Vegetable Crops Grown under High Soil Water Availability in Mediterranean Greenhouses
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site and Experiments
2.2. Measurements
3. Results
3.1. Water Use
3.2. Soil Matric Potential
3.3. Shoot Growth, Biomass and Allocation
3.4. Root Biomass and Distribution
3.5. Crop Yield
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bonachela, S.B.; López, J.C.; Granados, M.R.; Magán, J.J.; Hernández, J.; Baille, A. Effects of gravel mulch on surface energy balance and soil thermal regime in an unheated plastic greenhouse. Biosyst. Eng. 2020, 192, 1–13. [Google Scholar] [CrossRef]
- Pardossi, A.; Tognoni, F.; Incrocci, L. Mediterranean greenhouse technology. Chron. Hortic. 2004, 44, 28–34. [Google Scholar]
- Casas, J.; Bonachela, S.; Moyano, F.J.; Fenoy, E.; Hernández, J. Agricultural practices in the mediterranean: A case study in Southern Spain. In The Mediterranean Diet: An Evidence-Based Approach; Preedy, V.R., Watson, R.R., Eds.; Academic Press: London, UK, 2015; pp. 23–36. [Google Scholar]
- Thompson, R.B.; Martínez-Gaitan, C.; Gallardo, M.; Giménez, C.; Fernández, M.D. Identification of irrigation and N management practices that contribute to nitrate leaching loss from an intensive vegetable production system by use of a comprehensive survey. Agric. Water Manag. 2007, 89, 261–274. [Google Scholar] [CrossRef]
- Orgaz, F.; Fernández, M.D.; Bonachela, S.; Gallardo, M.; Fereres, E. Evapotranspiration of horticultural crops in an unheated plastic greenhouse. Agric. Water Manag. 2005, 72, 81–96. [Google Scholar] [CrossRef]
- Fernández, M.D.; Bonachela, S.; Orgaz, F.; Thompson, R.B.; López, J.C.; Granados, M.R.; Gallardo, M.; Fereres, E. Measurement and estimation of plastic greenhouse reference evapotranspiration in a Mediterranean climate. Irrig. Sci. 2010, 28, 497–509. [Google Scholar]
- Bonachela, S.; González, A.M.; Fernández, M.D. Irrigation scheduling of plastic greenhouse vegetable crops based on historical weather data. Irrig. Sci. 2006, 25, 53–62. [Google Scholar] [CrossRef]
- Fernández, M.D.; González, A.M.; Carreño, J.; Pérez, C.; Bonachela, S. Analysis of on-farm irrigation performance in Mediterranean greenhouses. Agric. Water Manag. 2007, 89, 251–260. [Google Scholar]
- Hanson, B.R.; Orloff, S.; Peters, D. Monitoring soil moisture helps refine irrigation management. Calif. Agric. 2000, 54, 38–42. [Google Scholar] [CrossRef] [Green Version]
- Wang, D.; Kang, Y.; Wan, S. Effect of soil matric potential on tomato yield and water use under drip irrigation condition. Agric. Water Manag. 2007, 87, 180–186. [Google Scholar] [CrossRef]
- Liu, H.; Yang, H.; Zheng, J.; Jia, D.; Wang, J.; Li, Y.; Huang, G. Irrigation scheduling strategies based on soil matric potential on yield and fruit quality of mulched-drip irrigated chili pepper in Northwest China. Agric. Water Manag. 2012, 115, 232–241. [Google Scholar] [CrossRef]
- Thompson, R.B.; Gallardo, M.; Valdez, L.C.; Fernández, M.D. Using plant water status to define threshold values for irrigation management of vegetable crops using soil moisture sensors. Agric. Water Manag. 2007, 88, 147–158. [Google Scholar] [CrossRef]
- González, A.M. Programas De Riego Para Cultivos Hortícolas En Invernaderos Enarenados En Almería. Ph.D. Thesis, University of Almería, Almería, Spain, 16 September 2003. [Google Scholar]
- Contreras, J.I.; Alonso, F.; Cánovas, G.; Baeza, R. Irrigation management of greenhouse zucchini with different soil matric potential level. Agronomic and environmental effects. Agric. Water Manag. 2017, 186, 26–34. [Google Scholar] [CrossRef]
- Assouline, S.; Möller, M.; Furman, A.; Narkis, K.; Silber, A. Impact of water regime and growing conditions on soil–plant interactions: From single plant to field scale. Vadose Zone J. 2012, 11, 3–14. [Google Scholar] [CrossRef]
- Fereres, E.; Soriano, M.A. Deficit irrigation for reducing agricultural water use. J. Exp. Bot. 2007, 58, 147–159. [Google Scholar] [CrossRef] [Green Version]
- Hsiao, T.C.; Bradford, K.J. Physiological consequences of cellular water deficits. In Limitations to Efficient Water Use in Crop Production; Taylor, H.M., Jordan, W.R., Sinclair, T.R., Eds.; American Society of Agronomy, Crop Science Society of America, Soil Science Society of America: Madison, WI, USA, 1983; pp. 227–265. [Google Scholar]
- Kumar, R.; Solankey, S.S.; Singh, M. Breeding for drought tolerance in vegetables. Veg. Sci. 2012, 39, 1–15. [Google Scholar]
- Nemeskéri, E.; Helyes, L. Physiological responses of selected vegetable crop species to water stress. Agronomy 2019, 9, 447. [Google Scholar] [CrossRef] [Green Version]
- Oliveira, M.R.G.; Calado, A.M.; Martins Portas, C.A. Tomato root distribution under drip irrigation. J. Am. Soc. Hortic. Sci. 1996, 121, 644–648. [Google Scholar] [CrossRef] [Green Version]
- Machado, R.A.; Do Rosário, M.; Oliveira, G.; Portas, C.M. Tomato root distribution, yield and fruit quality under subsurface drip irrigation. Plant Soil 2003, 255, 333–341. [Google Scholar] [CrossRef] [Green Version]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration: Guidelines for Computing Crop Water Requirements; Food and Agriculture Organization of the United Nations: Rome, Italy, 1998. [Google Scholar]
- Fernández, M.D. Necesidades Hídricas Y Programación De Riegos En Los Cultivos Hortícolas En Invernadero Y Suelo Enarenado De Almería. Ph.D. Thesis, University of Almería, Almería, Spain, 26 June 2000. [Google Scholar]
- MAPA. Métodos Oficiales De Análisis. Tomo III. Secretaria General Técnica Del Ministerio De Agricultura, Pesca Y Alimentación (MAPA); Gobierno de España: Madrid, Spain, 1994. [Google Scholar]
- Böhm, W. In situ estimation of root length at natural soil profiles. J. Agric. Sci. 1976, 87, 365–368. [Google Scholar] [CrossRef]
- Mendeley. Available online: https://data.mendeley.com/datasets/rkg887rnbm/110.17632/rkg887rnbm.1 (accessed on 11 April 2020). Experimental dataset.
- González, A.M.; Bonachela, S.; Fernández, M.D. Regulated deficit irrigation in green bean and watermelon greenhouse crops. Sci. Hortic. 2009, 122, 527–531. [Google Scholar] [CrossRef]
- Soulis, K.X.; Elmaloglou, S.; Dercas, N. Investigating the effects of soil moisture sensors positioning and accuracy on soil moisture based drip irrigation scheduling systems. Agric. Water Manag. 2015, 148, 258–268. [Google Scholar] [CrossRef]
- Katsoulas, N.; Kittas, C.; Dimokas, G.; Lykas, C. Effect of irrigation frequency on rose flower production and quality. Biosyst. Eng. 2006, 93, 237–244. [Google Scholar] [CrossRef]
- Andrews, M.; Raven, J.A.; Sprent, J.I. Environmental effects on dry matter partitioning between shoot and root of crop plants: Relations with growth and shoot protein concentration. Ann. Appl. Biol. 2001, 138, 57–68. [Google Scholar] [CrossRef]
- Zhang, L.; Gao, L.; Zhang, L.; Wang, S.; Sui, X.; Zhang, Z. Alternate furrow irrigation and nitrogen level effects on migration of water and nitrate-nitrogen in soil and root growth of cucumber in solar-greenhouse. Sci. Hortic. 2012, 138, 43–49. [Google Scholar] [CrossRef]
- Sonneveld, C.; Voogt, W. Plant Nutrition of Greenhouse Crops; Springer: Dordrecht, The Netherlands, 2009; pp. 33–52. [Google Scholar]
Crop Cycles | Cultivar | Sowing/Transplanting | End of Cycle | Plant Spacing |
---|---|---|---|---|
Autumn–winter cycles | ||||
Zucchini (Cucurbita pepo L.) | Cónsul | 29/08/2000 (S) | 22/01/2001 | 1.5 m × 0.75 m |
Cucumber (Cucumis sativus L.) | Borja | 05/09/2001 (T) | 09/01/2002 | 1.5 m × 0.5 m |
Green bean (Phaseolus vulgaris L.) | Donna | 12/09/2001 (S) | 04/01/2002 | 2.0 m × 0.5 m |
Spring cycles | ||||
Watermelon (Citrullus lanatus L.) | Reina de Corazones | 16/02/2001 (T) | 18/05/2001 | 4.5 m × 1.0 m |
Melon (Cucumis melo L.) | Aitana | 22/02/2001 (T) | 26/05/2001 | 2.0 m × 0.5 m |
Cucumber (Cucumis sativus L.) | Borja | 8/02/2002 (T) | 19/06/2002 | 2.0 m × 0.5 m |
Irrigation Treatments | Zucchini | Autumn Winter Cucumber | Green Bean | Watermelon | Melon | Spring Cucumber |
---|---|---|---|---|---|---|
H | 177 | 171 | 114 | 114 | 156 | 210 |
C | 178 | 159 | 105 | 108 | 144 | 216 |
L | - | 159 | - | - | - | 206 |
Crops | Irrigation Treatments | ETc | Drainage | |||||
---|---|---|---|---|---|---|---|---|
Volume | EC | pH | NO3− | K+ | Ca2+ | |||
Green bean | H | 105 | 16.7 ± 14.7 | 3.5 ± 0.2 | 8.1 ± 0.1 | 13.5 ± 5.1 | 7.2 ± 1.6 | 4.9 ± 1.3 |
C | 100 | 8.2 ± 1.0 | 4.0 ± 0.6 | 8.0 ± 0.1 | 13.8 ± 6.8 | 8.6 ± 6.8 | 7.3 ± 5.3 | |
Melon | H | 142 | 24.6 ± 4.5 | 2.6 ± 0.1 | 8.2 ± 0.1 | 16.8 ± 3.6 | 5.9 ± 0.3 | 5.5 ± 1.4 |
C | 130 | 33.6 ± 1.4 | 3.0 ± 0.4 | 8.2 ± 0.0 | 26.8 ± 0.6 | 13.6 ± 1.0 | 7.9 ± 0.6 |
Crops | Treatments | Shoot Biomass (g m−2) | HI (g g−1) | ||
---|---|---|---|---|---|
Vegetative | Generative | Total | |||
Autumn–winter cycles | |||||
Zucchini | H | 365 b * | 358 | 723 b | 0.50 |
C | 503 a | 382 | 885 a | 0.43 | |
Green bean | H | 395 b | 197 | 592 b | 0.34 a |
C | 457 a | 208 | 665 a | 0.31 b | |
Cucumber | H | 352 | 302 | 654 | 0.46 |
C | 341 | 333 | 674 | 0.50 | |
L | 331 | 330 | 664 | 0.50 | |
Spring cycles | |||||
Melon | H | 356 | 805 | 1161 | 0.69 |
C | 338 | 688 | 1026 | 0.67 | |
Watermelon | H | 244 a | 735 | 979 | 0.75 |
C | 210 b | 705 | 915 | 0.77 | |
Cucumber | H | 314 | 479 | 793 | 0.63 |
C | 310 | 467 | 778 | 0.60 | |
L | 287 | 487 | 774 | 0.63 |
Treatments | Near the Plant (P1) | Between Plants (P2) | Weighted Average |
---|---|---|---|
H | 18.5 ± 5.2 a * | 9.3 ± 4.1 a | 11.9 ± 5.5 a |
L | 22.8 ± 7.2 a | 6.2 ± 3.0 a | 10.9 ± 5.4 a |
Crops | Soil Water Availability | Fresh Fruit Weight | Yield Components | ||||
---|---|---|---|---|---|---|---|
Total | Marketable | First Class | Second Class | Fruits m−2 | Fruit Weight | ||
Autumn–winter cycles | |||||||
Zucchini | H | 5925 | 5282 | 3741 | 1541 | 24.6 | 215 |
C | 6619 | 5903 | 4177 | 1726 | 25.1 | 236 | |
Green bean | H | 2713 | 2601 | 2085 | 516 | - | - |
C | 2714 | 2619 | 2145 | 475 | - | - | |
Cucumber | H | 7924 | 6409 | 4635 | 1774 | 15.1 | 425 |
C | 8567 | 7189 | 5169 | 2019 | 17.0 | 422 | |
L | 8725 | 7281 | 5219 | 2062 | 16.9 | 431 | |
Spring cycles | |||||||
Melon | H | 8016 | 6561 | 2514 | 4047 | 5.6 | 1179 |
C | 7256 | 5453 | 2055 | 3398 | 4.5 | 1204 | |
Watermelon | H | 9625 | 9281 | 9244 | 36 | 1.5 | 6308 |
C | 10,057 | 9817 | 9472 | 344 | 1.7 | 5765 | |
Cucumber | H | 11,598 | 7495 | 5334 | 2161 | 15.3 | 491 |
C | 11,721 | 7723 | 5432 | 2292 | 15.6 | 493 | |
L | 10,901 | 7340 | 5140 | 2200 | 14.8 | 498 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bonachela, S.; González, A.M.; Fernández, M.D.; Cabrera-Corral, F.J. Vegetable Crops Grown under High Soil Water Availability in Mediterranean Greenhouses. Water 2020, 12, 1110. https://doi.org/10.3390/w12041110
Bonachela S, González AM, Fernández MD, Cabrera-Corral FJ. Vegetable Crops Grown under High Soil Water Availability in Mediterranean Greenhouses. Water. 2020; 12(4):1110. https://doi.org/10.3390/w12041110
Chicago/Turabian StyleBonachela, Santiago, Alicia M. González, María D. Fernández, and Francisco J. Cabrera-Corral. 2020. "Vegetable Crops Grown under High Soil Water Availability in Mediterranean Greenhouses" Water 12, no. 4: 1110. https://doi.org/10.3390/w12041110
APA StyleBonachela, S., González, A. M., Fernández, M. D., & Cabrera-Corral, F. J. (2020). Vegetable Crops Grown under High Soil Water Availability in Mediterranean Greenhouses. Water, 12(4), 1110. https://doi.org/10.3390/w12041110