependent water rights. Sci. Total Environ. 2016, 571, 943–954. [Google Scholar] [CrossRef] [Green Version]
- Sokal, R.R.; Rohlf, F.J. Biometry, 4th ed.; W.H. Freeman: New York, NY, USA, 2012. [Google Scholar]
- Chatfield, C. The Analysis of Time Series, 4th ed.; Chapman and Hall: London, UK, 1989. [Google Scholar]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kirk, R.W.V.; Contor, B.A.; Morrisett, C.N.; Null, S.E.; Loibman, A.S. Potential for Managed Aquifer Recharge to Enhance Fish Habitat in a Regulated River. Water 2020, 12, 673. https://doi.org/10.3390/w12030673
Kirk RWV, Contor BA, Morrisett CN, Null SE, Loibman AS. Potential for Managed Aquifer Recharge to Enhance Fish Habitat in a Regulated River. Water. 2020; 12(3):673. https://doi.org/10.3390/w12030673
Chicago/Turabian StyleKirk, Robert W. Van, Bryce A. Contor, Christina N. Morrisett, Sarah E. Null, and Ashly S. Loibman. 2020. "Potential for Managed Aquifer Recharge to Enhance Fish Habitat in a Regulated River" Water 12, no. 3: 673. https://doi.org/10.3390/w12030673
APA StyleKirk, R. W. V., Contor, B. A., Morrisett, C. N., Null, S. E., & Loibman, A. S. (2020). Potential for Managed Aquifer Recharge to Enhance Fish Habitat in a Regulated River. Water, 12(3), 673. https://doi.org/10.3390/w12030673