Impacts of Hydrological Processes on Stream Temperature in a Cold Region Watershed Based on the SWAT Equilibrium Temperature Model
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. SWAT Equilibrium Temperature Model
2.3. Model Setup in Elbow River Watershed
2.4. Model Calibration and Validation
3. Results
3.1. Hydrological Calibration and Streamflow Simulation
3.2. Stream Temperature Simulations
4. Discussion
4.1. Identification of Key Hydrological Processes Affecting Stream Temperature Based on Parameter Sensitivity Analysis
4.2. Sensitivity of Stream Temperature to Streamflow and Runoff Composition
4.3. Sensitivity of Stream Temperature to Precipitation and Air Temperature Inputs
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Zhu, S.; Nyarko, E.K.; Hadzima-Nyarko, M.; Heddam, S.; Wu, S. Assessing the performance of a suite of machine learning models for daily river water temperature prediction. PeerJ 2019, 7, e7065. [Google Scholar] [CrossRef] [PubMed]
- Ficklin, D.L.; Stewart, I.T.; Maurer, E.P. Effects of climate change on stream temperature, dissolved oxygen, and sediment concentration in the Sierra Nevada in California. Water Resour. Res. 2013, 49, 2765–2782. [Google Scholar] [CrossRef]
- Du, X.; Shrestha, N.K.; Ficklin, D.L.; Wang, J. Incorporation of the equilibrium temperature approach in a Soil and Water Assessment Tool hydroclimatological stream temperature model. Hydrol. Earth Syst. Sci. 2018, 22, 2343–2357. [Google Scholar] [CrossRef] [Green Version]
- Caissie, D.; Satish, M.G.; El-Jabi, N. Predicting water temperatures using a deterministic model: Application on Miramichi River catchments (New Brunswick, Canada). J. Hydrol. 2007, 336, 303–315. [Google Scholar] [CrossRef]
- Du, X.; Shrestha, N.K.; Wang, J. Assessing climate change impacts on stream temperature in the Athabasca River Basin using SWAT equilibrium temperature model and its potential impacts on stream ecosystem. Sci. Total Environ. 2019, 650, 1872–1881. [Google Scholar] [CrossRef]
- Ficklin, D.L.; Luo, Y.; Stewart, I.T.; Maurer, E.P. Development and application of a hydroclimatological stream temperature model within the Soil and Water Assessment Tool. Water Resour. Res. 2012, 48. [Google Scholar] [CrossRef] [Green Version]
- Webb, B.; Clack, P.; Walling, D. Water–air temperature relationships in a Devon river system and the role of flow. Hydrol. Process. 2003, 17, 3069–3084. [Google Scholar] [CrossRef]
- Van Vliet, M.; Ludwig, F.; Zwolsman, J.; Weedon, G.; Kabat, P. Global river temperatures and sensitivity to atmospheric warming and changes in river flow. Water Resour. Res. 2011, 47. [Google Scholar] [CrossRef]
- Bogan, T.; Mohseni, O.; Stefan, H.G. Stream temperature-equilibrium temperature relationship. Water Resour. Res. 2003, 39. [Google Scholar] [CrossRef] [Green Version]
- Fellman, J.B.; Nagorski, S.; Pyare, S.; Vermilyea, A.W.; Scott, D.; Hood, E. Stream temperature response to variable glacier coverage in coastal watersheds of Southeast Alaska. Hydrol. Process. 2014, 28, 2062–2073. [Google Scholar] [CrossRef]
- Yousefi, S.; Mirzaee, S.; Keesstra, S.; Surian, N.; Pourghasemi, H.R.; Zakizadeh, H.R.; Tabibian, S. Effects of an extreme flood on river morphology (case study: Karoon River, Iran). Geomorphology 2018, 304, 30–39. [Google Scholar] [CrossRef]
- Saniewska, D.; Bełdowsk, M.; Bełdowski, J.; Jędruch, A.; Saniewski, M.; Falkowska, L. Mercury loads into the sea associated with extreme flood. Environ. Pollut. 2014, 191, 93–100. [Google Scholar] [CrossRef]
- Stefan, H.G.; Preud’homme, E.B. Stream temperature estimation from air temperature 1. JAWRA J. Am. Water Resour. Assoc. 1993, 29, 27–45. [Google Scholar] [CrossRef]
- Giles, N.A.; Babbar-Sebens, M.; Srinivasan, R.; Ficklin, D.L.; Barnhart, B. Optimization of linear stream temperature model parameters in the soil and water assessment tool for the continental United States. Ecol. Eng. 2019, 127, 125–134. [Google Scholar] [CrossRef]
- Mohseni, O.; Stefan, H.G.; Erickson, T.R. A nonlinear regression model for weekly stream temperatures. Water Resour. Res. 1998, 34, 2685–2692. [Google Scholar] [CrossRef]
- Shrestha, N.K.; Wang, J. Water quality management of a cold climate region watershed in changing climate. J. Environ. Inform. 2019, 35, 56–80. [Google Scholar] [CrossRef]
- Sohrabi, M.M.; Benjankar, R.; Tonina, D.; Wenger, S.J.; Isaak, D.J. Estimation of daily stream water temperatures with a Bayesian regression approach. Hydrol. Process. 2017, 31, 1719–1733. [Google Scholar] [CrossRef]
- Toffolon, M.; Piccolroaz, S. A hybrid model for river water temperature as a function of air temperature and discharge. Environ. Res. Lett. 2015, 10, 114011. [Google Scholar] [CrossRef]
- DeWeber, J.T.; Wagner, T. A regional neural network ensemble for predicting mean daily river water temperature. J. Hydrol. 2014, 517, 187–200. [Google Scholar] [CrossRef]
- Zhu, S.; Nyarko, E.K.; Hadzima-Nyarko, M. Modelling daily water temperature from air temperature for the Missouri River. PeerJ 2018, 6, e4894. [Google Scholar] [CrossRef] [Green Version]
- Cole, T.M.; Wells, S.A. CE-QUAL-W2: A Two-Dimensional, Laterally Averaged, Hydrodynamic and Water Quality Model, Version 3.5; Civil and Environmental Engineering Faculty Publications and Presentations: Portland, OR, USA, 2003. [Google Scholar]
- Ozaki, N.; Fukushima, T.; Kojiri, T. Simulation of the effects of the alteration of the river basin land use on river water temperature using the multi-layer mesh-typed runoff model. Ecol. Model. 2008, 215, 159–169. [Google Scholar] [CrossRef] [Green Version]
- Yearsley, J.R.; Sun, N.; Baptiste, M.; Nijssen, B. Assessing the impacts of hydrologic and land use alterations on water temperature in the Farmington River basin in Connecticut. Hydrol. Earth Syst. Sci. 2019, 23, 4491–4508. [Google Scholar] [CrossRef] [Green Version]
- Morales-Marin, L.A.; Sanyal, P.R.; Kadowaki, H.; Li, Z.; Rokaya, P.; Lindenschmidt, K.E. A hydrological and water temperature modelling framework to simulate the timing of river freeze-up and ice-cover breakup in large-scale catchments. Environ. Model. Softw. 2019, 114, 49–63. [Google Scholar] [CrossRef]
- Mapfumo, E.; Chanasyk, D.S.; Willms, W.D. Simulating daily soil water under foothills fescue grazing with the soil and water assessment tool model (Alberta, Canada). Hydrol. Process. 2004, 18, 2787–2800. [Google Scholar] [CrossRef]
- Watson, B.M.; McKeown, R.A.; Putz, G.; MacDonald, J.D. Modification of SWAT for modelling streamflow from forested watersheds on the Canadian Boreal Plain. J. Environ. Eng. Sci. 2008, 7, 145–159. [Google Scholar] [CrossRef]
- Faramarzi, M.; Srinivasan, R.; Iravani, M.; Bladon, K.D.; Abbaspour, K.C.; Zehnder, A.J.B.; Goss, G.G. Setting up a hydrological model of Alberta: Data discrimination analyses prior to calibration. Environ. Model. Softw. 2015, 74, 48–65. [Google Scholar] [CrossRef]
- Shrestha, N.K.; Du, X.; Wang, J. Assessing climate change impacts on fresh water resources of the Athabasca River Basin, Canada. Sci. Total Environ. 2017, 601, 425–440. [Google Scholar] [CrossRef] [PubMed]
- Troin, M.; Caya, D.; Velázquez, J.A.; Brissette, F. Hydrological response to dynamical downscaling of climate model outputs: A case study for western and eastern snowmelt-dominated Canada catchments. J. Hydrol. Reg. Stud. 2015, 4, 595–610. [Google Scholar] [CrossRef] [Green Version]
- Wijesekara, G.; Gupta, A.; Valeo, C.; Hasbani, J.-G.; Qiao, Y.; Delaney, P.; Marceau, D.J. Assessing the impact of future land-use changes on hydrological processes in the Elbow River watershed in southern Alberta, Canada. J. Hydrol. 2012, 412, 220–232. [Google Scholar] [CrossRef]
- Du, X.Z.; Li, X.Y.; Zhang, W.S.; Wang, H.L. Variations in source apportionments of nutrient load among seasons and hy-drological years in a semi-arid watershed: GWLF model results. Environ. Sci. Pollut. R 2014, 21, 6506–6515. [Google Scholar] [CrossRef] [PubMed]
- Faramarzi, M.; Abbaspour, K.C.; Schulin, R.; Yang, H. Modelling blue and green water resources availability in Iran. Hydrol. Process. 2009, 23, 486–501. [Google Scholar] [CrossRef]
- Du, X.; Loiselle, D.; Alessi, D.S.; Faramarzi, M. Hydro-climate and biogeochemical processes control watershed organic carbon inflows: Development of an in-stream organic carbon module coupled with a process-based hydrologic model. Sci. Total Environ. 2020, 718, 137281. [Google Scholar] [CrossRef] [PubMed]
- Du, X.; Shrestha, N.K.; Wang, J. Integrating organic chemical simulation module into SWAT model with application for PAHs simulation in Athabasca oil sands region, Western Canada. Environ. Model. Softw. 2019, 111, 432–443. [Google Scholar] [CrossRef]
- Moriasi, D.N.; Gitau, M.W.; Pai, N.; Daggupati, P. Hydrologic and water quality models: Performance measures and evaluation criteria. Trans. ASABE 2015, 58, 1763–1785. [Google Scholar]
- Hoang, L.; Mukundan, R.; Moore, K.E.; Owens, E.M.; Steenhuis, T.S. Phosphorus reduction in the New York City water supply system: A water-quality success story confirmed with data and modeling. Ecol. Eng. 2019, 135, 75–88. [Google Scholar] [CrossRef]
- Shrestha, M.K.; Recknagel, F.; Frizenschaf, J.; Meyer, W. Assessing SWAT models based on single and multi-site calibration for the simulation of flow and nutrient loads in the semi-arid Onkaparinga catchment in South Australia. Agric. Water Manag. 2016, 175, 61–71. [Google Scholar] [CrossRef]
- Sun, N.; Yearsley, J.; Voisin, N.; Lettenmaier, D.P. A spatially distributed model for the assessment of land use impacts on stream temperature in small urban watersheds. Hydrol. Process. 2015, 29, 2331–2345. [Google Scholar] [CrossRef]
- Cao, Q.; Sun, N.; Yearsley, J.; Nijssen, B.; Lettenmaier, D.P. Climate and land cover effects on the temperature of Puget Sound streams. Hydrol. Process. 2016, 30, 2286–2304. [Google Scholar] [CrossRef]
- Fontaine, T.; Cruickshank, T.; Arnold, J.; Hotchkiss, R. Development of a snowfall–snowmelt routine for mountainous terrain for the soil water assessment tool (SWAT). J. Hydrol. 2002, 262, 209–223. [Google Scholar] [CrossRef]
- Keesstra, S.D.; Van Huissteden, J.; Vandenberghe, J.; Van Dam, O.; De Gier, J.; Pleizier, I.D. Evolution of the morphology of the river Dragonja (SW Slovenia) due to land-use changes. Geomorphology 2005, 69, 191–207. [Google Scholar] [CrossRef]
- Keesstra, S.D. Impact of natural reforestation on floodplain sedimentation in the Dragonja basin, SW Slovenia. Earth Surf. Process. Landf. J. Br. Geomorphol. Res. Group 2007, 32, 49–65. [Google Scholar] [CrossRef]
- Farjad, B.; Gupta, A.; Marceau, D.J. Hydrological regime responses to climate change for the 2020s and 2050s periods in the Elbow River watershed in southern Alberta, Canada. In Environmental Management of River Basin Ecosystems; Springer: New York, NY, USA, 2015; pp. 65–89. [Google Scholar]
- Eaton, J.; McCormick, J.; Goodno, B.; O’brien, D.; Stefany, H.; Hondzo, M.; Scheller, R.M. A field information-based system for estimating fish temperature tolerances. Fisheries 1995, 20, 10–18. [Google Scholar] [CrossRef]
Station | Time Step | Measures | Calibration Period (2005–2010) | Validation Period (2011–2015) | Whole Period (2005–2015) |
---|---|---|---|---|---|
Bragg Creek | Daily | PBIAS | −21.6% | −6.2% | −14% |
R2 | 0.61 | 0.22 | 0.33 | ||
NSE | 0.56 | 0.22 | 0.33 | ||
Monthly | R2 | 0.88 | 0.66 | 0.69 | |
NSE | 0.83 | 0.58 | 0.72 | ||
Sarcee Bridge | Daily | PBIAS | −13.1% | −9.1% | −11.2% |
R2 | 0.58 | 0.29 | 0.44 | ||
NSE | 0.57 | 0.29 | 0.44 | ||
Monthly | R2 | 0.70 | 0.87 | 0.73 | |
NSE | 0.60 | 0.83 | 0.78 |
Station | Measures | Calibration Period (2005–2010) | Validation Period (2011–2015) | Whole Period (2005–2015) |
---|---|---|---|---|
Bragg Creek | PBIAS | 7.8% | −1.9% | 3.8% |
R2 | 0.85 | 0.83 | 0.84 | |
NSE | 0.83 | 0.80 | 0.82 | |
Sarcee Bridge | PBIAS | 0.6% | −11.6% | −3.0% |
R2 | 0.81 | 0.82 | 0.81 | |
NSE | 0.77 | 0.77 | 0.78 |
Symbol | Description | Unit | Sensitivity Ranking | p-Value |
---|---|---|---|---|
T_LAPS | Air temperature lapse rate | °C/km | 1 | 0.00 |
P_LAPS | Precipitation lapse rate | mm/km | 2 | 0.00 |
ESCO | Soil evaporation compensation factor | none | 3 | 0.00 |
SOL_Z | Depth from soil surface to bottom of layer | mm | 4 | 0.00 |
CN2 | SCS runoff curve number for moisture condition II | none | 5 | 0.00 |
CH_N2 | Manning’s “n” value for the main channel | none | 6 | 0.00 |
SOL_AWC | Available water capacity of the soil layer | mm H2O/mm soil | 7 | 0.00 |
HRU_SLP | Average slope steepness | m/m | 8 | 0.00 |
SOL_K | Saturated hydraulic conductivity | mm/h | 9 | 0.00 |
SURLAG | Surface runoff lag coefficient | days | 10 | 0.00 |
SLSUBBSN | Average slope length | m | 11 | 0.01 |
SFTMP | Snowfall temperature | °C | 12 | 0.08 |
SMTMP | Snow melt base temperature | °C | 13 | 0.21 |
RCHRG_DP | Deep aquifer percolation fraction | none | 14 | 0.21 |
CH_K2 | Effective hydraulic conductivity in main channel alluvium | mm/h | 15 | 0.25 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Du, X.; Goss, G.; Faramarzi, M. Impacts of Hydrological Processes on Stream Temperature in a Cold Region Watershed Based on the SWAT Equilibrium Temperature Model. Water 2020, 12, 1112. https://doi.org/10.3390/w12041112
Du X, Goss G, Faramarzi M. Impacts of Hydrological Processes on Stream Temperature in a Cold Region Watershed Based on the SWAT Equilibrium Temperature Model. Water. 2020; 12(4):1112. https://doi.org/10.3390/w12041112
Chicago/Turabian StyleDu, Xinzhong, Greg Goss, and Monireh Faramarzi. 2020. "Impacts of Hydrological Processes on Stream Temperature in a Cold Region Watershed Based on the SWAT Equilibrium Temperature Model" Water 12, no. 4: 1112. https://doi.org/10.3390/w12041112
APA StyleDu, X., Goss, G., & Faramarzi, M. (2020). Impacts of Hydrological Processes on Stream Temperature in a Cold Region Watershed Based on the SWAT Equilibrium Temperature Model. Water, 12(4), 1112. https://doi.org/10.3390/w12041112