A Stochastic Model to Predict Flow, Nutrient and Temperature Changes in a Sewer under Water Conservation Scenarios
Abstract
:1. Introduction
2. Methodology
2.1. Household Discharge Modelling
2.1.1. Hydraulic Discharge Model
2.1.2. Wastewater Quality Loading
2.2. Stochastic Sewer Model
2.3. Methodology for Field Testing
2.3.1. Data Availability for Validating the Hydraulic Discharge Model
2.3.2. Quality of Sampling and Analysis Work
2.3.3. Wastewater Quality Parameters
2.4. Model Validation
2.4.1. Procedure for Model Calibration
2.4.2. Procedure for Model Validation
2.5. Impact Assessment for Water Conservation Technologies
3. Catchment Used for Model Analysis
3.1. Description of the Modelled Catchment
3.2. Model Calibration Details
4. Results and Discussion
4.1. Calibration and Validation of the Stochastic Sewer Flow Model
4.2. Sampling Wastewater for Quality Analysis
4.3. Model Comparison with Sewer Quality Data
4.4. Variability of the Model
4.5. Future Scenario Testing
5. Conclusions
- Stochastic sewer model wastewater quality validation: The predicted mass flows of COD, TKN and TPH compared well with the corresponding observed data values. The same, however, cannot be said for the COD, TKN and TPH concentrations. These concentrations were treated as dilute pollutants as InfoWorks® does not currently incorporate differential solids transport, leading to the misalignment of the predicted and measured concentration data. High concentration flows are produced by the stochastic generator during the night but only washed through the system in the morning. As the concentrations were measured at a downstream point in the network, there was a lag time in transporting suspended solids which was not accounted for in the network model.
- Implications for three water-saving strategies on the quantity and quality of flow in the receiving sewer network: It was found that wastewater flow can be reduced by up to 62% with concentrations of COD, TKN and TPH increasing by up to 111%, 84% and 75% respectively with the installation of water-saving appliances. In addition, it was found that the use of water-saving appliances and greywater recycling dramatically reduced the peak flows, whereas rainwater harvesting produced similar flow and concentration results in the baseline case. The greywater recycling case produced the most consistent wastewater concentrations and the lowest wastewater temperature.
- Proposals for future work: This will involve incorporation of the time-varying component for suspended solids entry to the sewer system, and differential solids transport in the sewer. This advancement will be combined with a drinking water simulation to create a comprehensive urban water model for observing effects of future water use scenarios on the entire system. This project will ultimately highlight a future vision for the urban water cycle and support recommendations for optimal resource recovery within drinking and wastewater systems.
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Diamantis, V.; Verstraete, W.; Eftaxias, A.; Bundervoet, B.; Vlaeminck, S.E.; Melidis, P.; Aivasidis, A. Sewage pre-concentration for maximum recovery and reuse at decentralized level. Water Sci. Technol. 2013, 67, 1188–1193. [Google Scholar] [CrossRef] [PubMed]
- Mezohegyi, G.; Bilad, M.R.; Vankelecom, I.F.J. Direct sewage up-concentration by submerged aerated and vibrated membranes. Bioresour. Technol. 2012, 118, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Bianchini, A.; Bonfiglioli, L.; Pellegrini, M.; Saccani, C. Sewage sludge drying process integration with a waste-to-energy power plant. Waste Manag. 2015, 42, 159–165. [Google Scholar] [CrossRef] [PubMed]
- Verstraete, W.; Vlaeminck, S.E. ZeroWasteWater: Short-cycling of wastewater resources for sustainable cities of the future. Int. J. Sustain. Dev. World Ecol. 2011, 18, 253–264. [Google Scholar] [CrossRef] [Green Version]
- Parkinson, J.; Schütze, M.; Butler, D. Modelling the impacts of domestic water conservation on the sustainability of the urban sewerage system. J. Chart. Inst. Water Environ. Manag. 2005, 19, 49–56. [Google Scholar] [CrossRef]
- Penn, R.; Hadari, M.; Friedler, E. Evaluation of the effects of greywater reuse on domestic wastewater quality and quantity. Urban Water J. 2012, 9, 137–148. [Google Scholar] [CrossRef]
- Penn, R.; Schütze, M.; Friedler, E. Modelling the effects of on-site greywater reuse and low flush toilets on municipal sewer systems. J. Environ. Manag. 2013, 114, 72–83. [Google Scholar] [CrossRef] [PubMed]
- Penn, R.; Schütze, M.; Gorfine, M.; Friedler, E. Simulation method for stochastic generation of domestic wastewater discharges and the effect of greywater reuse on gross solid transport. Urban Water J. 2017, 14, 846–852. [Google Scholar] [CrossRef]
- Watershare. Available online: https://www.watershare.eu/tool/water-use-info/ (accessed on 1 March 2020).
- Blokker, E.J.M.; Vreeburg, J.H.G.; van Dijk, J.C. Simulating Residential Water Demand with a Stochastic End-Use Model. J. Water Resour. Plan. Manag. 2010, 136, 19–26. [Google Scholar] [CrossRef]
- Pieterse-Quirijns, E.J.; Agudelo-Vera, C.M.; Blokker, E.J.M. Modelling sustainability in water supply and drainage with SIMDEUM®. In Proceedings of the CIBW062 Symposium, Melbourne, Australia, 8–10 September 2019. [Google Scholar]
- Bailey, O.; Arnot, T.C.; Blokker, E.J.M.; Kapelan, Z.; Vreeburg, J.; Hofman, J.A.M.H. Developing a stochastic sewer model to support sewer design under water conservation measures. J. Hydrol. 2019, 573, 908–917. [Google Scholar] [CrossRef] [Green Version]
- Bailey, O.; Arnot, T.C.; Blokker, E.J.M.; Kapelan, Z.; Hofman, J.A.M.H. Predicting impacts of water conservation with a stochastic sewer model. Water Sci. Technol. 2019, 80, 2148–2157. [Google Scholar] [CrossRef] [PubMed]
- Blokker, E.J.M. Stochastic Water Demand Modelling. In Hydraulics in Water Distribution Networks; IWA publishing: London, UK, 2011. [Google Scholar]
- Blokker, E.J.M.; Agudelo-Vera, C.A. Doorontwikkeling Simdeum: Waterverbruik over de dag, Energie voor Warmwater en Volume, Temperatuur en Nutriënten in Afvalwater; Report BTO 2015.210(s); KWR Water Research Institute: Nieuwegein, The Netherlands, 2015. [Google Scholar]
- Parkinson, J.N. Modelling Strategies for Sustainable Domestic Wastewater Management in a Residential Catchment; Imperial College for Science, Technology and Medicine: London, UK, 1999. [Google Scholar]
- Butler, D.; Friedler, E.; Gatt, K. Characterising the quantity and quality of domestic wastewater inflows. Water Sci. Technol. 1995, 31, 13. [Google Scholar] [CrossRef]
- Siegrist, R.; Witt, M.; Boyle, W. Characterisation of rural household wastewater. J. Environ. Eng. ASCE 1976, 102, 533–548. [Google Scholar]
- Surendran, S. Grey-water reclamation for non-potable re-use. J. CIWEM 1998, 12, 406–413. [Google Scholar] [CrossRef]
- The European Parliament; The Council of the European Union. Regulation (EU) No 259/2012 on the use of phosphates and other phosphorus compounds in consumer laundry detergents and consumer automatic dishwasher detergents. 2012. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32012R0259 (accessed on 1 March 2019).
- Comber, S.; Gardner, M.; Georges, K.; Blackwood, D.; Gilmour, D. Domestic source of phosphorus to sewage treatment works. Environ. Technol. 2013, 34, 1349–1358. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ward, S.; Memon, F.A.; Butler, D. Harvested rainwater quality: The importance of building design. Water Sci. Technol. J. Int. Assoc. Water Pollut. Res. 2010, 61, 1707–1714. [Google Scholar] [CrossRef] [PubMed]
- Farreny, R.; Morales-Pinzón, T.; Guisasola, A.; Tayà, C.; Rieradevall, J.; Gabarrell, X. Roof selection for rainwater harvesting: Quantity and quality assessments in Spain. Water Res. 2011, 45, 3245–3254. [Google Scholar] [CrossRef] [PubMed]
- Agudelo, C.; Blokker, E.J.M. How Future Proof Is Our Drinking Water Infrastructure; Report BTO 2014.011; KWR Water Research Institute: Nieuwegein, The Netherlands, 2014. [Google Scholar]
- Waternet, Average Water Use. Available online: https://www.waternet.nl/en/our-water/our-tap-water/average-water-use/ (accessed on 1 March 2020).
- Elias-Maxil, J.A. Heat Modelling of Wastewater in Sewer Networks: Determination of Thermal Energy Content from Sewage with Modeling Tools; Technische Universiteit Delft: Delft, The Netherlands, 2015. [Google Scholar]
- Penn, R.; Schütze, M.; Friedler, E. Assessment of the effects of greywater reuse on gross solids movement in sewer systems. Water Sci. Technol. 2014, 69, 99–105. [Google Scholar] [CrossRef] [PubMed]
- Henze, M.; Loosdrecht, M.C.M.v.; Ekama, G.A.; Brdjanovic, D. 3 Wastewater Characterization. In Biological Wastewater Treatment—Principles, Modelling and Design; IWA Publishing: London, UK, 2008. [Google Scholar]
- Tchobanoglous, G.; Burton, F.L.; Stensel, H.D. Wastewater Engineering: Treatment, Disposal, and Reuse, 3rd ed.; Tchobanoglous, G., Burton, F.L., Eds.; McGraw-Hill: London, UK, 1991. [Google Scholar]
- Arildsen, A.L.; Vezzaro, L. Revurdering af Person Ækvivalent for Fosfor—Opgørelse af Fosforindholdet i Dansk Husholdningsspildevand i Årene fra 1990 til 2017. Kgs; Danmarks Tekniske Universitet (DTU): Lyngby, Denmark, 2019. [Google Scholar]
Appliance | Temperature (°C) | Sewage Quality (g use−1) | Ref. | |||
---|---|---|---|---|---|---|
COD | TKN | TPH | TSS | |||
Bath | 36 | 25.90 | 0.85 | 0.00 | 8.88 | [5,16] |
Shower | 35 | 12.60 | 0.49 | 0.00 | 4.32 | [5,16] |
Bathroom tap | 40 | 1.48 | 0.04 | 0.00 | 0.56 | [5,16] |
Kitchen tap | 40 | 7.48 | 0.35 | 0.03 | 4.68 | [5,16,21] |
Dish washer | 35 | 30 | 1.35 | 0.00 | 13.20 | [5,16] |
Washing machine
| (35, 35, 35, 45) | 65.25 | 0.638 | 0.00 | 17.10 | [5,16] |
69.40 | 0.78 | 0.00 | 17.88 | [6] | ||
66.29 | 0.86 | 0.00 | 17.72 | [22] | ||
Toilet
| 23 | 11.22 | 1.99 | 0.22 | 3.04 | [15,21] |
11.48 | 2.00 | 0.22 | 3.09 | [6] | ||
11.28 | 2.00 | 0.22 | 3.08 | [22] |
Parameter Sampled | Parameter Description | Method (Eurofins Omegam) | Limit of Determination (mg l−1) | Required Sample Volume (ml Sample−1) | Measurement Uncertainty (+/−) |
---|---|---|---|---|---|
COD (mg l−1) | Chemical oxygen demand | Conforms to NEN 6633 | 5.00 | 100 | 15% |
TKN (mg l−1) | Total Nitrogen-Kjeldahl | Conforms to NEN-ISO 5663 | 1.00 | 100 | 13% |
TPH (mg l−1) | Total Phosphorus | Own method based on NEN-EN-ISO 15681_2 | 0.05 | 50 | 12% |
TSS (mg l−1) | Total suspended solids | Conforms to NEN-EN 872 and NEN 6499 | 1.00 | 750 | 16% |
Scenario | Demand (L cap−1 d−1) | Description |
---|---|---|
1—Baseline | 112 | Present-day scenario—validated hydraulic model |
2a—Eco, max. occupancy | 42 | Water-saving appliances such as 1 L flush toilets and water-saving showers (as presented by Agudelo and Blokker [24]) |
2b—Eco, min. occupancy | 44 | |
3a—GWR, max. occupancy | 67 | Greywater reuse utilised for toilet flushing and washing machines |
3b—GWR, min. occupancy | 68 | |
4a—RWH, max. occupancy | 67 | Rainwater harvesting utilised for toilet flushing and washing machines |
4b—RWH, min. occupancy | 68 |
Single | Dual | Family | Family Size | Occupancy | |
---|---|---|---|---|---|
Baseline | 58% | 23% | 19% | 3.4 | 1.7 |
(a) Max. | 55% | 21% | 24% | 3.5 | 1.8 |
(b) Min. | 91% | 4% | 5% | 3.1 | 1.1 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bailey, O.; Zlatanovic, L.; van der Hoek, J.P.; Kapelan, Z.; Blokker, M.; Arnot, T.; Hofman, J. A Stochastic Model to Predict Flow, Nutrient and Temperature Changes in a Sewer under Water Conservation Scenarios. Water 2020, 12, 1187. https://doi.org/10.3390/w12041187
Bailey O, Zlatanovic L, van der Hoek JP, Kapelan Z, Blokker M, Arnot T, Hofman J. A Stochastic Model to Predict Flow, Nutrient and Temperature Changes in a Sewer under Water Conservation Scenarios. Water. 2020; 12(4):1187. https://doi.org/10.3390/w12041187
Chicago/Turabian StyleBailey, Olivia, Ljiljana Zlatanovic, Jan Peter van der Hoek, Zoran Kapelan, Mirjam Blokker, Tom Arnot, and Jan Hofman. 2020. "A Stochastic Model to Predict Flow, Nutrient and Temperature Changes in a Sewer under Water Conservation Scenarios" Water 12, no. 4: 1187. https://doi.org/10.3390/w12041187
APA StyleBailey, O., Zlatanovic, L., van der Hoek, J. P., Kapelan, Z., Blokker, M., Arnot, T., & Hofman, J. (2020). A Stochastic Model to Predict Flow, Nutrient and Temperature Changes in a Sewer under Water Conservation Scenarios. Water, 12(4), 1187. https://doi.org/10.3390/w12041187