Modelling the Vegetation Response to Climate Changes in the Yarlung Zangbo River Basin Using Random Forest
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Description
2.3. Methodology
2.3.1. Random Forest
2.3.2. Model Implementation and Validation
2.3.3. Model Evaluation Index
3. Results and Discussion
3.1. Spatial and Temporal Characteristics of the NDVI in the YZRB
3.2. Predictors Selection
3.3. Comparative Study
4. Conclusions
- RF successfully simulated the relationship between NDVI and climatic factors. The NASH coefficients of the proposed model during the calibration period in the five subzones were all higher than 0.9, and those during the verification period were all higher than 0.8. Among the five tested models, RF showed the highest model efficiency in both the calibration and validation periods among all compared models.
- RF showed advantages for predictor selection. The built-in variable importance evaluation allowed RF to select predictors without additional selection methods, such as PAR and PCA. Moreover, the numbers of predictors were greatest for RF among the compared models. RF showed robustness for modeling, because it could take full advantage of all predictor and avoid overfitting.
- PCA and PAR were used to analyze the factors that affect the NDVI in YZRB subzones. The results show that the rainfall and temperature of the first 3 months had significant impacts on NDVI, and temperature had a greater influence than rainfall in most of the subzones.
Author Contributions
Funding
Conflicts of Interest
References
- Che, M.; Chen, B.; Innes, J.L.; Wang, G.; Dou, X.; Zhou, T.; Zhang, H.; Yan, J.; Xu, G.; Zhao, H. Spatial and temporal variations in the end date of the vegetation growing season throughout the Qinghai–Tibetan Plateau from 1982 to 2011. Agric. For. Meteorol. 2014, 189, 81–90. [Google Scholar] [CrossRef]
- Nouri, H.; Anderson, S.; Sutton, P.; Beecham, S.; Nagler, P.; Jarchow, C.J.; Roberts, D.A. NDVI, scale invariance and the modifiable areal unit problem: An assessment of vegetation in the Adelaide Parklands. Sci. Total. Environ. 2017, 584, 11–18. [Google Scholar] [CrossRef] [PubMed]
- Lemordant, L.; Gentine, P.; Swann, A.L.S.; Cook, B.I.; Scheff, J. Critical impact of vegetation physiology on the continental hydrologic cycle in response to increasing CO2. Proc. Natl. Acad. Sci. USA 2018, 115, 4093–4098. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, Y.; Piao, S. Variations in grassland vegetation cover in relation to climatic factors on the Tibetan Plateau. J. Plant Ecol. 2006, 30, 1–8. [Google Scholar]
- Zhong, L.; Ma, Y.; Salama, M.S.; Su, Z. Assessment of vegetation dynamics and their response to variations in precipitation and temperature in the Tibetan Plateau. J. Clim. Chang. 2010, 103, 519–535. [Google Scholar] [CrossRef]
- Jiang, D.; Fu, X.; Wang, K. Vegetation dynamics and their response to freshwater inflow and climate variables in the Yellow River Delta, China. J. Quatern Int. 2013, 304, 75–84. [Google Scholar] [CrossRef]
- Barbosa, H.A.; Kumar, T.L.; Silva, L.R.M. Recent trends in vegetation dynamics in the South America and their relationship to rainfall. J. Nat. Hazards 2015, 77, 883–899. [Google Scholar] [CrossRef]
- Bao, G.; Qin, Z.; Bao, Y.; Zhou, Y.; Li, W.; Sanjjav, A. NDVI-Based Long-Term Vegetation Dynamics and Its Response to Climatic Change in the Mongolian Plateau. Remote Sens. 2014, 6, 8337–8358. [Google Scholar] [CrossRef] [Green Version]
- Aguilar, C.; Zinnert, J.C.; Polo, M.J.; Young, D.R. NDVI as an indicator for changes in water availability to woody vegetation. Ecol. Indic. 2012, 23, 290–300. [Google Scholar] [CrossRef]
- Dutta, D.; Kundu, A.; Patel, N. Predicting agricultural drought in eastern Rajasthan of India using NDVI and standardized precipitation index. Geocarto Int. 2013, 28, 192–209. [Google Scholar] [CrossRef]
- Omute, P.; Corner, R.; Awange, J.; Corner, R. The use of NDVI and its Derivatives for Monitoring Lake Victoria’s Water Level and Drought Conditions. Water Resour. Manag. 2012, 26, 1591–1613. [Google Scholar] [CrossRef] [Green Version]
- Carvalho, D.F.D.; Durigon, V.L.; Antunes, M.A.H.; Almeida, W.S.D.; Oliveira, P.T.S.D. Predicting soil erosion using Rusle and NDVI time series from TM Landsat 5. Pesq. Agropec. Bras. 2014, 49, 215–224. [Google Scholar] [CrossRef] [Green Version]
- Singh, D.; Herlin, I.; Berroir, J.; Silva, E.; Meirelles, M.S. An approach to correlate NDVI with soil colour for erosion process using NOAA/AVHRR data. Adv. Space Res. 2004, 33, 328–332. [Google Scholar] [CrossRef]
- White, D.C.; Lewis, M.M.; Green, G.; Gotch, T.B. A generalizable NDVI-based wetland delineation indicator for remote monitoring of groundwater flows in the Australian Great Artesian Basin. Ecol. Indic. 2016, 60, 1309–1320. [Google Scholar] [CrossRef] [Green Version]
- Fu, B.; Burgher, I. Riparian vegetation NDVI dynamics and its relationship with climate, surface water and groundwater. J. Arid. Environ. 2015, 113, 59–68. [Google Scholar] [CrossRef]
- Huang, S.; Ming, B.; Leng, G.; Hou, B. A Case Study on a Combination NDVI Forecasting Model Based on the Entropy Weight Method. Water Resour. Manag. 2017, 31, 3667–3681. [Google Scholar] [CrossRef]
- Piao, S.; Wang, T.; Ciais, P.; Zhu, B.; Liu, J. Changes in satellite?derived vegetation growth trend in temperate and boreal Eurasia from 1982 to 2006. Glob. Chang. Boil. 2011, 17, 3228–3239. [Google Scholar] [CrossRef]
- Aldakheel, Y.Y. Assessing NDVI Spatial Pattern as Related to Irrigation and Soil Salinity Management in Al-Hassa Oasis, Saudi Arabia. J. Indian Soc. Remote Sens. 2011, 39, 171–180. [Google Scholar] [CrossRef]
- Li, H.; Liu, L.; Shan, B.; Xu, Z.; Niu, Q.; Cheng, L.; Liu, X.; Xu, Z. Spatiotemporal Variation of Drought and Associated Multi-Scale Response to Climate Change over the Yarlung Zangbo River Basin of Qinghai–Tibet Plateau, China. Remote Sens. 2019, 11, 1596. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Zhong, X.; Fan, J. Assessment and spatial distribution of sensitivity of soil erosion in Tibet. J. Geogr. Sci. 2004, 14, 41–46. [Google Scholar] [CrossRef]
- Li, F.; Zhang, Y.; Xu, Z.; Teng, J.; Liu, C.; Liu, W.; Mpelasoka, F. The impact of climate change on runoff in the southeastern Tibetan Plateau. J. Hydrol. 2013, 505, 188–201. [Google Scholar] [CrossRef]
- Liu, Z.; Yao, Z.; Huang, H.; Wu, S.; Liu, G. Land use and climate changes and their impacts on runoff in The Yarlung Zangbo river basin. J. Land Degrad. Dev. 2014, 25, 203–215. [Google Scholar] [CrossRef]
- Li, H.; Li, Y.; Shen, W.; Li, Y.; Lin, J.; Lu, X.; Xu, X.; DeAngelis, D. Elevation-Dependent Vegetation Greening of the Yarlung Zangbo River Basin in the Southern Tibetan Plateau, 1999–2013. Remote Sens. 2015, 7, 16672–16687. [Google Scholar] [CrossRef] [Green Version]
- Han, X.; Zuo, D.; Xu, Z.; Cai, S.; Gao, X. Analysis of vegetation condition and its relationship with meteorological variables in the Yarlung Zangbo River Basin of China. Proc. Int. Assoc. Hydrol. Sci. 2018, 379, 105–112. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Xu, Z.; Peng, D. Spatio-Temporal Patterns of Vegetation in the Yarlung Zangbo River, China during 1998–2014. J. China Rural Water Hydropower 2019, 11, 1–11. (In Chinese) [Google Scholar] [CrossRef] [Green Version]
- Sun, W.; Wang, Y.; Fu, Y.H.; Xue, B.; Wang, G.; Yu, J.; Zuo, D.; Xu, Z. Spatial heterogeneity of changes in vegetation growth and their driving forces based on satellite observations of the Yarlung Zangbo River Basin in the Tibetan Plateau. J. Hydrol. 2019, 574, 324–332. [Google Scholar] [CrossRef]
- Di, L.; Rundquist, D.C.; Han, L. Modelling relationships between NDVI and precipitation during vegetative growth cycles. Int. J. Remote Sens. 1994, 15, 2121–2136. [Google Scholar] [CrossRef]
- Braswell, B.; Schimel, D.S.; Linder, E.; Moore, B. The Response of Global Terrestrial Ecosystems to Interannual Temperature Variability. Science 1997, 278, 870–873. [Google Scholar] [CrossRef]
- Tian, F.; Fensholt, R.; Verbesselt, J.; Grogan, K.; Horion, S.; Wang, Y. Evaluating temporal consistency of long-term global NDVI datasets for trend analysis. Remote Sens. Environ. 2015, 163, 326–340. [Google Scholar] [CrossRef]
- Wang, J.; Rich, P.M.; Price, K.P. Temporal responses of NDVI to precipitation and temperature in the central Great Plains, USA. Int. J. Remote Sens. 2003, 24, 2345–2364. [Google Scholar] [CrossRef]
- Iwasaki, H. NDVI prediction over mongolian grassland using Gsmap Precipitation Data and Jra-25/jcdas Temperature Data. J. Arid Environ. 2009, 73, 557–562. [Google Scholar] [CrossRef]
- Meng, B.; Gao, J.; Liang, T.; Cui, X.; Ge, J.; Yin, J.; Feng, Q.; Xie, H. Modeling of Alpine Grassland Cover Based on Unmanned Aerial Vehicle Technology and Multi-Factor Methods: A Case Study in the East of Tibetan Plateau, China. Remote Sens. 2018, 10, 320–339. [Google Scholar] [CrossRef] [Green Version]
- Kang, L.; Di, L.; Deng, M.; Yu, E.; Xu, Y. Forecasting vegetation index based on vegetation-meteorological factor interactions with artificial neural network. In Proceedings of the 2016 Fifth International Conference on Agro-Geoinformatics (Agro-Geoinformatics), Tianjin, China, 18–20 July 2016; pp. 1–6. [Google Scholar]
- Nay, J.; Burchfield, E.; Gilligan, J.M. A machine-learning approach to forecasting remotely sensed vegetation health. Int. J. Remote Sens. 2017, 39, 1800–1816. [Google Scholar] [CrossRef]
- Asoka, A.; Mishra, V.; Akarsh, A. Prediction of vegetation anomalies to improve food security and water management in India. Geophys. Res. Lett. 2015, 42, 5290–5298. [Google Scholar] [CrossRef] [Green Version]
- Thukaram, D.; Khincha, H.; Vijaynarasimha, H. Artificial Neural Network and Support Vector Machine Approach for Locating Faults in Radial Distribution Systems. IEEE Trans. Power Deliv. 2005, 20, 710–721. [Google Scholar] [CrossRef] [Green Version]
- Feng, X.W.; Hang, L.M.; Shen, B. Comparative study on multivariate linear regression and BP neural network model in the prediction of flood volume. J. Water Resour. Water Eng. 2017, 28, 123–126. (In Chinese) [Google Scholar]
- Kaufmann, R.K.; Zhou, L.; Myneni, R.; Tucker, C.J.; Slayback, D.; Shabanov, N.V.; Pinzon, J. The effect of vegetation on surface temperature: A statistical analysis of NDVI and climate data. Geophys. Res. Lett. 2003, 30, 2147–2150. [Google Scholar] [CrossRef] [Green Version]
- Ge, J.; Meng, B.; Liang, T.; Feng, Q.; Gao, J.; Yang, S.; Huang, X.; Xie, H. Modeling alpine grassland cover based on MODIS data and support vector machine regression in the headwater region of the Huanghe River, China. Remote Sens. Environ. 2018, 218, 162–173. [Google Scholar] [CrossRef]
- Hsu, C.; Chang, C.; Lin, C. A practical guide to support vector classification. J. Bju Int. 2008, 101, 1396–1400. [Google Scholar]
- Binren, X.; Yuanyuan, W. Spatial statistics of TRMM precipitation in the Tibetan Plateau using random forest algorithm. J. Remote Sens. Land Resour. 2018, 30, 181–188. [Google Scholar]
- Tongtiegang, Z.; Dawen, Y.; Ximing, C.; Yong, C. Predict seasonal low flows in the upper Yangtze River using random forests model. J. Hydroelectr. Eng. 2015, 31, 19–27. (In Chinese) [Google Scholar]
- Lehnert, L.; Meyer, H.; Wang, Y.; Miehe, G.; Thies, B.; Reudenbach, C.; Bendix, J. Retrieval of grassland plant coverage on the Tibetan Plateau based on a multi-scale, multi-sensor and multi-method approach. Remote Sens. Environ. 2015, 164, 197–207. [Google Scholar] [CrossRef]
- Ma, Y.; Yang, Y.; Han, Z.; Tang, G.; Maguire, L.; Chu, Z.; Hong, Y. Comprehensive evaluation of Ensemble Multi-Satellite Precipitation Dataset using the Dynamic Bayesian Model Averaging scheme over the Tibetan plateau. J. Hydrol. 2018, 556, 634–644. [Google Scholar] [CrossRef]
- Chen, B.; Li, H.; Cao, X.; Shen, W.; Jin, H. Vegetation Pattern and Spatial Distribution of NDVI in the Yarlung Zangbo River Basin of China. J. Desert Res. 2015, 35, 120–128. (In Chinese) [Google Scholar]
- Shen, M.; Piao, S.; Cong, N.; Zhang, G.; Jassens, I.A. Precipitation impacts on vegetation spring phenology on the Tibetan Plateau. Glob. Chang. Boil. 2015, 21, 3647–3656. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Biau, G.; Scornet, E. A random forest guided tour. TEST 2016, 25, 197–227. [Google Scholar] [CrossRef] [Green Version]
- Baez-Villanueva, O.M.; Zambrano-Bigiarini, M.; Beck, H.E.; McNamara, I.; Ribbe, L.; Nauditt, A.; Birkel, C.; Verbist, K.; Giraldo-Osorio, J.D.; Thinh, N.X. RF-MEP: A novel Random Forest method for merging gridded precipitation products and ground-based measurements. Remote Sens. Environ. 2020, 239, 111606. [Google Scholar] [CrossRef]
- Were, K.; Bui, D.T.; Øystein, B.D.; Singh, B.R. A comparative assessment of support vector regression, artificial neural networks, and random forests for predicting and mapping soil organic carbon stocks across an Afromontane landscape. Ecol. Indic. 2015, 52, 394–403. [Google Scholar] [CrossRef]
- Pan, X.C. Application of SCA-SVM to annual runoff wet-dry identification. J. China Three Gorges Univ. 2016, 38, 6–11. (In Chinese) [Google Scholar]
- Pang, B.; Yue, J.; Zhao, G.; Xu, Z. Statistical Downscaling of Temperature with the Random Forest Model. Adv. Meteorol. 2017, 2017, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Peng, D.; Du, Y. Comparative analysis of several Lhasa River basin flood forecast models in Yarlung Zangbo River. In Proceedings of the 2010 4th International Conference on Bioinformatics and Biomedical Engineering, Chengdu, China, 18–20 June 2010; pp. 1–4. [Google Scholar]
- Zhang, J.; Ren, Z. Responses of vegetation changes in growing season to precipitationin Yarlung Zangbo River Basin. J. Soil Water Conserv. 2015, 2, 209–212. [Google Scholar]
Subzone | Watershed Name | Area (km2) |
---|---|---|
1 | Upper reaches of the Yarlung Zangbo River | 70,048 |
2 | Nianchu River | 43,741 |
3 | Lhasa River | 31,571 |
4 | Parlung Zangbo | 26,574 |
5 | Nyang River | 66,543 |
Lower reaches of the Yarlung Zangbo River |
Subzone | 1 | 2 | 3 | 4 | 5 |
---|---|---|---|---|---|
Cultural Vegetation | 0.29 | 2.49 | 1.41 | 0.11 | 2.43 |
Alpine Vegetation | 32.71 | 26.26 | 20.81 | 26.65 | 21.8 |
Broadleaf Forest | 0 | 0 | 0 | 0.38 | 15.73 |
Needle leaf Forest | 0 | 0 | 0 | 19.23 | 16.13 |
Meadow | 49.23 | 48.82 | 53.86 | 11.48 | 8.85 |
Steppe | 11.86 | 12.79 | 7.69 | 0 | 1.6 |
Scrub | 3.44 | 8.34 | 13.97 | 23.69 | 30.47 |
Others | 2.48 | 1.29 | 2.25 | 18.46 | 3 |
total | 100 | 100 | 100 | 100 | 100 |
Subzone | Precipitation (mm) | Temperature (°C) | NDVI |
---|---|---|---|
Sub1 | −3.9 | 0.02 | 0.1 × 10−3 |
Sub2 | −3.7 | 0.04 | 0.1 × 10−3 |
Sub3 | −9.86 | 0.07 | 0.4 × 10−3 |
Sub4 | −13.86 | 0.04 | 0.7 × 10−3 |
Sub5 | −12.8 | 0.01 | 0.2 × 10−3 |
Total | −8.25 | 0.03 | 0.2 × 10−3 |
Subzone PCA | T0 | P0 | T1 | P1 | T2 | P2 | T3 | P3 | |
---|---|---|---|---|---|---|---|---|---|
sub1 | Contribution rate | 0.46 | 0.26 | 0.14 | 0.06 | 0.03 | 0.03 | 0.01 | 0.01 |
Cumulative contribution rate | 0.46 | 0.72 | 0.86 | 0.92 | 0.95 | 0.98 | 0.99 | 1.00 | |
sub2 | Contribution rate | 0.56 | 0.27 | 0.05 | 0.05 | 0.03 | 0.02 | 0.01 | 0.01 |
Cumulative contribution rate | 0.56 | 0.83 | 0.88 | 0.93 | 0.96 | 0.98 | 0.99 | 1.00 | |
sub3 | Contribution rate | 0.59 | 0.19 | 0.06 | 0.05 | 0.04 | 0.03 | 0.03 | 0.01 |
Cumulative contribution rate | 0.59 | 0.78 | 0.84 | 0.89 | 0.93 | 0.96 | 0.99 | 1.00 | |
sub4 | Contribution rate | 0.58 | 0.24 | 0.05 | 0.05 | 0.03 | 0.03 | 0.01 | 0.01 |
Cumulative contribution rate | 0.58 | 0.82 | 0.87 | 0.92 | 0.95 | 0.98 | 0.99 | 1.00 | |
sub5 | Contribution rate | 0.57 | 0.20 | 0.08 | 0.06 | 0.04 | 0.03 | 0.01 | 0.01 |
Cumulative contribution rate | 0.57 | 0.77 | 0.85 | 0.91 | 0.95 | 0.98 | 0.99 | 1.00 |
PAR | Sub1 | Sub2 | Sub3 | Sub4 | Sub5 |
---|---|---|---|---|---|
T0 | 0.61 | 0.80 | 0.60 | 0.75 | 0.60 |
P0 | 0.56 | 0.78 | 0.58 | 0.66 | 0.57 |
T1 | 0.41 | 0.53 | 0.44 | 0.57 | 0.39 |
P1 | −0.06 | 0.50 | 0.42 | 0.50 | −0.06 |
T2 | 0.38 | 0.45 | 0.36 | 0.45 | 0.32 |
P2 | −0.16 | 0.11 | 0.28 | 0.35 | −0.11 |
T3 | 0.27 | 0.20 | 0.33 | 0.43 | 0.28 |
P3 | −0.25 | −0.20 | −0.15 | 0.22 | −0.25 |
Subzone | Model | Calibration | Validation | ||||||
---|---|---|---|---|---|---|---|---|---|
NASH | RMSE | MAEP | R | NASH | RMSE | MAEP | R | ||
Sub1 | ANN-PCA | 0.68 | 0.03 | 0.02 | 0.84 | 0.67 | 0.03 | 0.03 | 0.86 |
ANN-PAR | 0.65 | 0.03 | 0.02 | 0.84 | 0.63 | 0.03 | 0.03 | 0.82 | |
SVM-PCA | 0.90 | 0.02 | 0.01 | 0.95 | 0.87 | 0.02 | 0.01 | 0.95 | |
SVM-PAR | 0.90 | 0.02 | 0.01 | 0.94 | 0.85 | 0.03 | 0.02 | 0.95 | |
RF | 0.96 | 0.02 | 0.01 | 0.98 | 0.91 | 0.02 | 0.01 | 0.98 | |
Sub2 | ANN-PCA | 0.74 | 0.03 | 0.03 | 0.91 | 0.73 | 0.04 | 0.03 | 0.92 |
ANN-PAR | 0.69 | 0.03 | 0.03 | 0.83 | 0.71 | 0.04 | 0.03 | 0.84 | |
SVM-PCA | 0.90 | 0.02 | 0.02 | 0.95 | 0.91 | 0.02 | 0.01 | 0.95 | |
SVM-PAR | 0.89 | 0.02 | 0.02 | 0.94 | 0.90 | 0.02 | 0.02 | 0.94 | |
RF | 0.97 | 0.01 | 0.01 | 0.98 | 0.95 | 0.01 | 0.01 | 0.98 | |
Sub3 | ANN-PCA | 0.78 | 0.05 | 0.05 | 0.94 | 0.77 | 0.05 | 0.04 | 0.94 |
ANN-PAR | 0.79 | 0.05 | 0.04 | 0.91 | 0.79 | 0.05 | 0.04 | 0.91 | |
SVM-PCA | 0.91 | 0.04 | 0.03 | 0.95 | 0.89 | 0.04 | 0.03 | 0.95 | |
SVM-PAR | 0.89 | 0.04 | 0.03 | 0.94 | 0.87 | 0.04 | 0.03 | 0.94 | |
RF | 0.96 | 0.02 | 0.02 | 0.98 | 0.96 | 0.02 | 0.02 | 0.98 | |
Sub4 | ANN-PCA | 0.75 | 0.05 | 0.04 | 0.90 | 0.75 | 0.05 | 0.04 | 0.89 |
ANN-PAR | 0.71 | 0.05 | 0.04 | 0.84 | 0.67 | 0.06 | 0.05 | 0.82 | |
SVM-PCA | 0.85 | 0.04 | 0.03 | 0.92 | 0.82 | 0.04 | 0.03 | 0.92 | |
SVM-PAR | 0.79 | 0.05 | 0.04 | 0.88 | 0.77 | 0.05 | 0.04 | 0.88 | |
RF | 0.94 | 0.03 | 0.02 | 0.97 | 0.89 | 0.03 | 0.03 | 0.97 | |
Sub5 | ANN-PCA | 0.78 | 0.04 | 0.03 | 0.89 | 0.72 | 0.05 | 0.04 | 0.87 |
ANN-PAR | 0.72 | 0.05 | 0.04 | 0.86 | 0.67 | 0.05 | 0.04 | 0.83 | |
SVM-PCA | 0.84 | 0.04 | 0.03 | 0.92 | 0.73 | 0.05 | 0.03 | 0.92 | |
SVM-PAR | 0.78 | 0.04 | 0.04 | 0.89 | 0.68 | 0.05 | 0.03 | 0.89 | |
RF | 0.92 | 0.03 | 0.02 | 0.96 | 0.83 | 0.04 | 0.03 | 0.96 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chi, K.; Pang, B.; Cui, L.; Peng, D.; Zhu, Z.; Zhao, G.; Shi, S. Modelling the Vegetation Response to Climate Changes in the Yarlung Zangbo River Basin Using Random Forest. Water 2020, 12, 1433. https://doi.org/10.3390/w12051433
Chi K, Pang B, Cui L, Peng D, Zhu Z, Zhao G, Shi S. Modelling the Vegetation Response to Climate Changes in the Yarlung Zangbo River Basin Using Random Forest. Water. 2020; 12(5):1433. https://doi.org/10.3390/w12051433
Chicago/Turabian StyleChi, Kaige, Bo Pang, Lizhuang Cui, Dingzhi Peng, Zhongfan Zhu, Gang Zhao, and Shulan Shi. 2020. "Modelling the Vegetation Response to Climate Changes in the Yarlung Zangbo River Basin Using Random Forest" Water 12, no. 5: 1433. https://doi.org/10.3390/w12051433
APA StyleChi, K., Pang, B., Cui, L., Peng, D., Zhu, Z., Zhao, G., & Shi, S. (2020). Modelling the Vegetation Response to Climate Changes in the Yarlung Zangbo River Basin Using Random Forest. Water, 12(5), 1433. https://doi.org/10.3390/w12051433