Flood Inundation Mapping in an Ungauged Basin
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Hydraulic/Hydrodynamic Modeling
2.3. Geometry Data in ArcGIS—Connection and Analysis via the Coupled Hydraulic 1D/2D HEC-RAS Model
3. Results
3.1. Uncertainty Analysis with Respect to Manning’s Roughness Coefficient
3.2. Uncertainty Analysis Regarding the Weir Coefficient
3.3. Hydraulic Modeling Output
3.4. Historical Precipitation and Future Projections through Climate Model Data
3.5. Scenarios of Increasing the Peak Precipitation for the Same Event Precipitation Depth
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- EEA. Mapping the Impacts of Natural Hazards and Technological Accidents in Europe: An Overview of the Last Decade; Technical Report No 13/2010; EEA: Copenhagen, Denmark, 2010; ISSN 1725-2237. [Google Scholar] [CrossRef]
- Alfieri, L.; Burek, P.; Feyen, L.; Forzieri, G. Global warming increases the frequency of river floods in Europe. Hydrol. Earth Syst. Sci. 2015, 19, 2247–2260. [Google Scholar] [CrossRef] [Green Version]
- Kundzewicz, Z.W.; Pińskwar, I.; Brakenridge, G.R. Large floods in Europe, 1985–2009. Hydrol. Sci. J. 2013, 58, 1–7. [Google Scholar] [CrossRef]
- Cohen, S.; Brakenridge, G.R.; Kettner, A.; Bates, B.; Nelson, J.; McDonald, R.; Huang, Y.-F.; Munasinghe, D.; Zhang, J. Estimating Floodwater Depths from Flood Inundation Maps and Topography. JAWRA J. Am. Water Resour. Assoc. 2017, 54, 847–858. [Google Scholar] [CrossRef]
- Mousavi, S.M.; Roostaei, S.; Rostamzadeh, H. Estimation of flood land use/land cover mapping by regional modelling of flood hazard at sub-basin level case study: Marand basin. Geomat. Nat. Hazards Risk 2019, 10, 1155–1175. [Google Scholar] [CrossRef] [Green Version]
- Rincón, D.; Khan, U.; Armenakis, C. Flood Risk Mapping Using GIS and Multi-Criteria Analysis: A Greater Toronto Area Case Study. Geosciences 2018, 8, 275. [Google Scholar] [CrossRef] [Green Version]
- Teng, J.; Jakeman, A.; Vaze, J.; Croke, B.F.; Dutta, D.; Kim, S. Flood inundation modelling: A review of methods, recent advances and uncertainty analysis. Environ. Model. Softw. 2017, 90, 201–216. [Google Scholar] [CrossRef]
- Clement, M.; Kilsby, C.; Moore, P. Multi-temporal synthetic aperture radar flood mapping using change detection. J. Flood Risk Manag. 2017, 11, 152–168. [Google Scholar] [CrossRef]
- Giustarini, L.; Hostache, R.; Kavetski, D.; Chini, M.; Corato, G.; Schlaffer, S.; Matgen, P. Probabilistic Flood Mapping Using Synthetic Aperture Radar Data. IEEE Trans. Geosci. Remote Sens. 2016, 54, 6958–6969. [Google Scholar] [CrossRef]
- Aricò, C.; Filianoti, P.G.F.; Sinagra, M.; Tucciarelli, T. The FLO Diffusive 1D-2D Model for Simulation of River Flooding. Water 2016, 8, 200. [Google Scholar] [CrossRef] [Green Version]
- Costabile, P.; Macchione, F.; Natale, L.; Petaccia, G. Flood mapping using LIDAR DEM. Limitations of the 1-D modeling highlighted by the 2-D approach. Nat. Hazards 2015, 77, 181–204. [Google Scholar] [CrossRef]
- Morales-Hernandez, M.; Petaccia, G.; Brufau, P.; García-Navarro, P. Conservative 1D–2D coupled numerical strategies applied to river flooding: The Tiber (Rome). Appl. Math. Model. 2016, 40, 2087–2105. [Google Scholar] [CrossRef]
- Afshari, S.; Tavakoly, A.A.; Rajib, M.A.; Zheng, X.; Follum, M.L.; Omranian, E.; Fekete, B.M.; Rajib, A. Comparison of new generation low-complexity flood inundation mapping tools with a hydrodynamic model. J. Hydrol. 2018, 556, 539–556. [Google Scholar] [CrossRef]
- Lamichhane, N.; Sharma, S. Effect of input data in hydraulic modeling for flood warning systems. Hydrol. Sci. J. 2018, 63, 938–956. [Google Scholar] [CrossRef]
- Ballesteros-Cánovas, J.; Bodoque, J.M.; Díez-Herrero, A.; Sánchez-Silva, M.; Stoffel, M. Calibration of floodplain roughness and estimation of flood discharge based on tree-ring evidence and hydraulic modelling. J. Hydrol. 2011, 403, 103–115. [Google Scholar] [CrossRef]
- Habert, J.; Ricci, S.; Le Pape, E.; Thual, O.; Piacentini, A.; Goutal, N.; Jonville, G.; Rochoux, M. Reduction of the uncertainties in the water level-discharge relation of a 1D hydraulic model in the context of operational flood forecasting. J. Hydrol. 2016, 532, 52–64. [Google Scholar] [CrossRef] [Green Version]
- Dimitriadis, P.; Tegos, A.; Oikonomou, A.; Pagana, V.; Koukouvinos, A.; Nikos, M.; Koutsoyiannis, D.; Efstratiadis, A. Comparative evaluation of 1D and quasi-2D hydraulic models based on benchmark and real-world applications for uncertainty assessment in flood mapping. J. Hydrol. 2016, 534, 478–492. [Google Scholar] [CrossRef]
- Papaioannou, G.; Loukas, A.; Vasiliades, L.; Aronica, G.T. Sensitivity analysis of a probabilistic flood inundation mapping framework for ungauged catchments. Eur. Water 2017, 60, 9–16. [Google Scholar]
- Sarhadi, A.; Soltani, S.; Modarres, R. Probabilistic flood inundation mapping of ungauged rivers: Linking GIS techniques and frequency analysis. J. Hydrol. 2012, 458, 68–86. [Google Scholar] [CrossRef]
- Winter, B.; Schneeberger, K.; Huttenlau, M.; Stötter, J. Sources of uncertainty in a probabilistic flood risk model. Nat. Hazards 2017, 91, 431–446. [Google Scholar] [CrossRef] [Green Version]
- Domeneghetti, A.; Vorogushyn, S.; Castellarin, A.; Merz, B.; Brath, A. Probabilistic flood hazard mapping: Effects of uncertain boundary conditions. Hydrol. Earth Syst. Sci. 2013, 17, 3127–3140. [Google Scholar] [CrossRef] [Green Version]
- Tsanis, I.; Seiradakis, K.D.; Daliakopoulos, I.N.; Grillakis, M.G.; Koutroulis, A. Assessment of GeoEye-1 stereo-pair-generated DEM in flood mapping of an ungauged basin. J. Hydroinform. 2013, 16, 1–18. [Google Scholar] [CrossRef]
- Petroselli, A.; Vojtek, M.; Vojteková, J. Flood mapping in small ungauged basins: A comparison of different approaches for two case studies in Slovakia. Hydrol. Res. 2018, 50, 379–392. [Google Scholar] [CrossRef] [Green Version]
- Papaioannou, G.; Loukas, A.; Vasiliades, L.; Aronica, G.T. Flood inundation mapping sensitivity to riverine spatial resolution and modelling approach. Nat. Hazards 2016, 83, 117–132. [Google Scholar] [CrossRef]
- Vozinaki, A.-E.K.; Morianou, G.G.; Alexakis, D.D.; Tsanis, I. Comparing 1D and combined 1D/2D hydraulic simulations using high-resolution topographic data: A case study of the Koiliaris basin, Greece. Hydrol. Sci. J. 2016, 62, 642–656. [Google Scholar] [CrossRef]
- Patel, D.; Ramirez, J.A.; Srivastava, P.K.; Bray, M.; Zhang, S. Assessment of flood inundation mapping of Surat city by coupled 1D/2D hydrodynamic modeling: A case application of the new HEC-RAS 5. Nat. Hazards 2017, 89, 93–130. [Google Scholar] [CrossRef]
- Pasquier, U.; He, Y.; Hooton, S.; Goulden, M.; Hiscock, K.M. An integrated 1D–2D hydraulic modelling approach to assess the sensitivity of a coastal region to compound flooding hazard under climate change. Nat. Hazards 2018, 98, 915–937. [Google Scholar] [CrossRef] [Green Version]
- Lea, D.; Yeonsu, K.; Hyunuk, A. Case Study of HEC-RAS 1D–2D Coupling Simulation: 2002 Baeksan Flood Event in Korea. Water 2019, 11, 2048. [Google Scholar] [CrossRef] [Green Version]
- Sarchani, S.; Tsanis, I. Analysis of a Flash Flood in a Small Basin in Crete. Water 2019, 11, 2253. [Google Scholar] [CrossRef] [Green Version]
- Tsanis, I.; Boyle, S. A 2D hydrodynamic/pollutant transport GIS model. Adv. Eng. Softw. 2001, 32, 353–361. [Google Scholar] [CrossRef]
- Naoum, S.; Tsanis, I.K.; Fullarton, M. A GIS pre-processor for pollutant transport modelling. Environ. Model. Softw. 2005, 20, 55–68. [Google Scholar] [CrossRef]
- Brunner, G.W. HEC-RAS, River Analysis System, 2D Modeling User’s Manual; CPD-68A, Version 5.0; U.S. Army Corps of Engineers, Hydrologic Engineering Center: Davis, CA, USA, 2016.
- Brunner, G.W. HEC-RAS, River Analysis System Hydraulic Reference Manual; CPD-69, Version 5.0; U.S. Army Corps of Engineers, Hydrologic Engineering Center: Davis, CA, USA, 2016.
- Cameron, T.; Ackerman, P.E. HEC-GeoRAS GIS Tools for Support of HEC-RAS using ArcGIS® 10 User’s Manual; CPD-83, Version 10; U.S. Army Corps of Engineers, Hydrologic Engineering Center: Davis, CA, USA, 2012.
- Brunner, G.W. HEC-RAS, River Analysis System User’s Manual; CPD-68, Version 5.0; U.S. Army Corps of Engineers, Hydrologic Engineering Center: Davis, CA, USA, 2016.
- Chow, V.T. Open-Channel Hydraulics; McGraw-Hill: New York, NY, USA, 1959. [Google Scholar]
- Goodell, C. Lateral Structure Coefficients. 2013. Available online: http://hecrasmodel.blogspot.com/2013/12/lateral-structure-coefficients.html (accessed on 10 February 2020).
- Jacob, D.; Petersen, J.; Eggert, B.; Alias, A.; Christensen, O.B.; Bouwer, L.M.; Braun, A.; Colette, A.; Déqué, M.; Georgievski, G.; et al. EURO-CORDEX: New high-resolution climate change projections for European impact research. Reg. Environ. Chang. 2013, 14, 563–578. [Google Scholar] [CrossRef]
Date | Daily Rain (mm) | Max 3-Hourly Rain (mm) | Ratio: 3-Hourly/Daily/8 |
---|---|---|---|
20 February 1972 | 212.75 | 38.91 | 1.46 |
6 November 1973 | 107.12 | 19.67 | 1.47 |
21 March 1985 | 100.73 | 31.50 | 2.50 |
13 February 1993 | 98.54 | 30.28 | 2.46 |
Period 1981–2098 | RCP4.5 | RCP8.5 | ||
---|---|---|---|---|
Kalyves Station | Vamos Station | Kalyves Station | Vamos Station | |
No of days with precipitation >300 mm | 1 | 2 | 0 | 1 |
No of days with precipitation >250 mm | 1 | 4 | 1 | 3 |
No of days with precipitation >200 mm | 5 | 10 | 2 | 14 |
No of days with precipitation >150 mm | 11 | 38 | 9 | 31 |
No of days with no precipitation | 37,496 | 36,628 | 37,747 | 36,967 |
P = 345 mm | Max Precipitation Depth in 15 Min (mm) | Precipitation Intensity (mm/h) | Peak Discharge (m3/s) | Max Flood Depth [DEM 5 m] (m) | Max Flood Depth [DEM 2 m] (m) |
---|---|---|---|---|---|
smooth peak | 10 | (10 × 4) = 40 | 175 | 5.13 | 5.62 |
base | 17.5 | (17.5 × 2) + (10 × 2) = 55 | 211.6 | 5.45 | 6.02 |
intense peak | 52.5 | (52.5 × 2) + (10 × 2) = 125 | 279 | 5.73 | 8.78 |
P = 196.2 mm | Peak Discharge (m3/s) | DEM 5 m × 5 m | DEM 2 m × 2 m | ||
---|---|---|---|---|---|
Max Flood Depth (m) | Flood Extent (m2) | Max Flood Depth (m) | Flood Extent (m2) | ||
Observed Precipitation | 109 | 3.94 | 108,767 | 4.80 | 72,606 |
50% Increase of Peak Precipitation | 115.9 | 4.03 | 110,686 | 4.89 | 75,142 |
100% Increase of Peak Precipitation | 130.6 | 4.25 | 116,913 | 5.07 | 80,003 |
200% Increase of Peak Precipitation | 148.2 | 4.58 | 124,160 | 5.27 | 85,708 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sarchani, S.; Seiradakis, K.; Coulibaly, P.; Tsanis, I. Flood Inundation Mapping in an Ungauged Basin. Water 2020, 12, 1532. https://doi.org/10.3390/w12061532
Sarchani S, Seiradakis K, Coulibaly P, Tsanis I. Flood Inundation Mapping in an Ungauged Basin. Water. 2020; 12(6):1532. https://doi.org/10.3390/w12061532
Chicago/Turabian StyleSarchani, Sofia, Konstantinos Seiradakis, Paulin Coulibaly, and Ioannis Tsanis. 2020. "Flood Inundation Mapping in an Ungauged Basin" Water 12, no. 6: 1532. https://doi.org/10.3390/w12061532
APA StyleSarchani, S., Seiradakis, K., Coulibaly, P., & Tsanis, I. (2020). Flood Inundation Mapping in an Ungauged Basin. Water, 12(6), 1532. https://doi.org/10.3390/w12061532