Tracking Lake and Reservoir Changes in the Nenjiang Watershed, Northeast China: Patterns, Trends, and Drivers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Source and Processing
2.2.1. Satellite Data
2.2.2. Meteorological Data
2.2.3. Other Data
2.3. Data Analysis
2.3.1. Extracting Lakes and Reservoirs
2.3.2. Temporal Analysis of Lakes and Reservoirs
2.3.3. Assessing the Roles of Climatic Factors and Anthropogenic Causes in Lake Changes
3. Results
3.1. Spatial Pattern of Lakes and Reservoirs in 2015
3.2. Temporal Changes of Lakes and Reservoirs from 1980 to 2015
3.2.1. Lake Changes
3.2.2. Reservoir Changes
3.3. Roles of Climatic Factors and Artificial Variables in Driving Lake Changes
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bai, J.; Chen, X.; Li, J.; Yang, L.; Fang, H. Changes in the area of inland lakes in arid regions of central Asia during the past 30 years. Environ. Monit. Assess. 2011, 178, 247–256. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Yang, G.; Wan, R.; Zhang, L.; Zhang, Y.; Dai, X. Using fuzzy theory and variable weights for water quality evaluation in Poyang Lake, China. Chin. Geogr. Sci. 2017, 27, 39–51. [Google Scholar] [CrossRef] [Green Version]
- Duan, Z.; Bastiaanssen, W.G.M. Estimating water volume variations in lakes and reservoirs from four operational satellite altimetry databases and satellite imagery data. Remote Sens. Environ. 2013, 134, 403–416. [Google Scholar] [CrossRef]
- Williamson, C.E.; Saros, J.E.; Vincent, W.F.; Smol, J.P. Lakes and reservoirs as sentinels, integrators, and regulators of climate change. Limnol. Oceanogr. 2009, 54, 2273–2282. [Google Scholar] [CrossRef]
- Smith, L.C.; Sheng, Y.; MacDonald, G.; Hinzman, L. Disappearing arctic lakes. Science 2005, 308, 1429. [Google Scholar] [CrossRef] [Green Version]
- McBean, E.; Motiee, H. Assessment of impact of climate change on water resources: A long term analysis of the Great Lakes of North America. Hydrol. Earth Syst. Sci. 2008, 12, 239–255. [Google Scholar] [CrossRef] [Green Version]
- Zhiguo, L. Glacier and lake changes across the Tibetan Plateau during the past 50 years of climate change. J. Resour. Ecol. 2014, 5, 123–132. [Google Scholar] [CrossRef]
- Mao, D.; Wang, Z.; Yang, H.; Li, H.; Thompson, R.J.; Li, L.; Song, K.; Chen, B.; Gao, H.; Wu, J. Impacts of Climate Change on Tibetan Lakes: Patterns and Processes. Remote Sens. 2018, 10, 358. [Google Scholar] [CrossRef] [Green Version]
- Tao, S.; Fang, J.; Zhao, X.; Zhao, S.; Shen, H.; Hu, H.; Tang, Z.; Wang, Z.; Guo, Q. Rapid loss of lakes on the Mongolian Plateau. Proc. Natl. Acad. Sci. USA 2015, 112, 2281–2286. [Google Scholar] [CrossRef] [Green Version]
- Lehner, B.; Liermann, C.R.; Revenga, C.; Vörösmarty, C.; Fekete, B.; Crouzet, P.; Döll, P.; Endejan, M.; Frenken, K.; Magome, J.; et al. High-resolution mapping of the world’s reservoirs and dams for sustainable river-flow management. Front. Ecol. Environ. 2011, 9, 494–502. [Google Scholar] [CrossRef] [Green Version]
- Ministry of Water Resources. Bulletin of First National Census for Water; China Water and Power Publisher: Beijing, China, 2013. [Google Scholar]
- Yang, X.; Lu, X. Drastic change in China’s lakes and reservoirs over the past decades. Sci. Rep. 2014, 4, 6041. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mao, D.; Wang, Z.; Wu, J.; Wu, B.; Zeng, Y.; Song, K.; Yi, K.; Luo, L. China’s wetlands loss to urban expansion. Land Degrad. Dev. 2018, 29, 2644–2657. [Google Scholar] [CrossRef]
- Chang, B.; Li, R.; Zhu, C.; Liu, K. Quantitative Impacts of Climate Change and Human Activities on Water-Surface Area Variations from the 1990s to 2013 in Honghu Lake, China. Water 2015, 7, 2881–2899. [Google Scholar] [CrossRef] [Green Version]
- Zheng, Z.; Li, Y.; Guo, Y.; Xu, Y.; Liu, G.; Du, C. Landsat-Based Long-Term Monitoring of Total Suspended Matter Concentration Pattern Change in the Wet Season for Dongting Lake, China. Remote Sens. 2015, 7, 13975–13999. [Google Scholar] [CrossRef] [Green Version]
- Wu, G.; Liu, Y. Mapping Dynamics of Inundation Patterns of Two Largest River-Connected Lakes in China: A Comparative Study. Remote Sens. 2016, 8, 560. [Google Scholar] [CrossRef] [Green Version]
- Wang, M.; Du, L.; Ke, Y.; Huang, M.; Zhang, J.; Zhao, Y.; Li, X.; Gong, H. Impact of Climate Variabilities and Human Activities on Surface Water Extents in Reservoirs of Yongding River Basin, China, from 1985 to 2016 Based on Landsat Observations and Time Series Analysis. Remote Sens. 2019, 11, 560. [Google Scholar] [CrossRef] [Green Version]
- Feyisa, G.L.; Meilby, H.; Fensholt, R.; Proud, S.R. Automated Water Extraction Index: A new technique for surface water mapping using Landsat imagery. Remote Sens. Environ. 2014, 140, 23–35. [Google Scholar] [CrossRef]
- Tulbure, M.G.; Broich, M.; Stehman, S.V.; Kommareddy, A. Surface water extent dynamics from three decades of seasonally continuous Landsat time series at subcontinental scale in a semi-arid region. Remote Sens. Environ. 2016, 178, 142–157. [Google Scholar] [CrossRef]
- Beaton, A.; Whaley, R.; Corston, K.; Kenny, F. Identifying historic river ice breakup timing using MODIS and Google Earth Engine in support of operational flood monitoring in Northern Ontario. Remote Sens. Environ. 2019, 224, 352–364. [Google Scholar] [CrossRef]
- Carroll, M.; Wooten, M.; DiMiceli, C.; Sohlberg, R.; Kelly, M. Quantifying Surface Water Dynamics at 30 Meter Spatial Resolution in the North American High Northern Latitudes 1991–2011. Remote Sens. 2016, 8, 622. [Google Scholar] [CrossRef] [Green Version]
- Yamazaki, D.; Trigg, M.A.; Ikeshima, D. Development of a global ~90m water body map using multi-temporal Landsat images. Remote Sens. Environ. 2015, 171, 337–351. [Google Scholar] [CrossRef]
- Li, Q.; Lu, L.; Wang, C.; Li, Y.; Sui, Y.; Guo, H. MODIS-Derived Spatiotemporal Changes of Major Lake Surface Areas in Arid Xinjiang, China, 2000–2014. Water 2015, 7, 5731–5751. [Google Scholar] [CrossRef]
- Karlsson, J.M.; Jaramillo, F.; Destouni, G. Hydro-climatic and lake change patterns in Arctic permafrost and non-permafrost areas. J. Hydrol. 2015, 529, 134–145. [Google Scholar] [CrossRef] [Green Version]
- Wendleder, A.; Friedl, P.; Mayer, C. Impacts of Climate and Supraglacial Lakes on the Surface Velocity of Baltoro Glacier from 1992 to 2017. Remote Sens. 2018, 10, 1681. [Google Scholar] [CrossRef] [Green Version]
- Khadka, N.; Zhang, G.; Thakuri, S. Glacial Lakes in the Nepal Himalaya: Inventory and Decadal Dynamics (1977–2017). Remote Sens. 2018, 10, 1913. [Google Scholar] [CrossRef] [Green Version]
- Mishra, N.; Haque, M.O.; Leigh, L.; Aaron, D.; Helder, D.; Markham, B. Radiometric Cross Calibration of Landsat 8 Operational Land Imager (OLI) and Landsat 7 Enhanced Thematic Mapper Plus (ETM+). Remote Sens. 2014, 6, 12619–12638. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Wang, Z.; Zhang, B.; Lu, C.; Ren, C. Impact of land use/land cover changes on ecosystem services in the Nenjiang River Basin, Northeast China. Ecol. Process. 2015, 4, 11. [Google Scholar] [CrossRef] [Green Version]
- Feng, X.; Zhang, G.; Yin, X. Hydrological responses to climate change in Nenjiang river basin, northeastern China. Water Resour. Manag. 2011, 25, 677–689. [Google Scholar] [CrossRef]
- Qiu, B.; Lu, D.; Tang, Z.; Chen, C.; Zou, F. Automatic and adaptive paddy rice mapping using Landsat images: Case study in Songnen Plain in Northeast China. Sci. Total Environ. 2017, 598, 581–592. [Google Scholar] [CrossRef]
- Zhang, Y.; Zang, S.; Sun, L.; Yan, B.; Yang, T.; Yan, W.; Meadows, M.E.; Wang, C.; Qi, J. Characterizing the changing environment of cropland in the Songnen Plain, Northeast China, from 1990 to 2015. J. Geogr. Sci. 2019, 29, 658–674. [Google Scholar] [CrossRef] [Green Version]
- Liu, Z.-H.; McVicar, T.R.; LingTao, L.; Van Niel, T.G.; Yang, Q.-K.; Li, R.; Mu, X.-M. Interpolation for time series of meteorological variables using ANUSPLIN. J. Northwest A F Univ. 2008, 36, 227–234. [Google Scholar]
- Yoo, S.-H.; Choi, J.-Y.; Jang, M.-W. Estimation of design water requirement using FAO Penman–Monteith and optimal probability distribution function in South Korea. Agric. Water Manag. 2008, 95, 845–853. [Google Scholar] [CrossRef]
- Lü, Y.; Fu, B.; Feng, X.; Zeng, Y.; Liu, Y.; Chang, R.; Sun, G.; Wu, B. A policy-driven large scale ecological restoration: Quantifying ecosystem services changes in the Loess Plateau of China. PLoS ONE 2012, 7, e31782. [Google Scholar] [CrossRef] [PubMed]
- Korzeniowska, K.; Korup, O. Object-Based Detection of Lakes Prone to Seasonal Ice Cover on the Tibetan Plateau. Remote Sens. 2017, 9, 339–361. [Google Scholar] [CrossRef] [Green Version]
- Walter, V. Object-based classification of remote sensing data for change detection. ISPRS J. Photogramm. 2004, 58, 225–238. [Google Scholar] [CrossRef]
- Blaschke, T.; Lang, S.; Hay, G. Object-Based Image Analysis: Spatial Concepts for Knowledge-Driven Remote Sensing Applications; Springer: Berlin, Germany, 2008. [Google Scholar]
- Jia, M.; Wang, Z.; Wang, C.; Mao, D.; Zhang, Y. A new vegetation index to detect periodically submerged Mangrove forest using single-tide sentinel-2 imagery. Remote Sens. 2019, 11, 2043. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Mao, D.; Li, X.; Wang, Z.; Wang, C. Monitoring 40-Year Lake Area Changes of the Qaidam Basin, Tibetan Plateau, Using Landsat Time Series. Remote Sens. 2019, 11, 343. [Google Scholar] [CrossRef] [Green Version]
- Nie, Y.; Sheng, Y.; Liu, Q.; Liu, L.; Liu, S.; Zhang, Y.; Song, C. A regional-scale assessment of Himalayan glacial lake changes using satellite observations from 1990 to 2015. Remote Sens. Environ. 2017, 189, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Gao, Y.; Li, Y.; Yan, S.; Xu, Y. Dynamic of Dalinor Lakes in the Inner Mongolian Plateau and Its Driving Factors during 1976–2015. Water 2017, 9, 749. [Google Scholar] [CrossRef] [Green Version]
- Mueller, N.; Lewis, A.; Roberts, D.; Ring, S.; Melrose, R.; Sixsmith, J.; Lymburner, L.; McIntyre, A.; Tan, P.; Curnow, S.; et al. Water observations from space: Mapping surface water from 25 years of Landsat imagery across Australia. Remote Sens. Environ. 2016, 174, 341–352. [Google Scholar] [CrossRef] [Green Version]
- Olofsson, P.; Foody, G.M.; Herold, M.; Stehman, S.V.; Woodcock, C.E.; Wulder, M.A. Good practices for estimating area and assessing accuracy of land change. Remote Sens. Environ. 2014, 148, 42–57. [Google Scholar] [CrossRef]
- Yuan, F.; Sawaya, K.E.; Loeffelholz, B.C.; Bauer, M.E. Land cover classification and change analysis of the Twin Cities (Minnesota) Metropolitan Area by multitemporal Landsat remote sensing. Remote Sens. Environ. 2005, 98, 317–328. [Google Scholar] [CrossRef]
- Zhou, W.; Troy, A.; Grove, M. Object-based land cover classification and change analysis in the Baltimore metropolitan area using multitemporal high resolution remote sensing data. Sensors 2008, 8, 1613–1636. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Enders, C.K.; Mansolf, M. Assessing the fit of structural equation models with multiply imputed data. Psychol. Methods 2018, 23, 76. [Google Scholar] [CrossRef]
- Meydan, C.; Sesen, H. Structural Equation Modeling AMOS Applications; Detay Yayıncılık: Ankara, Turkey, 2011. [Google Scholar]
- Schreiber, J.B. Core reporting practices in structural equation modeling. Res. Soc. Adm. Pharm. 2008, 4, 83–97. [Google Scholar] [CrossRef]
- Melucci, M.; Paggiaro, A. Evaluation of information retrieval systems using structural equation modeling. Comput. Sci. Rev. 2019, 31, 1–18. [Google Scholar] [CrossRef]
- Gefen, D.; Straub, D.; Boudreau, M.-C. Structural equation modeling and regression: Guidelines for research practice. Commun. Assoc. Inf. Systems 2000, 4, 7. [Google Scholar] [CrossRef] [Green Version]
- Li, S.; Gang, A. A diagnostic study of northeast cold vortex heavy rain over the Songhuajiang-Nenjiang River Basin in the Summer of 1998. Chin. J. Atmos. Sci. 2001, 342–353. [Google Scholar]
- Zhang, F.; Tiyip, T.; Johnson, V.C.; Kung, H.-t.; Ding, J.-l.; Sun, Q.; Zhou, M.; Kelimu, A.; Nurmuhammat, I.; Chan, N.W. The influence of natural and human factors in the shrinking of the Ebinur Lake, Xinjiang, China, during the 1972–2013 period. Environ. Monit. Assess. 2014, 187, 4128. [Google Scholar] [CrossRef]
- Zhang, G.; Yao, T.; Shum, C.; Yi, S.; Yang, K.; Xie, H.; Feng, W.; Bolch, T.; Wang, L.; Behrangi, A. Lake volume and groundwater storage variations in Tibetan Plateau’s endorheic basin. Geophys. Res. Lett. 2017, 44, 5550–5560. [Google Scholar] [CrossRef]
- Zhong, L.; Liu, L.; Liu, Y. Natural Disaster Risk Assessment of Grain Production in Dongting Lake Area, China. Agric. Sci. Procedia 2010, 1, 24–32. [Google Scholar] [CrossRef] [Green Version]
- Mao, D.; He, X.; Wang, Z.; Tian, Y.; Xiang, H.; Yu, H.; Man, W.; Jia, M.; Ren, C.; Zheng, H. Diverse policies leading to contrasting impacts on land cover and ecosystem services in Northeast China. J. Clean. Prod. 2019, 240, 117961. [Google Scholar] [CrossRef]
- Mao, D.; Luo, L.; Wang, Z.; Wilson, M.C.; Zeng, Y.; Wu, B.; Wu, J. Conversions between natural wetlands and farmland in China: A multiscale geospatial analysis. Sci. Total Environ. 2018, 634, 550–560. [Google Scholar] [CrossRef] [PubMed]
Date | 1980 | 1990 | 2000 | 2010 | 2015 |
---|---|---|---|---|---|
Sources | Google Earth Image/MSS | TM | TM/ETM+ | TM | OLI |
Lakes | 126 | 158 | 170 | 244 | 256 |
Reservoirs | 38 | 47 | 50 | 62 | 65 |
Non-water bodies | 35 | 40 | 79 | 65 | 57 |
Total Samples | 199 | 245 | 299 | 371 | 378 |
Measure | Optimum Values | Reference |
---|---|---|
RMSEA (root mean square error of approximation) | Less than 0.08 | Li et al. (2019) [39] |
λ2/df (chi-square/degree of freedom) | Less than 3 | James (2007) [48] |
GFI (goodness of fit index) | 0.90 and above | Melucci et al. (2019) [49] |
CFI (comparative fit index) | 0.90 and above | David et al. (2000) [50] |
Year or Period | Area Classes (km2) | Total | ||||
---|---|---|---|---|---|---|
1–10 | 10–50 | 50–100 | >100 | |||
Number of lakes | 1980 | 419 | 43 | 3 | 3 | 468 |
1990 | 414 | 40 | 1 | 3 | 458 | |
2000 | 343 | 39 | 0 | 4 | 386 | |
2010 | 198 | 27 | 2 | 3 | 230 | |
2015 | 199 | 29 | 2 | 3 | 233 | |
Change in number (%) | 1980–1990 | −1 | −7 | −67 | 0 | −2 |
1990–2000 | −17 | −3 | 0 | 33 | −15 | |
2000–2010 | −42 | −31 | 100 | −25 | −41 | |
2010–2015 | 0 | 7 | 0 | 0 | 1 | |
1980–2015 | −53 | −33 | −33 | 0 | −50 | |
Lake area (km2) | 1980 | 1369 ± 11 | 916 ± 17 | 197 ± 20 | 958 ± 24 | 3440 ± 72 |
1990 | 1145 ± 10 | 884 ± 15 | 81 ± 17 | 900 ± 17 | 3010 ± 59 | |
2000 | 934 ± 8 | 729 ± 19 | 0.0 | 804 ± 13 | 2467 ± 40 | |
2010 | 548 ± 7 | 535 ± 16 | 111 ± 17 | 767 ± 13 | 1961 ± 53 | |
2015 | 595 ± 7 | 656 ± 14 | 145 ± 15 | 714 ± 17 | 2110 ± 53 | |
Change in area (%) | 1980–1990 | −16 ** | −4 ** | −59 ** | −6.0 ** | −13 ** |
1990–2000 | −18 ** | −18 ** | −100 ** | −10.7 ** | −18 ** | |
2000–2010 | −41 ** | −27 ** | 0 | −4.5 ** | −20 ** | |
2010–2015 | 9 ** | 23 ** | 30 ** | −7.0 ** | 8 ** | |
1980–2015 | −57 ** | −28 ** | −26 ** | −25.5 ** | −39 ** |
Year or Period | Area Classes (km2) | Total | ||||
---|---|---|---|---|---|---|
1–10 | 10–50 | 50–100 | >100 | |||
Number of reservoirs | 1980 | 69 | 6 | 1 | 2 | 78 |
1990 | 68 | 15 | 2 | 1 | 86 | |
2000 | 73 | 19 | 4 | 0 | 96 | |
2010 | 84 | 13 | 2 | 2 | 101 | |
2015 | 108 | 17 | 2 | 2 | 129 | |
Change in number (%) | 1980–1990 | −1 | 150 | 100 | −50 | 10 |
1990–2000 | 7 | 27 | 100 | 0 | 13 | |
2000–2010 | 15 | −32 | −50 | 100 | 4 | |
2010–2015 | 29 | 31 | 0 | 0 | 28 | |
1980–2015 | 57 | 183 | 100 | 0 | 65 | |
Reservoir area (km2) | 1980 | 205 ± 9 | 149 ± 10 | 52 ± 14 | 513 ± 20 | 919 ± 53 |
1990 | 200 ± 6 | 328 ± 16 | 121 ± 17 | 151 ± 14 | 800 ± 53 | |
2000 | 247 ± 5 | 263 ± 8 | 270 ± 15 | 0 | 780 ± 28 | |
2010 | 320 ± 6 | 324 ± 16 | 134 ± 17 | 308 ± 19 | 1086 ± 58 | |
2015 | 259 ± 4 | 397 ± 16 | 175 ± 18 | 591 ± 18 | 1422 ± 56 | |
Change in area (%) | 1980–1990 | −2 | 121 ** | 133 ** | −71 ** | −13 ** |
1990–2000 | 23 ** | −20 ** | 123 ** | −100 ** | −3 | |
2000–2010 | 30 ** | 24 ** | −50 ** | 0 | 39 ** | |
2010–2015 | −19 ** | 23 ** | 31 ** | 92 ** | 31 ** | |
1980–2015 | 27 ** | 167 ** | 237 ** | 15 ** | 55 ** |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Du, B.; Wang, Z.; Mao, D.; Li, H.; Xiang, H. Tracking Lake and Reservoir Changes in the Nenjiang Watershed, Northeast China: Patterns, Trends, and Drivers. Water 2020, 12, 1108. https://doi.org/10.3390/w12041108
Du B, Wang Z, Mao D, Li H, Xiang H. Tracking Lake and Reservoir Changes in the Nenjiang Watershed, Northeast China: Patterns, Trends, and Drivers. Water. 2020; 12(4):1108. https://doi.org/10.3390/w12041108
Chicago/Turabian StyleDu, Baojia, Zongming Wang, Dehua Mao, Huiying Li, and Hengxing Xiang. 2020. "Tracking Lake and Reservoir Changes in the Nenjiang Watershed, Northeast China: Patterns, Trends, and Drivers" Water 12, no. 4: 1108. https://doi.org/10.3390/w12041108
APA StyleDu, B., Wang, Z., Mao, D., Li, H., & Xiang, H. (2020). Tracking Lake and Reservoir Changes in the Nenjiang Watershed, Northeast China: Patterns, Trends, and Drivers. Water, 12(4), 1108. https://doi.org/10.3390/w12041108