Alternatives for Recovering the Ecosystem Services and Resilience of the Salamanca Island Natural Park, Colombia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data and Materials
- Time series of hydrometeorological stations of the region were obtained from Instituto de Hidrología, Meteorología y Estudios Ambientales (IDEAM) at http://dhime.ideam.gov.co/atencionciudadano/.
- The cartography of the OpenStreetMap OSM platform and political division and the drainage network information is available at https://sigot.igac.gov.co/.
- Topography and landforms from the ASTER Global Digital Elevation Model Version 2 were used, available at https://asterweb.jpl.nasa.gov/gdem.asp.
2.3. Methods
2.3.1. Basin Analysis
2.3.2. Wave Climate Analysis
2.3.3. Ecological and Social Characterization
2.3.4. Governance System
3. Results
3.1. Integrated Basin Management
3.2. Wave Analysis
3.3. Relevant Ecological Aspects of CGSM
3.4. Coastal Wetlands and Beach Processes
3.5. Stakeholders and Governance
3.6. Proposed Options
- I.
- The restoration of riparian vegetation, water flows, and mouths: the reforestation of the basin, restoration of the water flows, and clearing of areas around the river mouths in the lagoon will improve the system in terms of storage capacity, nutrient cycles, and discharges, as well as lessening the risk of flooding.
- II.
- Mangrove recovery: mangrove reforestation using native species and restoration of critical fluxes will decrease salinity and increase the survival chances of the mangroves.
- III.
- Hybrid green infrastructure project: the littoral cell cannot be restored and requires an engineering project to recover its balance and connectivity. As an initial measure, living dykes are proposed, to reduce the reflection coefficients of the current rock armor. This type of dyke (Figure 11) allows the establishment of endemic vegetation to stabilize the dune. This kind of artificial dune is often used to restore littoral zones with critical erosion problems, as it enhances morphological restoration while efficiently reducing wave reflection.
4. Discussion and Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Kjerfve, B. Comparative Oceanography of Coastal Lagoons, Columbia South Carolina: Estuarine Variability; Wolfe, D.A., Ed.; Academic Press: Cambridge, MA, USA, 1986. [Google Scholar]
- Friedman, J.B. Adaptación a Los Impactos del Cambio Climático en Humedales Costeros del Golfo dE México—Vol I; Buenfil, Ed.; Secretaría de Medio Ambiente y Recursos Naturales Instituto Nacional de Ecología: Ciudad de México, Mexico, 2009. [Google Scholar]
- Brunn, P. Engineering Projects in Coastal Lagoons. Elsevier Oceanogr. Ser. 1994, 60, 507–533. [Google Scholar] [CrossRef]
- Barbier, E.B. Valuing Ecosystem Services for Coastal Wetland Protection and Restoration: Progress and Challenges. Resources 2013, 2, 213–230. [Google Scholar] [CrossRef] [Green Version]
- Rocha, J.; Yletyinen, J.; Biggs, R.; Blenckner, T.; Peterson, G. Marine regime shifts: Drivers and impacts on ecosystem services. Philos. Trans. B 2015, 370, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Villardy, S.P.; González, J.A.; Martín-López, B.; Montes, C. Relantionships between hydrological regime and ecosystem services supply in a Caribbean coastal wetland: A social-ecological approach. Hydrol. Sci. J. 2011, 56, 1423–1435. [Google Scholar] [CrossRef] [Green Version]
- Rodríguez-Rodríguez, J.A.; Pineda, J.E.M.; Trujillo, L.V.P.; Rueda, M.E.; Ibarra, K.P. Ciénaga Grande de Santa Marta: The Largest lagoon-Delta Ecosystem in the Colombian Caribbean. In The Wetland Book II: Distribution, Description and Conservation; Springer: Dordrecht, The Netherlands, 2018; pp. 757–772. [Google Scholar]
- Blanco, J.A.; Viloria, E.A.; Naváez, B.J. ENSO and salinity changes in the Ciénaga Grande de Santa Marta coastal lagoon system, Colombian Caribbean. Estuar. Coast. Shelf Sci. 2006, 66, 157–167. [Google Scholar] [CrossRef]
- Botero, L.; Mancera-Pineda, J.E. Síntesis de los cambios de origen antrópico ocurridos en los últimos 40 años en la Ciénaga Grande de Santa Marta y Ciénaga de Pajarales. Rev. De La Acad. Colomb. De Cienc. Nat. Y Exactas 1996, 20, 466–474. [Google Scholar]
- Polanía, J.; Santos-Martínez, J.E.; Arboleda, L.B. The Coastal Lagoon Ciénaga Grande de Santa Marta, Colombia. Coast. Mar. Ecosyst. Lat. Am. 2001, 144, 33–45. [Google Scholar]
- Jaramillo, F.; Licero, L.; Åhlen, I.; Manzoni, S.; Rodríguez-Rodríguez, J.A.; Guittard, A.; Hylin, A.; Bolaños, J.; Jawitz, J.; Wdowinski, S.; et al. Effects of Hydroclimatic Change and Rehabilitation Activities on Salinity and Mangroves in the Ciénaga Grande de Santa Marta, Colombia. Wetlands 2018, 38, 755–767. [Google Scholar] [CrossRef] [Green Version]
- Silva, R.; Chávez, V.; Bouma, T.; van Tussenbroek, B.; Arkema, K.; Martínez, L.; Oumeraci, H.; Hyemans, J.; Osorio, A.; Mendoza, E.; et al. The incorporation of biophysical and social components in coastal management. Estuaries Coasts 2019, 1, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Silva, R.; Lithgow, D.; Esteves, L.; Martínez, M.L.; Moreno-Casasola, P.; Martell, R.; Pereira, P.; Mendoza, E.; Campos-Cascaredo, A.; Grez, P.W.; et al. Coastal risk mitigation by green infraestructure in Latin America. Marit. Eng. 2017, 170, 39–54. [Google Scholar] [CrossRef]
- Silva, R.; Martínez, M.; Catalan, P.; Osorio, A.; Martell, R.; Fossati, M.; Miot, G.; Mariño-Tapia, I.; Pereira, P.; Cienfuegos, R.; et al. Present and future challenges of coastal erosion in Latin America. J. Coast. Res. 2010, 71, 1–16. [Google Scholar] [CrossRef]
- Botero, L.; Salzwedel, H. Rehabilitation of the Cienaga Grande of Santa Marta, a mangroove estuarine system in the Caribbean coast of Colombia. Ocean Coast. Manag. 1999, 42, 243–256. [Google Scholar] [CrossRef]
- Instituto Colombiano DE HidrologíA, Meteorología Y Adecuación DE Tierras. Resolución 00337; Instituto Colombiano DE HidrologíA, Meteorología Y Adecuación DE Tierras: Bogotá, Colombia, 1978.
- Osorio, A.F.; Montoya, R.D.; Ortiz, J.C.; Pelaez, D. Construction of synthetic ocean wave series along the Colombian Caribbean coast: A Wave Climate Analysis. Appl. Ocean Res. 2016, 56, 119–131. [Google Scholar] [CrossRef]
- Mesa, O.J.; Poveda, G.; Carvajal, L.F. Introduction to the climate of Colombia. Univ. Nac. De Colomb. 1997, 1, 390. [Google Scholar]
- Ruiz-Ochoa, M.A.; Franco, G.B. Variabilidad estacional e interanual del viento en los datos del re-análisis NCEP/NCAR en la cuenca Colombia, mar caribe. Avances en Recursos Hidráulicos 2009, 20. [Google Scholar]
- del Río-Colón, R.; Campo-Rojas, E.; Maza, M.; Rivillas-Ospina, G.; Guerrero, M.; Murillo, N.; Urbano, C.; Rodríguez-Rincón, J.; Horrillo-Caraballo, J.; Bolívar, M. SWAN model sensitivity analysis of whitecapping and quadruplets formulations off the Caribbean coast of Colombia using WWIII boundary conditions and JRA-55 wind forcing. J. Mar. Sci. Eng. 2020. In review. [Google Scholar]
- IDEAM. Zonificación y Codifiación de Unidades Hidrográficas e Hidrogeológocas de Colombia; Instituto de Hidrología, Meteorología y Estudios Ambientales: Bogotá, Colombia, 2013.
- Hoyos, N.; Correa-Metrio, A.; Sisa, A.; Ramos-Fabiel, M.A.; Espinosa, J.M.; Restrepo, J.C.; Escobar, J. The environmental envelope of fires in the Colombian Caribbean. Appl. Geogr. 2017, 84, 42–54. [Google Scholar] [CrossRef]
- Ris, R.C.; Holthuijsen, L.H.; Booji, N. A third generarion wave model for coastal regions: 2 verification. J. Geophys. Res. 1999, 104, 7667–7681. [Google Scholar] [CrossRef]
- GEBCO. General Bathymetric Chart of the Ocean; British Oceanographic Data Center: Liverpool, UK, 2003. [Google Scholar]
- Kobayashi, S.; Ota, Y.; Harada, Y.; Ebita, A.; Moriya, M.; Onoda, H.; Endo, H. The HRA-55 Reanalysis: General specifications and basic characteristics. J. Meteorol. Soc. Jpn. 2015, 93, 5–48. [Google Scholar] [CrossRef] [Green Version]
- Rivillas-Ospina, G.D.; Silva, R.; Mendoza, E.; Avila, H.; Daza, O.; Berrío, Y.; Ruiz, A.; Rueda, J. Coastal restoration on the barrier island of Ciénaga Grande, Magdalena, Colombia. In Proceedings of the Coasts & Ports Conference, Cairns, Australia, 21–23 June 2017; Volume 1, p. 5. [Google Scholar]
- Komen, G.J.; Hasselmann, K. On the existence of a fully developed wind sea-spectrum. J. Phys. Oceanogr. 1984, 14, 1271–1285. [Google Scholar] [CrossRef]
- Hasselmann, K.; Barnett, T.P.; Bouws, E.; Carlson, H.; Cartwright, D.E.; Enke, K.; Kruseman, P. Measurements of wind wae growth and swell decay during the Joint North Sea Wave Project (JONSWAP). Ergänzungsheft 1973, 8–12. [Google Scholar]
- Eldeberky, Y. Noninear transformation of wave spectra in the nearshore zone. Oceanogr. Lit. Rev. 1997, 4, 297. [Google Scholar]
- Hasselmann, S.; Hasselmann, K.; Allender, J.H.; Barnett, T.P. Computations and parameterizations of the nonlinear energy transfer in a gravity wave spectrum.Part II: Parameterizations of the nonlinear energy transfer for application in wave models. J. Phys. Oceanogr. 1985, 15, 1378–1391. [Google Scholar] [CrossRef] [Green Version]
- Biggs, R.G.; Peterson, D.; Rocha, J.C. The regime shifts database: A framework for analyzing regime shifts in social-ecological systems. Ecol. Soc. 2018, 3, 23. [Google Scholar] [CrossRef]
- Rocha, J.C.; Peterson, G.; Bodin, Ö.; Levin, S.A. Cascading regime shifts within and across scales. Science 2018, 1, 1379–1383. [Google Scholar] [CrossRef]
- Kininnmonth, S.; Bergsten, A.; Bodin, Ö. Closing the collaborative gap: Aligning social and ecological connectivity for better management of interconected wetlands. Ambio 2015, 44, S138–S148. [Google Scholar] [CrossRef] [Green Version]
- Angarita, H.; Delgado, J. Suma de alteraciones en la cuenca del Magdalena-Cauca. In Colombia Anfibia un país de Humedales; Cortes-Duque, J., Flórez-Ayala, C., Eds.; Instituto de Investigación de Recursos Hidrobiológicos Alexander von Humbolt: Bogota, Colombia, 2016. [Google Scholar]
- Otero, L.J.; Ortiz-Royero, J.C.; Ruiz-Merchan, J.K.; Higgins, A.E.; Enriquez, S.A. Storms cold fronts: What is really responsible for the extreme waves regime in the Colombian Caribbean coastal region? Nat. Hazards 2016, 16, 391–401. [Google Scholar] [CrossRef] [Green Version]
- Rivera, V.H.; Twilley, R.R.; Mancera-Pineda, J.E. Aventuras y desventuras en Macondo: Rehabilitación de la Ciénaga Grande de Santa Marta, Colombia. Ecotrópicos 2006, 19, 72–93. [Google Scholar]
- Röderstein, M.; Perdomo, L.; Villamil, C. Long term vegetation changes in a tropical coastal lagoon system after interventions in the hydrological conditions. Aquat. Bot. 2014, 113, 19–31. [Google Scholar] [CrossRef]
- Deeb-Sossa, S.C. Análisis de Sedimentación en Algunos Caños de la Ciénaga Grande de Santa Marta; Estudios y Asesorías Ing Consultores: Bogotá, Colombia, 1993. [Google Scholar]
- Bernal, G.; Betancur, J. Sedimentología de lagunas costeras: Ciénaga Grande de Santa Marta y Ciénaga de Pajarales. Bol. Investig. Mar. Costeras 1996, 25, 49–76. [Google Scholar] [CrossRef]
- Mancera-Pineda, J.E.; Vidal, L.V. Florecimiento de microalgas relacionado con mortandad masiva de peces en el complejo lagunar Ciénaga Grande de Santa Marta, Caribe Colombiano. Bol. Investig. Mar. Y Costeras 1994, 23, 103–117. [Google Scholar]
- Tuchkovenko, Y.S.; Calero, L.A. Modelo matemático del ecosistema de la Ciénaga Grande de Santa Marta. Bol. Investig. Mar. Y Costeras 2003, 32, 145–167. [Google Scholar] [CrossRef]
- INVEMAR. Convenio Interadministrativo No. 57 de 2013 Entre el MADS y el INVEMAR, Elementos Técnicos y Generación de Capacidad Para el Ordenamiento, Conservación y Manejo de los Espacios y Recursos Marinos, Costeros e Insulares de Colombia; Código: ACT-VAR-001-013; Instituto de Investigaciones Marinas y Costeras José Benito Vives de Andréis, INVEMAR: Santa Marta, Colombia, 2013. [Google Scholar]
- INVEMAR. Monitoreo de Las Condiciones Ambientales y Los Cambios Estructurales y Funcionales de Las Comunidades Vegetales y de Los Recursos Pesqueros Durante la Rehabilitación de la CIénaga Grande de Santa Marta; Informe Técnico Final 2015; INVEMAR: Santa Marta, Colombia, 2016; Volume 14, 181p. [Google Scholar]
- Santos-Martínez, A.; Viloria, E.; Sánchez, C.; Rueda, M.; Tijaro, R.; Grijalba, M.; Nárvaez, B. Evaluación de los Principales Recursos Pesqueros de la Ciénaga Grande de Santa Marta, Costa Caribe Colombiana; INVEMAR: Santa Marta, Colombia, 1998. [Google Scholar]
- Viloria-Maestre, E.; Acero, P.; Blanco, J. El colapso de la pesquería de la mojarra rayada Eugerres plumeri (Pisces:Gerreidae) en la Ciénaga Grande de Santa Marta ¿Causas pesqueras, ambientales o biológicas? Bol. Investig. Mar. Y Costeras 2012, 41, 399–428. [Google Scholar]
- Rueda, M.; Ramírez, C.S. Variación de la diversidad y abundancia de especies ícticas dominantes en el Delta del Río Magdalena; Colombia. Rev. De Biol. Trop. /Int. J. Trop. Biol. Conserv. 1999, 47, 1067–1079. [Google Scholar]
- Zamora, A.P.; Meza-García, A.G. Comportamiento de los rendimientos económicos de la pesquería artesanal de la Ciénaga Grande de Santa Marta y el Complejo Pajarales, Caribe. Bol. Investig. Mar. Y Costeras 2013, 41, 91–99. [Google Scholar]
- Rivillas-Ospina, G.; Silva, R.; Mendoza, E.; Ruiz, G.; Romero, J.; Nava, Y. COASTAL EROSION ASSESSMENT IN WETLANDS ON THE GULF OF MEXICO. In Proceedings of the 34th Conference on Coastal Engineering, Soul, Korea, 15–20 June 2014. [Google Scholar]
- Bolivar, M.; Rivillas-Ospina, G.; Fuentes, W.; Guzmán, A.; Otero, L.; Ruiz, G.; Silva, R.; Mendoza, E.; García, L.; Berrío, Y. Anthropic Impact Assessment of Coastal Ecosystems in the Municipality of Puerto Colombia, NE Colombia. J. Coast. Res. 2019, 1, 112–120. [Google Scholar] [CrossRef]
- Odériz, I.; Knöchelmann, N.; Silva, R.; Feagin, R.; Martínez, M.L.; Mendoza, E. Reinforcement of vegeted and unvegeted dunes by a rocky core: A viable alternative for dissipating waves and providing protection? Coast. Eng. 2020, 158, 1–11. [Google Scholar] [CrossRef]
Impact | Key References | Period | Time Scale | Spatial Scale | Driver | Impacts Ecological Processes |
---|---|---|---|---|---|---|
Eutrophication | De la Hoz (2004) | 1987–1997 | De | Lo/La | ES, CV, DI, ENS, EI | CH, CN, PP, TN |
Hypoxia | Mancera–Pineda y Vidal (1994) | 1994 | H/D | Lo | ENS, EI | DP, EC, TN |
Fisheries collapse | Viloria et al. (2012), Rueda and Santos-Martínez (1999) | 1994–1997 | Y/De | La | DI, EI | DP, EC, TN |
Bivalve collapse | Botero and Mancera–Pineda (1996), Mancera–Pineda and Mendo (1996), Viloria et al. (2012) | 1996 | Y | La | DI, CV | DP, EC, TN |
Mangrove transition | Rivera–Monroy et al. (2006) | 1956–1999 | Y/De | Lo/La | DI, ENS, EC, EX | PP, CN, DP, EC, TN |
Soil salinization | Cardona and Botero (1998), Bernal and Betancur (1996) | 1988–1990 | Y | Lo | DI, ENS | PP, CN, DP, EC, TN |
Channel position change | Botero and Mancera–Pineda (1996) | 1956–1963 | Y | Lo | DI | CN |
Characteristics | Type of Impact * | |
---|---|---|
Overall Features | Tidal channel open | NC |
Erosion in riverbanks | N | |
Coastal erosion (max = 0.35 km) | N | |
Overfishing | N | |
Coastal works | N | |
Embankment, weirs, and road construction | N | |
Mangrove forest degradation | N | |
River flow diversion to agricultural activities | N | |
Floods | P | |
Land use changes | N | |
Wave Climate | Extreme events, effects of cold fronts and hurricanes | NC |
Strong wind fields | NC | |
Tidal (semi-diurnal) regime | NC | |
Wave diffraction by headlands | NC | |
Sediment transport disruption | N | |
Hydrology | Precipitation: 900 to 1000 mm | NC |
Temperature: 28 °C | NC | |
Water quality alteration by wastewater discharges | N | |
Tidal channel open | N | |
Land Use | Erosion in riverbanks | N |
Coastal erosion (max = 0.35 km) | N |
Causes | Effects |
---|---|
Coastal infrastructure (groins, dykes, rock armor) | Coastal erosion |
Urban development and road construction | Fragmentation of coastal ecosystems |
Overfishing | Reduction in diversity of fishes |
Land use changes | Diversion of the river flow, erosion, and flood risk |
Basin erosion | Sedimentation of river mouths |
Industrial and communities water discharges | Alteration of physicochemical quality of water |
Alterations | Alternatives |
---|---|
Coastal erosion | Recover sediment sources Remove coastal works that disrupt sediment transport Artificial coral reef construction in front of Km 19 Transform the rock armor at Km 19 into a living dyke Plant coastal dune vegetation Restore mangrove, including fluxes and vegetation cover Sediment traps |
Connectivity | Restore the river flow of the basin Open river mouths Build treatment plants for the communities |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rivillas-Ospina, G.; Maza-Chamorro, M.A.; Restrepo, S.; Lithgow, D.; Silva, R.; Sisa, A.; Vargas, A.; Sarmiento, J.P.; Caes, J.; Bolivar, M.; et al. Alternatives for Recovering the Ecosystem Services and Resilience of the Salamanca Island Natural Park, Colombia. Water 2020, 12, 1513. https://doi.org/10.3390/w12051513
Rivillas-Ospina G, Maza-Chamorro MA, Restrepo S, Lithgow D, Silva R, Sisa A, Vargas A, Sarmiento JP, Caes J, Bolivar M, et al. Alternatives for Recovering the Ecosystem Services and Resilience of the Salamanca Island Natural Park, Colombia. Water. 2020; 12(5):1513. https://doi.org/10.3390/w12051513
Chicago/Turabian StyleRivillas-Ospina, German, Mauro Antonio Maza-Chamorro, Sebastián Restrepo, Debora Lithgow, Rodolfo Silva, Augusto Sisa, Andrés Vargas, Juan Pablo Sarmiento, Juan Caes, Marianella Bolivar, and et al. 2020. "Alternatives for Recovering the Ecosystem Services and Resilience of the Salamanca Island Natural Park, Colombia" Water 12, no. 5: 1513. https://doi.org/10.3390/w12051513
APA StyleRivillas-Ospina, G., Maza-Chamorro, M. A., Restrepo, S., Lithgow, D., Silva, R., Sisa, A., Vargas, A., Sarmiento, J. P., Caes, J., Bolivar, M., Del Rio, R., Campo, E., Casas, D., & Rudas, D. (2020). Alternatives for Recovering the Ecosystem Services and Resilience of the Salamanca Island Natural Park, Colombia. Water, 12(5), 1513. https://doi.org/10.3390/w12051513