Booster Biocides Levels in the Major Blood Cockle (Tegillarca granosa L., 1758) Cultivation Areas along the Coastal Area of Peninsular Malaysia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of the Study Area
2.2. Determination of Booster Biocide Concentration
2.2.1. Sample Collection
2.2.2. Analytical Procedures
2.2.3. Quantification of Booster Biocides by High-Performance Liquid Chromatography (HPLC)
2.2.4. Quality Assurance
2.2.5. Statistical Analysis
3. Results
3.1. Booster Biocides Concentration in the Blood Cockle, Tegillarca granosa
3.2. Booster Biocides Concentration in the Sediment
4. Discussion
4.1. Booster Biocide Distribution
4.1.1. Irgarol 1051
4.1.2. Diuron
4.1.3. 3,4-DCA
4.1.4. Chlorothalonil
4.2. Potential Adverse Effect
4.3. Human Risk Assessment
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Konstantinou, I.K.; Albanis, T.A. Worldwide occurrence and effects of antifouling paint booster biocides in the aquatic environment: A review. Environ. Int. 2004, 30, 235–248. [Google Scholar] [CrossRef]
- Thomas, K.V.; Brooks, S. The environmental fate and effects of antifouling paint biocides. Biofouling 2010, 26, 73–88. [Google Scholar] [CrossRef]
- Mohamat-Yusuff, F.; Zulkifli, S.Z.; Ismail, A.; Harino, H.; Yusoff, M.K.; Arai, T. Imposex in Thais gradata as a biomarker for TBT contamination on the southern coast of Peninsular Malaysia. Water Air Soil Pollut. 2010, 211, 443–457. [Google Scholar] [CrossRef]
- Sousa, A.C.; Pastorinho, M.R.; Takahashi, S.; Tanabe, S. History on organotin compounds, from snails to humans. Environ. Chem. Lett. 2014, 12, 117–137. [Google Scholar] [CrossRef]
- Kamarudin, N.A.; Zulkifli, S.Z.; Azmai, M.N.A.; Aziz, F.Z.A.; Ismail, A. Herbicide diuron as endocrine disrupting chemicals (EDCs) through histopathalogical analysis in gonads of Javanese medaka (Oryzias javanicus, Bleeker 1854). Animals 2020, 10, 525. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bao, V.W.; Leung, K.M.; Qiu, J.W.; Lam, M.H. Acute toxicities of five commonly used antifouling booster biocides to selected subtropical and cosmopolitan marine species. Mar. Pollut. Bull. 2011, 62, 1147–1151. [Google Scholar] [CrossRef] [PubMed]
- Department of Fisheries. Annual Fisheries Statistics 2017; Department of Fisheries Malaysia, Ministry of Agriculture and Agro-based Industries: Putrajaya, Malaysia, 2018. Available online: www.dof.gov.my (accessed on 12 June 2019).
- Khalil, M.; Yasin, Z.; Hwai, T.S. Reproductive biology of blood cockle Anadara granosa (Bivalvia: Arcidae) in the northern region of the Strait of Malacca. Ocean Sci. J. 2017, 52, 75–89. [Google Scholar] [CrossRef]
- Mochida, K.; Hano, T.; Onduka, T.; Ichihashi, H.; Amano, H.; Ito, M.; Tanaka, H.; Fujii, K. Spatial analysis of 4,5-dichloro-2-n-octyl-4-isothiazolin-3-one (Sea-Nine 211) concentrations and probabilistic risk to marine organisms in Hiroshima Bay, Japan. Environ. Pollut. 2015, 204, 233–240. [Google Scholar] [CrossRef] [PubMed]
- Kim, N.S.; Shim, W.J.; Yim, U.H.; Hong, S.H.; Ha, S.Y.; Han, G.M.; Shin, K.H. Assessment of TBT and organic booster biocide contamination in seawater from coastal areas of South Korea. Mar. Pollut. Bull. 2014, 78, 201–208. [Google Scholar] [CrossRef] [PubMed]
- Sapozhnikova, Y.; Wirth, E.; Schiff, K.; Fulton, M. Antifouling biocides in water and sediments from California marinas. Mar. Pollut. Bull. 2013, 69, 189–194. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Rodríguez, Á.; Sosa-Ferrera, Z.; Santana-del Pino, Á.; Santana-Rodríguez, J.J. Probabilistic risk assessment of common booster biocides in surface waters of the harbours of Gran Canaria (Spain). Mar. Pollut. Bull. 2011, 62, 985–991. [Google Scholar] [CrossRef] [PubMed]
- Jusoff, K. Malaysian mangrove forests and their significance to the coastal marine environment. Pol. J. Environ. Stud. 2013, 22, 979–1005. [Google Scholar]
- Harino, H.; Arifin, Z.; Rumengan, I.F.; Arai, T.; Ohji, M.; Miyazaki, N. Distribution of antifouling biocides and perfluoroalkyl compounds in sediments from selected locations in Indonesian coastal waters. Arch. Environ. Contam. Toxicol. 2012, 63, 13–21. [Google Scholar] [CrossRef] [PubMed]
- Mukhtar, A.; Mohamat-Yusuff, F.; Zulkifli, S.Z.; Harino, H.; Ismail, A.; Inoue, K. Concentration of Organotin and Booster Biocides in Sediments of Seagrass Area from Sungai Pulai Estuary, South of Johor, Malaysia. Environments 2019, 6, 26. [Google Scholar] [CrossRef] [Green Version]
- Hall, L.W., Jr.; Giddings, J.M.; Solomon, K.R.; Balcomb, R. An ecological risk assessment for the use of Irgarol 1051 as an algaecide for antifoulant paints. Crit. Rev. Toxicol. 1999, 29, 367–437. [Google Scholar]
- Thomas, K.V.; Fileman, T.W.; Readman, J.W.; Waldock, M.J. Antifouling paint booster biocides in the UK coastal environment and potential risks of biological effects. Mar. Pollut. Bull. 2001, 42, 677–688. [Google Scholar] [CrossRef]
- Koutsaftis, A.; Aoyama, I. The interactive effects of binary mixtures of three antifouling biocides and three heavy metals against the marine algae Chaetoceros gracilis. Environ. Toxicol. An Int. J. 2006, 21, 432–439. [Google Scholar] [CrossRef]
- Readman, J.W.; Kwong, L.L.W.; Grondin, D.; Bartocci, J.; Villeneuve, J.P.; Mee, L.D. Coastal water contamination from a triazine herbicide used in antifouling paints. Environ. Sci. Technol. 1993, 27, 1940–1942. [Google Scholar] [CrossRef]
- Harino, H.; Midorikawa, S.; Arai, T.; Ohji, M.; Cu, N.D.; Miyazaki, N. Concentrations of booster biocides in sediment and clams from Vietnam. J. Mar. Biol. Assoc. UK 2006, 86, 1163–1170. [Google Scholar] [CrossRef]
- Harino, H.; Ohji, M.; Wattayakorn, G.; Arai, T.; Rungsupa, S.; Miyazaki, N. Occurrence of antifouling biocides in sediment and green mussels from Thailand. Arch. Environ. Contam. Toxicol. 2006, 51, 400–407. [Google Scholar] [CrossRef]
- Tsang, V.W.H.; Lei, N.Y.; Lam, M.H.W. Determination of Irgarol-1051 and its related s-triazine species in coastal sediments and mussel tissues by HPLC–ESI-MS/MS. Mar. Pollut. Bull. 2009, 58, 1462–1471. [Google Scholar] [CrossRef] [PubMed]
- Harino, H.; Arai, T.; Ohji, M.; Ismail, A.B.; Miyazaki, N. Contamination profiles of antifouling biocides in selected coastal regions of Malaysia. Arch. Environ. Contam. Toxicol. 2009, 56, 468–478. [Google Scholar] [CrossRef]
- Balakrishnan, S.; Takeda, K.; Sakugawa, H. Occurrence of Diuron and Irgarol in seawater, sediments and planktons of Seto Inland Sea, Japan. Geochem. J. 2012, 46, 169–177. [Google Scholar] [CrossRef] [Green Version]
- Kaonga, C.C.; Takeda, K.; Sakugawa, H. Antifouling agents and Fenitrothion contamination in seawater, sediment, plankton, fish and selected marine animals from the Seto Inland Sea, Japan. Geochem. J. 2015, 49, 23–37. [Google Scholar] [CrossRef] [Green Version]
- Tolosa, I.; Readman, J.W.; Blaevoet, A.; Ghilini, S.; Bartocci, J.; Horvat, M. Contamination of Mediterranean (Côte d’Azur) coastal waters by organotins and Irgarol 1051 used in antifouling paints. Mar. Pollut. Bull. 1996, 32, 335–341. [Google Scholar] [CrossRef]
- Kim, N.S.; Hong, S.H.; An, J.G.; Shin, K.H.; Shim, W.J. Distribution of butyltins and alternative antifouling biocides in sediments from shipping and shipbuilding areas in South Korea. Mar. Pollut. Bull. 2015, 95, 484–490. [Google Scholar] [CrossRef]
- Kim, U.J.; Lee, I.S.; Choi, M.; Oh, J.E. Assessment of organotin and tin-free antifouling paints contamination in the Korean coastal area. Mar. Pollut. Bull. 2015, 99, 157–165. [Google Scholar]
- Batista-Andrade, J.A.; Caldas, S.S.; Batista, R.M.; Castro, I.B.; Fillmann, G.; Primel, E.G. From TBT to booster biocides: Levels and impacts of antifouling along coastal areas of Panama. Environ. Pollut. 2018, 234, 243–252. [Google Scholar] [CrossRef]
- Ali, H.R.; Arifin, M.M.; Sheikh, M.A.; Shazili, N.A.M.; Bachok, Z. Occurrence and distribution of antifouling biocide Irgarol-1051 in coastal waters of Peninsular Malaysia. Mar. Pollut. Bull. 2013, 70, 253–257. [Google Scholar] [CrossRef]
- Lam, N.H.; Jeong, H.H.; Kang, S.D.; Kim, D.J.; Ju, M.J.; Horiguchi, T.; Cho, H.S. Organotins and new antifouling biocides in water and sediments from three Korean Special Management Sea Areas following ten years of tributyltin regulation: Contamination profiles and risk assessment. Mar. Pollut. Bull. 2017, 121, 302–312. [Google Scholar] [CrossRef]
- Zhou, J.L. Occurrence and persistence of antifouling biocide Irgarol 1051 and its main metabolite in the coastal waters of Southern England. Sci. Total Environ. 2008, 406, 239–246. [Google Scholar] [CrossRef] [PubMed]
- Saleh, A.; Molaei, S.; Fumani, N.S.; Abedi, E. Antifouling paint booster biocides (Irgarol 1051 and diuron) in marinas and ports of Bushehr, Persian Gulf. Mar. Pollut. Bull. 2016, 105, 367–372. [Google Scholar] [CrossRef] [PubMed]
- Cassi, R.; Tolosa, I.; de Mora, S. A survey of antifoulants in sediments from Ports and Marinas along the French Mediterranean coast. Mar. Pollut. Bull. 2008, 56, 1943–1948. [Google Scholar] [CrossRef] [PubMed]
- Sapozhnikova, Y.; Wirth, E.; Schiff, K.; Brown, J.; Fulton, M. Antifouling pesticides in the coastal waters of Southern California. Mar. Pollut. Bull. 2007, 54, 1972–1978. [Google Scholar] [CrossRef]
- United States Environmental Protection Agency (USEPA). Reregistration Eligibility Decision for Diuron; Federal Register: Washington, DC, USA, 2003.
- Moncada, A. DPR Report: Environmental Fate of Diuron. DPR Pesticide Chemistry Database. Environmental Monitoring Branch, Department of Pesticide Regulation. Available online: http://www.cdpr.ca.gov/docs/empm/pubs/fatememo/diuron.pdf (accessed on 20 January 2020).
- Hanapiah, M.; Zulkifli, S.Z.; Shahrun, M.S.; Mohamat-Yusuff, F.; Ismail, A.; Harino, H.; Inoe, K. Concentration of antifoulant herbicides, Diuron in the vicinity of Port Klang, Malaysia. Isu-isu Terkini Penyelid. St. Sains Mar. Malays. 2017, 1, 35–38. [Google Scholar]
- Zhu, B.; Liu, T.; Hu, X.; Wang, G. Developmental toxicity of 3,4-dichloroaniline on rare minnow (Gobiocypris rarus) embryos and larvae. Chemosphere 2013, 90, 1132–1139. [Google Scholar] [CrossRef]
- Xiao, H.; Kuckelkorn, J.; Nüßer, L.K.; Floehr, T.; Hennig, M.P.; Roß-Nickoll, M.; Schäffer, A.; Hollert, H. The metabolite 3,4,3ʹ,4ʹ-tetrachloroazobenzene (TCAB) exerts a higher ecotoxicity than the parent compounds 3,4-dichloroaniline (3,4-DCA) and propanil. Sci. Total Environ. 2016, 551, 304–316. [Google Scholar] [CrossRef]
- Carbajal-Hernández, A.L.; Valerio-García, R.C.; Martínez-Ruíz, E.B.; Jarquín-Díaz, V.H.; Martínez-Jerónimo, F. Maternal-embryonic metabolic and antioxidant response of Chapalichthys pardalis (Teleostei: Goodeidae) induced by exposure to 3,4-dichloroaniline. Environ. Sci. Pollut. Res. 2017, 24, 17534–17546. [Google Scholar] [CrossRef]
- European Commission. Summary Risk Assessment Report 3,4-Dichloroaniline (3,4-DCA); European Commission: Brussels, Belgium, 2006. [Google Scholar]
- Yao, X.F.; Khan, F.; Pandey, R.; Pandey, J.; Mourant, R.G.; Jain, R.K.; Guo, J.; Russell, R.J.; Oakeshott, J.G.; Pandey, G. Degradation of dichloroaniline isomers by a newly isolated strain, Bacillus megaterium IMT21. Microbiology 2011, 157, 721–726. [Google Scholar] [CrossRef] [Green Version]
- Roehrs, R.; Roehrs, M.; Machado, S.L.D.O.; Zanella, R. Biodegradation of herbicide propanil and its subproduct 3,4-dichloroaniline in water. Clean–Soil Air Water 2012, 40, 958–964. [Google Scholar] [CrossRef]
- Li, T.; Deng, X.P.; Wang, J.J.; Zhao, H.; Wang, L.; Qian, K. Biodegradation of 3,4-dichloroaniline by a novel Myroides odoratimimus strain LWD09 with moderate salinity tolerance. Water Air Soil Pollut. 2012, 223, 3271–3279. [Google Scholar] [CrossRef]
- Ellegaard-Jensen, L.; Knudsen, B.E.; Johansen, A.; Albers, C.N.; Aamand, J.; Rosendahl, S. Fungal–bacterial consortia increase diuron degradation in water-unsaturated systems. Sci. Total Environ. 2014, 466, 699–705. [Google Scholar] [CrossRef] [PubMed]
- Castillo, J.M.; Nogales, R.; Romero, E. Biodegradation of 3,4 dichloroaniline by fungal isolated from the preconditioning phase of winery wastes subjected to vermicomposting. J. Hazard. Mater. 2014, 267, 119–127. [Google Scholar] [CrossRef]
- Wang, S.; Poon, K.; Cai, Z. Biodegradation and removal of 3,4-dichloroaniline by Chlorella pyrenoidosa based on liquid chromatography-electrospray ionization-mass spectrometry. Environ. Sci. Pollut. Res. 2013, 20, 552–557. [Google Scholar] [CrossRef] [PubMed]
- Saeed, S.; Al-Naema, N.; Butler, J.D.; Febbo, E.J. Arabian killifish (Aphanius dispar) embryos: A model organism for the risk assessment of the Arabian Gulf coastal waters. Environ. Toxicol Chem. 2015, 34, 2898–2905. [Google Scholar] [CrossRef] [PubMed]
- DeLorenzo, M.E.; Fulton, M.H. Comparative risk assessment of permethrin, chlorothalonil, and diuron to coastal aquatic species. Mar. Pollut. Bull. 2012, 64, 1291–1299. [Google Scholar] [CrossRef]
- Caux, P.Y.; Kent, R.A.; Fan, G.T.; Stephenson, G.L. Environmental fate and effects of chlorothalonil: A Canadian perspective. Crit. Rev. Env. Sci. Technol. 1996, 26, 45–93. [Google Scholar] [CrossRef]
- Davies, P.E.; Cook, L.S.J.; Goenarso, D. Sublethal responses to pesticides of several species of Australian freshwater fish and crustaceans and rainbow trout. Environ. Toxicol. Chem. Int. J. 1994, 13, 1341–1354. [Google Scholar] [CrossRef]
- Mayer, F.L. Acute Toxicity Handbook of Chemicals to Estuarine Organisms; (No. PB-87-188686/XAB; EPA-600/8-87/017); Environmental Protection Agency; Environmental Research Lab.: Gulf Breeze, FL, USA, 1987.
- Sapozhnikova, Y.; Bawardi, O.; Schlenk, D. Pesticides and PCBs in sediments and fish from the Salton Sea, California, USA. Chemosphere 2004, 55, 797–809. [Google Scholar] [CrossRef]
- Van Wezel, A.P.; Van Vlaardingen, P. Environmental risk limits for antifouling substances. Aquat. Toxicol. 2004, 66, 427–444. [Google Scholar] [CrossRef]
- Bakke, T.; Källqvist, T.; Ruus, A.; Breedveld, G.D.; Hylland, K. Development of sediment quality criteria in Norway. J. Soils Sediments 2010, 10, 172–178. [Google Scholar] [CrossRef]
- Crommentuijn, T.; Sijm, D.; De Bruijn, J.; Van Leeuwen, K.; Van de Plassche, E. Maximum permissible and negligible concentrations for some organic substances and pesticides. J. Environ. Manag. 2000, 58, 297–312. [Google Scholar] [CrossRef]
- Lijzen, J.P.A.; Rikken, M.G.J. European Union System for the Evaluation of Substances 2.0 (EUSES 2.0); Background Report; RIVM Rapport 601900005. Available online: https://www.pbl.nl/sites/default/files/downloads/601900005.pdf (accessed on 20 May 2020).
- Azmi, M.Y.; Junidah, R.; Siti Mariam, A.; Safiah, M.Y.; Fatimah, S.; Norimah, A.K.; Poh, B.K.; Kandiah, M.; Zalilah, M.S.; Wan Abdul Manan, W.M.; et al. Body Mass Index (BMI) of adults: Findings of the Malaysian Adult Nutrition Survey (MANS). Malays. J. Nutr. 2009, 15, 97–119. [Google Scholar] [PubMed]
- Food and Agriculture Organization of the United Nations (FAO). Food Balance Sheets by Main Groups of Fish Species and Fish Nutritional Factors—By Selected Countries. 2012. Available online: ftp://ftp.fao.org/FI/CDrom/CD_yearbook_2010/root/food_balance/section3.pdf (accessed on 5 September 2019).
- Muñoz, I.; Bueno, M.J.M.; Agüera, A.; Fernández-Alba, A.R. Environmental and human health risk assessment of organic micro-pollutants occurring in a Spanish marine fish farm. Environ. Pollut. 2010, 158, 1809–1816. [Google Scholar] [CrossRef] [PubMed]
- JECFA-Joint FAO WHO Expert Committee on Food Additives. WHO Food Additives Series: 53, Flumequine. 2004. Available online: http:www.inchem.orgdocumentsjecfajecmonov53je06.htm (accessed on 21 April 2009).
- Ciba Specialty Chemicals Corporation. Ciba IRGAROL 1051 Material Safety Data Sheet; Ciba Additives: Tarrytown, NY, USA, 2005. [Google Scholar]
- Falk-Filipsson, A.; Hanberg, A.; Victorin, K.; Warholm, M.; Wallén, M. Assessment factors—Applications in health risk assessment of chemicals. Environ. Res. 2007, 104, 108–127. [Google Scholar] [CrossRef]
- USEPA. Integrated Risk Information System. Available online: http://www.epa.gov/IRIS/ (accessed on 8 March 2009).
- Directive, W.F. Environmental Quality Standards (EQS) substance data sheet: Tributyltin compounds (TBT-ion). Available online: https://circabc.europa.eu/sd/d/899759c1-af89-4de4-81bf-488c949887c8/30_Tributyltin_EQS (accessed on 5 May 2020).
Location | Site Code | Area Description |
---|---|---|
Bagan Pasir, Perak | BP1 | Fisheries, palm oil plantation |
BP2 | ||
BP3 | ||
BP4 | ||
Sungai Buloh, Selangor | SB1 | Urban, paddy field, fisheries, ecotourism |
SB2 | ||
SB3 | ||
SB4 | ||
SB5 | ||
Kapar, Selangor | KA1 | Industrial, fisheries, palm oil plantation |
KA2 | ||
KA3 | ||
KA4 | ||
KA5 | ||
KA6 | ||
Sungai Ayam, Johor | SA1 | Fisheries, palm oil plantation |
SA2 | ||
SA3 | ||
SA4 | ||
SA5 |
Location | Site Code | Irgarol 1051 | Diuron | 3,4-DCA | Chlorothalonil |
---|---|---|---|---|---|
Bagan Pasir, Perak | BP1 | 6.05 ± 0.11 | 35.32 ± 1.21 | 9.62 ± 6.33 | 18.17 ± 1.98 |
BP2 | 17.77 ± 6.57 | 7.80 ± 0.24 | 10.10 ± 1.54 | 11.74 ± 0.76 | |
BP3 | 13.58 ± 5.47 | 2.41 ± 0.05 | 0.62 ± 0.13 | 13.11 ± 1.52 | |
BP4 | 28.06 ± 7.20 | 1.99 ± 0.25 | 0.67 ± 0.05 | 9.35 ± 1.50 | |
Sungai Buloh, Selangor | SB1 | NS | NS | NS | NS |
SB2 | 69.91 ± 14.54 | 33.75 ± 4.32 | 36.19 ± 3.34 | 11.75 ± 0.41 | |
SB3 | NS | NS | NS | NS | |
SB4 | 84.43 ± 0.97 | 55.59 ± 3.31 | 20.85 ± 3.34 | 19.37 ± 1.26 | |
SB5 | 20.96 ± 6.04 | 9.56 ± 0.41 | 3.09 ± 0.12 | 18.90 ± 0.42 | |
Kapar, Selangor | KA1 | 94.39 ± 1.98 | 37.32 ± 1.05 | 28.65 ± 0.91 | 10.02 ± 2.19 |
KA2 | 97.20 ± 17.39 | 34.63 ± 0.40 | 20.22 ± 4.22 | 26.51 ± 1.00 | |
KA3 | 68.24 ± 1.13 | 26.17 ± 2.11 | 13.27 ± 2.74 | 9.95 ± 1.47 | |
KA4 | 163.97 ± 16.25 | 72.80 ± 1.97 | 17.08 ± 1.83 | 19.25 ± 1.33 | |
KA5 | 83.97 ± 1.03 | 49.57 ± 1.11 | 10.50 ± 1.25 | 14.67 ± 1.03 | |
KA6 | 85.77 ± 3.61 | 21.40 ± 0.08 | 11.54 ± 4.01 | 15.11 ± 0.24 | |
Sungai Ayam, Johor | SA1 | 11.22 ± 1.06 | 13.30 ± 3.67 | 10.24 ± 0.58 | 41.69 ± 3.50 |
SA2 | 10.0 ± 0.62 | 16.59 ± 0.14 | 5.97 ± 1.20 | 58.85 ± 2.66 | |
SA3 | 5.96 ± 0.15 | 3.30 ± 0.64 | 8.38 ± 0.88 | 16.23 ± 3.13 | |
SA4 | 31.93 ± 0.46 | 77.51 ± 6.09 | 68.59 ± 7.5 | 16.41 ± 2.70 | |
SA5 | 49.48 ± 0.45 | 76.41 ± 5.10 | 113.90 ± 9.66 | 15.62 ± 2.66 |
Location | Site Code | Irgarol 1051 | Diuron | DCA | Chlorothalonil |
---|---|---|---|---|---|
Bagan Pasir, Perak | BP1 | 12.08 ± 0.60 | 57.23 ± 1.60 | 1.16 ± 0.05 | 10.00 ± 1.09 |
BP2 | NS | NS | NS | NS | |
BP3 | NS | NS | NS | NS | |
BP4 | 12.50 ± 0.63 | 28.42 ± 0.07 | 12.96 ± 0.26 | 37.73 ± 2.29 | |
Sungai Buloh, Selangor | SB1 | 6.66 ± 0.33 | 172.39 ± 9.11 | 32.10 ± 2.80 | 17.51 ± 2.00 |
SB2 | 10.07 ± 0.50 | 134.65 ± 24.29 | 24.33 ± 1.93 | 2.96 ± 0.20 | |
SB3 | 19.95 ± 0.10 | 181.03 ± 15.33 | 36.90 ± 2.69 | 15.34 ± 0.38 | |
SB4 | 15.19 ± 1.55 | 181.67 ± 11.43 | 33.80 ± 4.00 | 10.17 ± 1.50 | |
SB5 | 5.44 ± 0.27 | 28.69 ± 13.92 | 1.54 ± 0.29 | 8.44 ± 0.77 | |
Kapar, Selangor | KA1 | ND | 72.76 ± 10.17 | 14.53 ± 1.47 | 3.61 ± 1,03 |
KA2 | 83.22 ± 4.16 | 82.06 ± 6.17 | 15.70 ± 4.34 | 1.85 ± 0.81 | |
KA3 | ND | 45.35 ± 3.88 | 8.19 ± 0.86 | 11.30 ± 1.15 | |
KA4 | ND | 48.13 ± 1.04 | 11.36 ± 1.64 | 13.65 ± 0.89 | |
KA5 | ND | 58.29 ± 1.20 | 15.41 ± 0.13 | 11.30 ± 2.29 | |
KA6 | 52.70 ± 3.65 | 39.09 ± 1.37 | 8.54 ± 0.96 | 3.44 ± 1.34 | |
Sungai Ayam, Johor | SA1 | 13.29 ± 0.66 | 61.87 ± 1.56 | 17.87 ± 1.11 | 2.12 ± 0.19 |
SA2 | 9.75 ± 0.48 | 48.83 ± 6.63 | 9.37 ± 0.91 | 2.68 ± 0.26 | |
SA3 | 15.68 ± 0.78 | 88.93 ± 1.81 | 18.40 ± 3.08 | 4.34 ± 0.50 | |
SA4 | 12.65 ± 0.83 | 12.72 ± 1.66 | 25.77 ± 1.50 | 25.30 ± 0.51 | |
SA5 | 0.93 ± 0.05 | 79.47 ± 2.04 | 15.92 ± 0.80 | 22.16 ± 0.67 |
Location | Water Concentration (µg/L) | Sediment Concentration (µg/kg) | Biological Sample Concentration (µg/kg) | References |
---|---|---|---|---|
Malaysia coastal area | <0.02–14 | [23] | ||
Sungai Pulai, Johor | <0.1–1.4 | [15] | ||
Thailand coastal area | 0.03–3.2 | <0.76 (green mussel) | [21] | |
Indonesia coastal area | 0.1–76 | [14] | ||
Vietnam coastal area | 0.05–4 | 0.05 (clam) | [20] | |
Peninsular Malaysia | 5–2121 | [30] | ||
Major bays and fishing ports, South Korea | 1.0–11.5 | [27] | ||
Major harbors, South Korea | 1.1–3.5 | [27] | ||
Jinhae Bay and harbors, Korea | 0.2–14.1 | [10] | ||
Korean special management sea areas | <0.12–2.05 | <0.02–7.79 | [31] | |
Busan Bay, Korea | 1.79–73.5 | [28] | ||
Ulsan Bay, Korea | ND–38.8 | [28] | ||
Southern England | <3.1–89 | <1.7–45 | [32] | |
Hong Kong waters | 0.22–21.26 | 0.4–1.2 (green mussel) | [22] | |
California marinas | 2–254 | <0.3–8.9 | [11] | |
Iran, Bushehr | <1.0–63.4 | [33] | ||
French Mediterranean coast | 43–689 | [34] | ||
Panama coastal area | <0.08–2.8 | [29] | ||
San Diego area, California, USA | 1–304 | [35] |
Location | Site Code | Irgarol 1051 | Diuron |
---|---|---|---|
Bagan Pasir, Perak | BP1 | 4.29 × 10−7 | 2.28 × 10−6 |
BP2 | 1.26 × 10−6 | 5.03 × 10−7 | |
BP3 | 9.64 × 10−7 | 1.55 × 10−7 | |
BP4 | 1.99 × 10−6 | 1.28 × 10−7 | |
Sungai Buloh, Selangor | SB2 | 4.96 × 10−6 | 2.18 × 10−6 |
SB4 | 5.99 × 10−6 | 3.59 × 10−6 | |
SB5 | 1.49 × 10−6 | 6.17 × 10−7 | |
Kapar, Selangor | KA1 | 6.70 × 10−6 | 2.41 × 10−6 |
KA2 | 6.90 × 10−6 | 2.23 × 10−6 | |
KA3 | 4.84 × 10−6 | 1.69 × 10−6 | |
KA4 | 1.16 × 10−5 | 4.70 × 10−6 | |
KA5 | 5.96 × 10−6 | 3.20 × 10−6 | |
KA6 | 6.09 × 10−6 | 1.38 × 10−6 | |
Sungai Ayam, Johor | SA1 | 7.96 × 10−7 | 8.58 × 10−7 |
SA2 | 7.10 × 10−7 | 1.07 × 10−6 | |
SA3 | 4.23 × 10−7 | 2.13 × 10−7 | |
SA4 | 2.27 × 10−6 | 5.00 × 10−6 | |
SA5 | 3.51 × 10−6 | 4.93 × 10−6 |
Compound | Toxicity in Mammals/Birds | Toxicity in Humans | ||
---|---|---|---|---|
PNECoral (mg/kgfood) | Source | Human Reference Dose (HRD) (mg/kg/d) | Source | |
Irgarol 1051 | 2.2 | Based on NOEL in rat (90 days feeding study) of 9.7 mg/kgbw/d (JECFA, [62]), a conversion factor to NOEC of 20 kgbw d/kgfood for rat (TGDRA) and an assessment factor to PNECoral of 90 (TGDRA) | 0.097 | Based on a NOEL of 9.7 mg/kgbw from a 90-days subchronic oral toxicity in Rats (Ciba Specialty Chemicals Corporation, [63]) and assessment factor of 100 [64] |
Diuron | 0.83 | Base on a NOEC from a 2-years dog feeding study (USEPA, [65]) and an assessment factor of 30 (TGDRA) | 0.007 | ADI (EC, [66]) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mukhtar, A.; Zulkifli, S.Z.; Mohamat-Yusuff, F.; Harino, H.; Azmai, M.N.A.; Ismail, A. Booster Biocides Levels in the Major Blood Cockle (Tegillarca granosa L., 1758) Cultivation Areas along the Coastal Area of Peninsular Malaysia. Water 2020, 12, 1616. https://doi.org/10.3390/w12061616
Mukhtar A, Zulkifli SZ, Mohamat-Yusuff F, Harino H, Azmai MNA, Ismail A. Booster Biocides Levels in the Major Blood Cockle (Tegillarca granosa L., 1758) Cultivation Areas along the Coastal Area of Peninsular Malaysia. Water. 2020; 12(6):1616. https://doi.org/10.3390/w12061616
Chicago/Turabian StyleMukhtar, Aqilah, Syaizwan Zahmir Zulkifli, Ferdaus Mohamat-Yusuff, Hiroya Harino, Mohammad Noor Amal Azmai, and Ahmad Ismail. 2020. "Booster Biocides Levels in the Major Blood Cockle (Tegillarca granosa L., 1758) Cultivation Areas along the Coastal Area of Peninsular Malaysia" Water 12, no. 6: 1616. https://doi.org/10.3390/w12061616
APA StyleMukhtar, A., Zulkifli, S. Z., Mohamat-Yusuff, F., Harino, H., Azmai, M. N. A., & Ismail, A. (2020). Booster Biocides Levels in the Major Blood Cockle (Tegillarca granosa L., 1758) Cultivation Areas along the Coastal Area of Peninsular Malaysia. Water, 12(6), 1616. https://doi.org/10.3390/w12061616