Drought Risk Analysis in the Eastern Cape Province of South Africa: The Copula Lens
Abstract
:1. Introduction
2. Study Area
3. Materials and Methods
3.1. Materials
3.2. Methods
3.2.1. Drought Definition and Characterization Using the Standardized Precipitation Index
- (a)
- Define drought events/episodes as periods when the SPI values (SPI-6/-12) are negative (inclusive of zero) as reported in [42].
- (b)
- Define drought epoch (DE) as the period when SPI values (SPI-6/-12) are consecutively zero and negative for six months. If during the six months, one month with positive SPI values occurs between the second and fourth month, the epochs before and after this intermittent occurrence of positive SPI value are combined to form a DE.
- (c)
- Drought duration (DD) is computed as the length of DE defined in (b), while drought severity (DS) is then computed as the integral of the SPI curve during the DE.
3.2.2. Multivariate Drought Analysis Using the Copulas
3.2.3. Risk Analysis Framework-Based Return Periods
4. Results
4.1. Drought Characteristics
4.2. Characteristics of Marginal Distributions
4.3. Copula Joint Probability Distributions
4.4. Risk Assessment Based on the Join Drought Return Periods
5. Discussion and Conclusions
- (a)
- Five to eight drought episodes (with an average of 60–80% likelihood of occurrence) were experienced in the study area over the last five decades.
- (b)
- The Eastern Cape province is more likely to experience maxima drought conditions that last more than 12 months while drought conditions lasting over 24 months have a 33% likelihood of occurrence.
- (c)
- Five copulas families, from the Archimedean and Elliptical families, are duly suited to represent the multivariate characteristics of drought conditions in the study area. The spatial signature of the return periods from the five copulas was found to be comparable. These copula families are therefore ideal for drought risk quantification in the study area.
- (d)
- The conjunctive/cooperative multivariate drought risk (copula) probability index results illustrate that the area exhibits a noticeable north-west to south-east gradient with Buffalo City, Tambo and Alfred Zoo regions determined to have higher/lower risks.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Glickman, T.S. Glossary of Meteorology; American Meteorological Society: Boston, MA, USA, 2000; p. 855. [Google Scholar]
- Pereira, L.S.; Cordery, I.; Iacovides, I. Coping with water scarcity. In Addressing the Challenges; Springer Science and Business Media: Dordrecht, The Netherlands, 2009; p. 382. [Google Scholar]
- Wilhite, D.A.; Glantz, M.H. Understanding the drought phenomenon: The role of definitions. Water Int. 1985, 10, 111–120. [Google Scholar] [CrossRef] [Green Version]
- Vicente-Serrano, S.M.; Begueria, S.; Eklundh, L.; Gimeno, G.; Weston, D.; Kenawy, A.E.; Lopez-Moreno, J.I.; Nieto, R.; Ayenew, T.; Konte, D.; et al. Challenges for drought mitigation in Africa: The potential use of geospatial data and drought information systems. Appl. Geogr. 2012, 34, 471–486. [Google Scholar] [CrossRef] [Green Version]
- Wilhite, D.A.; Svoboda, M.D.; Hayes, M.J. Understanding the complex impacts of drought: A key to enhancing drought mitigation and preparedness. Water Resour. Manag. 2007, 21, 763–774. [Google Scholar] [CrossRef] [Green Version]
- Ahmadalipour, A.; Moradkhani, H. Multi–dimensional assessment of drought vulnerability in Africa: 1960–2100. Sci. Total Environ. 2018, 644, 520–535. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Yu, H.Q.; Sun, P.; Singh, V.P.; Shi, P.J. Multisource data based agricultural drought monitoring and agricultural loss in China. Glob. Planet. Chang. 2019, 172, 298–306. [Google Scholar] [CrossRef]
- Wilhite, D.A. Drought as a Natural Hazard: Concepts and Definitions (Chapter 1, pp. 3–18). In Drought: A Global Assessment (Volume 1); Wilhite, D.A., Ed.; Routledge Publishers: London, UK, 2000. [Google Scholar]
- McKee, T.B.; Doesken, N.J.; Kleist, J. The relationship of drought frequency and duration to time scales. In Proceedings of the Preprints, 8th Conference on Applied Climatology, Anaheim, CA, USA, 17–22 January 1993; pp. 179–184. [Google Scholar]
- Vicente-Serrano, S.M.; López-Moreno, J.; Beguería, S.; Lorenzo-Lacruz, J.; Azorin-Molina, C.; Morán-Tejeda, E. Accurate computation of a streamflow drought index. J. Hydrol. Eng. 2012, 17, 318–332. [Google Scholar] [CrossRef] [Green Version]
- Vicente-Serrano, S.M.; Begueria, S.; Lopez-Moreno, J.I. A multiscalar drought index sensitive to global warming: The standardized precipitation evapotranspiration index. J. Clim. 2010, 23, 1696–1718. [Google Scholar] [CrossRef] [Green Version]
- Palmer, W.C. Meteorological Drought; Research Paper No. 45; U.S. Department of Commerce Weather Bureau: Washington, DC, USA, 1965.
- Botai, C.M.; Botai, J.O.; Dlamini, L.; Zwane, N.; Phaduli, E. Characteristics of Droughts in South Africa: A Case Study of Free State and North West Provinces. Water 2016, 8, 439. [Google Scholar] [CrossRef]
- Botai, C.M.; Botai, J.O.; de Wit, J.C.; Ncongwane, K.P.; Adeola, A.M. Drought characteristics over the Western Cape Province, South Africa. Water 2017, 9, 876. [Google Scholar] [CrossRef] [Green Version]
- Botai, C.M.; Botai, J.O.; Adeola, A.M. Spatial distribution of temporal precipitation contrasts in South Africa. S. Afr. J. Sci. 2018, 114. [Google Scholar] [CrossRef]
- Rouault, M.; Richard, Y. Intensity and spatial extent of drought in southern Africa. Geophys. Res. Lett. 2005, 32, 1–4. [Google Scholar] [CrossRef]
- Mondol, M.A.; Das, S.C.; Islam, M.N. Application of standardized precipitation index to assess meteorological drought in Bangladesh. J. Disaster Risk Stud. 2016, 8, 280. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mondol, M.A.; Ara, I.; Das, S.C. Meteorological Drought Index Mapping in Bangladesh Using Standardized Precipitation Index during 1981–2010. In Advances in Meteorology; Hindawi Publishing Corporation: Cairo, Egypt, 2017. [Google Scholar]
- Malakiya, A.D.; Suryanarayana, T.M.V. Assessment of Drought Using Standardized Precipitation Index (SPI) and Reconnaissance Drought Index (RDI): A Case Study of Amreli. IJSR 2016, 5, 1995–2002. [Google Scholar]
- Zhou, H.; Liu, Y. SPI Based Meteorological Drought Assessment over a Humid Basin: Effects of Processing Schemes. Water 2016, 8, 373. [Google Scholar] [CrossRef] [Green Version]
- Miah, M.G.; Abdullah, H.M.; Jeong, C. Exploring standardized precipitation evapotranspiration index for drought assessment in Bangladesh. Environ. Monit. Assess. 2017, 189, 547. [Google Scholar] [CrossRef] [PubMed]
- Tirivarombo, S.; Osupile, D.; Eliasson, P. Drought monitoring and analysis: Standardised Precipitation Evapotranspiration Index (SPEI) and Standardised Precipitation Index (SPI). Phys. Chem. Earth 2018, 106, 1–10. [Google Scholar] [CrossRef]
- Archer, E.; Landman, W.; Malherbe, J.; Tadross, M.; Pretorious, S. South Africa’s winter rainfall region drought: A region in transition? Clim. Risk Manag. 2019, 25, 100188. [Google Scholar] [CrossRef]
- Mackellar, N.C.; Hewitson, B.C.; Tadross, M.A. Namaqualand’s climate: Recent historical changes and future scenarios. J. Arid Environ. 2007, 70, 604–614. [Google Scholar] [CrossRef]
- Shongwe, M.; Van Oldenborgh, G.J.; Hurk, B.; De Boer, B.; Coelho, C.; Aalst, M. Projected Changes in Mean and Extreme Precipitation in Africa under Global Warming. Part I: Southern Africa. J. Clim. 2009, 22. [Google Scholar] [CrossRef]
- Du Plessis, J.A.; Schloms, B. An investigation into the evidence of seasonal rainfall patterns shifts in the Western Cape, South Africa. J. S. Afr. Inst. Civ. Eng. 2017, 59, 47–55. [Google Scholar] [CrossRef] [Green Version]
- Shiau, J.T. Fitting drought duration and severity with two-dimensional copulas. Water Resour. Manag. 2006, 20, 795–815. [Google Scholar] [CrossRef]
- Kao, S.C.; Govindaraju, R.S. A copula-based joint deficit index for droughts. J. Hydrol. 2010, 380, 121–134. [Google Scholar] [CrossRef]
- Shiau, J.T.; Feng, S.; Nadarajah, S. Assessment of hydrological droughts for the Yellow River, China, using copulas. Hydrol. Process. 2007, 21, 2157–2163. [Google Scholar] [CrossRef]
- Shiau, J.T.; Modarres, R. Copula-based drought severity-duration-frequency analysis in Iran. Meteorol. Appl. 2009, 16, 481–489. [Google Scholar] [CrossRef]
- Wong, G.; Lambert, M.F.; Leonard, M.; Metcalfe, A.V. Drought analysis using trivariate copulas conditional on climate states. J. Hydrol. Eng. 2010, 15, 129–141. [Google Scholar] [CrossRef]
- Madadgar, S.; Moradkhani, H. Drought analysis under climate change using copula. J. Hydrol. Eng. 2013, 18, 746–759. [Google Scholar] [CrossRef]
- Lee, T.; Modarres, R.; Quarda, T. Data-based analysis of bivariate copula tail dependence for drought duration and severity. Hydrol. Process. 2013, 27, 1454–1463. [Google Scholar] [CrossRef]
- Chen, L.; Singh, V.; Guo, S.; Mishra, A.; Guo, J. Drought Analysis Using Copulas. J. Hydrol. Eng. 2013, 18, 797–808. [Google Scholar] [CrossRef]
- Hoffman, M.T.; Carrick, P.J.; Gillson, L.; West, A.G. Drought, climate change and vegetation response in the succulent karoo, South Africa. S. Afr. J. Sci. 2009, 105, 54–60. [Google Scholar] [CrossRef]
- Adisa, O.M.; Botai, J.O.; Adeola, A.M.; Botai, C.M.; Hassen, A.; Darkey, D.; Tesfamariam, E.; Adisa, A.T.; Adisa, A.F. Analysis of drought conditions over major maize producing provinces of South Africa. J. Agric. Meteorol. 2019. [Google Scholar] [CrossRef] [Green Version]
- Rouault, M.; Richard, Y. Intensity and spatial extension of drought in South Africa at different time scales. Water SA 2003, 4, 489–500. [Google Scholar] [CrossRef] [Green Version]
- Kruger, A.C.; Nxumalo, M.P. Historical rainfall trends in South Africa: 1921–2015. Water SA 2017, 43, 285–297. [Google Scholar] [CrossRef] [Green Version]
- Thom, H.C.S. A Note on the Gamma Distribution. Mon. Weather Rev. 1958, 86, 117–132. [Google Scholar] [CrossRef]
- Yevjevich, V. An Objective Approach to Definitions and Investigations of Continental Hydrologic Droughts; Hydrology Paper 23; Colorado State University: Fort Collins, CO, USA, 1967; p. 18. [Google Scholar]
- Mesbahzadeh, T.; Mirakbari, M.; Saravi, M.M.; Sardoo, F.S.; Miglietta, M.M. Meteorological drought analysis using copula theory and drought indicators under climate change scenarios (RCP). Meteorol. Appl. 2020, 27, e1856. [Google Scholar] [CrossRef]
- McKee, T.B.; Doesken, N.J.; Kleist, J. Drought monitoring with multiple time scales. In Proceedings of the Ninth Conference on Applied Climatology, Dallas, TX, USA, 15–20 January 1995; pp. 233–236. [Google Scholar]
- Sadegh, M.; Ragno, E.; AghaKouchak, A. Multivariate Copula Analysis Toolbox (MvCAT): Describing dependence and underlying uncertainty using a Bayesian framework. Water Resour. Res. 2017, 53, 5166–5183. [Google Scholar] [CrossRef]
- Li, C.; Singh, V.P.; Mishra, A.K. A bivariate mixed distribution with a heavy-tailed component and its application to single-site daily rainfall simulation. Water Resour. Res. 2013, 49, 767–789. [Google Scholar] [CrossRef] [Green Version]
- Clayton, D.G. A model for association in bivariate life tables and its application in epidemiological studies of familial tendency in chronic disease incidence. Biometrika 1978, 65, 141–151. [Google Scholar] [CrossRef]
- Huynh, V.N.; Kreinovich, V.; Sriboonchitta, S. Modeling Dependence in Econometrics; Springer: New York, NY, USA, 1996. [Google Scholar]
- Durrleman, V.; Nikeghbali, A.; Roncalli, T. A Note about the Conjecture on Spearman’s rho and Kendall’s tau. SSRN Electron. J. 2000. [Google Scholar] [CrossRef] [Green Version]
- Genest, C.; Favre, A.C. Everything you always wanted to know about copula modeling but were afraid to ask. J. Hydrol. Eng. 2007, 12, 347–368. [Google Scholar] [CrossRef]
- Ekanayake, R.; Perera, K. Analysis of Drought Severity and Duration Using Copulas in Anuradhapura, Sri Lanka. Br. J. Environ. Clim. Chang. 2014, 4, 312–327. [Google Scholar] [CrossRef]
- Mulenga, H.M.; Rouault, M.; Reason, C.J.C. Dry summers over north-eastern South Africa and associated circulation anomalies. Clim. Res. 2003, 25, 29–41. [Google Scholar] [CrossRef]
- Reason, C.J.C.; Phaladi, R.F. Evolution of the 2002–2004 drought over northern South Africa and potential forcing mechanisms. S. Afr. J. Sci. 2005, 101, 544–552. [Google Scholar]
- Rashid, M.M.; Beecham, S. Characterization of meteorological droughts across South Australia. Meteorol. Appl. 2019. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Zhang, Q.; Yao, Y. Drought vulnerability assessment for maize in the semiarid region of northwestern China. Theor. Appl. Climatol. 2020, 140, 1207–1220. [Google Scholar] [CrossRef]
Name | Mathematical Description | Parameter Range | References |
---|---|---|---|
Gaussian | [44] | ||
Clayton | max | [45] | |
Frank | [44] | ||
Gumbel | [44] | ||
Joe | [44] | ||
Galambos | [46] | ||
Cubic | [47] | ||
BB1 | [48] | ||
BB5 | , | [48] | |
Tawn | , | [46] |
District No. | Fitted Distribution | Correlation Coefficient | Significant at 5%? | ||
---|---|---|---|---|---|
Duration | Severity | Kendall Rank | Spearman’s Rank-Order | ||
10 | Generalized Pareto | Rayleigh | 0.566 | 0.745 | Yes |
11 | Weibull | Generalized Pareto | 0.563 | 0.743 | -do- 1 |
12 | Generalized Pareto | Rayleigh | 0.514 | 0.667 | -do- |
13 | Logistic | Loglogistic | 0.381 | 0.489 | -do- |
17 | Rician | Rayleigh | 0.525 | 0.707 | -do- |
20 | Weibull | Generalized Pareto | 0.394 | 0.539 | -do- |
21 | Nakagami | -do- | 0.540 | 0.706 | -do- |
22 | Loglogistic | Inverse Gaussian | 0.524 | 0.678 | -do- |
23 | Generalized Pareto | Nakagami | 0.509 | 0.668 | -do- |
24 | Gamma | Weibull | 0.278 | 0.364 | -do- |
27 | Generalized Pareto | Birnbaumsaunders | 0.570 | 0.734 | -do- |
28 | Normal | Logistic | 0.539 | 0.688 | -do- |
29 | -do- | -do- | 0.539 | 0.688 | -do- |
39 | Generalized Pareto | Weibull | 0.418 | 0.532 | -do- |
40 | Birnbaumsaunders | Gamma | 0.499 | 0.640 | -do- |
41 | Gamma | Birnbaumsaunders | 0.510 | 0.653 | -do- |
42 | Birnbaumsaunders | Inverse Gaussian | 0.558 | 0.718 | -do- |
43 | Rician | Generalized Pareto | 0.351 | 0.463 | -do- |
55 | Loglogistic | Inverse Gaussian | 0.519 | 0.643 | -do- |
56 | Gamma | Generalized Pareto | 0.498 | 0.645 | -do- |
57 | Generalized Pareto | Weibull | 0.602 | 0.737 | -do- |
58 | Gamma | Nakagami | 0.441 | 0.587 | -do- |
District No. | Fitted Distribution | Correlation Coefficient | Significant at 5%? | ||
---|---|---|---|---|---|
Duration | Severity | Kendall Rank | Spearman’s Rank | ||
10 | Generalized Pareto | Rayleigh | 0.512 | 0.661 | Yes |
11 | -do- | Generalized Pareto | 0.671 | 0.813 | -do- |
12 | -do- | -do- | 0.674 | 0.831 | -do- |
13 | -do- | -do- | 0.606 | 0.770 | -do- |
17 | -do- | -do- | 0.581 | 0.759 | -do- |
20 | -do- | Birnbaumsaunders | 0.442 | 0.577 | -do- |
21 | -do- | Inverse Gaussian | 0.576 | 0.736 | -do- |
22 | -do- | Generalized Pareto | 0.551 | 0.704 | -do- |
23 | Rician | -do- | 0.473 | 0.629 | -do- |
24 | Generalized Pareto | Gamma | 0.151 | 0.199 | No |
27 | -do- | -do- | 0.151 | 0.199 | -do- |
28 | -do- | Generalized Pareto | 0.634 | 0.782 | Yes |
29 | Loglogistic | Weibull | 0.418 | 0.542 | -do- |
39 | Generalized Pareto | Generalized Pareto | 0.539 | 0.685 | -do- |
40 | -do- | Gamma | 0.507 | 0.693 | -do- |
41 | -do- | Rayleigh | 0.492 | 0.644 | -do- |
42 | Rician | Nakagami | 0.627 | 0.783 | -do- |
43 | Gamma | Generalized Pareto | 0.403 | 0.500 | -do- |
55 | Weibull | -do- | 0.652 | 0.801 | -do- |
56 | Generalized Pareto | Gamma | 0.495 | 0.635 | -do- |
57 | -do- | Extreme value | 0.619 | 0.790 | -do- |
58 | Rician | Inverse Gaussian | 0.334 | 0.409 | -do- |
Rainfall Dist. No. | SPI-6 | SPI-12 | ||||||
---|---|---|---|---|---|---|---|---|
Tawn | BB1 | Tawn | Joe | |||||
RMSE | RMSE | RMSE | RMSE | |||||
10 | 0.252 | 0.883 | 0.214 | 2.282 | 0.301 | 0.999 | 0.298 | 4.821 |
11 | 0.329 | 0.759 | 0.288 | 3.255 | 0.331 | 0.671 | 0.356 | 4.390 |
12 | 0.273 | 0.773 | 0.278 | 0.207 | 0.291 | 0.997 | 0.280 | 6.620 |
13 | 0.375 | 0.758 | 0.381 | 0.213 | 0.515 | 0.942 | 0.498 | 6.228 |
17 | 0.298 | 0.761 | 0.313 | 0.056 | 0.331 | 0.997 | 0.325 | 13.730 |
20 | 0.374 | 0.779 | 0.352 | 3.473 | 0.399 | 0.746 | 0.398 | 5.287 |
21 | 0.358 | 1.000 | 0.348 | 9.936 | 0.377 | 0.998 | 0.358 | 7.129 |
22 | 0.438 | 0.834 | 0.450 | 0.000 | 0.287 | 0.772 | 0.295 | 5.008 |
23 | 0.343 | 0.816 | 0.350 | 0.010 | 0.324 | 0.766 | 0.359 | 6.752 |
24 | 0.393 | 0.486 | 0.476 | 0.006 | 0.817 | 0.486 | 0.832 | 2.688 |
27 | 0.676 | 0.991 | 0.675 | 0.000 | 0.817 | 0.505 | 0.832 | 2.680 |
28 | 0.345 | 0.862 | 0.354 | 0.000 | 0.360 | 0.919 | 0.360 | 9.953 |
29 | 0.345 | 0.863 | 0.354 | 0.000 | 0.449 | 0.787 | 0.458 | 6.559 |
39 | 0.697 | 0.719 | 0.715 | 0.000 | 0.628 | 0.994 | 0.626 | 17.762 |
40 | 0.364 | 0.903 | 0.366 | 3.433 | 0.420 | 0.956 | 0.385 | 0.000 |
41 | 0.321 | 0.802 | 0.321 | 0.263 | 0.341 | 0.879 | 0.334 | 3.296 |
42 | 0.331 | 0.906 | 0.332 | 0.000 | 0.309 | 0.805 | 0.323 | 5.926 |
43 | 0.386 | 0.763 | 0.376 | 1.759 | 0.386 | 0.871 | 0.410 | 6.529 |
55 | 0.308 | 0.826 | 0.323 | 0.018 | 0.261 | 0.999 | 0.269 | 26.656 |
56 | 0.313 | 0.818 | 0.310 | 0.908 | 0.273 | 0.843 | 0.300 | 4.126 |
57 | 0.306 | 0.849 | 0.297 | 2.982 | 0.407 | 0.852 | 0.422 | 11.982 |
58 | 0.356 | 0.712 | 0.352 | 1.786 | 0.293 | 0.686 | 0.327 | 4.791 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Botai, C.M.; Botai, J.O.; Adeola, A.M.; de Wit, J.P.; Ncongwane, K.P.; Zwane, N.N. Drought Risk Analysis in the Eastern Cape Province of South Africa: The Copula Lens. Water 2020, 12, 1938. https://doi.org/10.3390/w12071938
Botai CM, Botai JO, Adeola AM, de Wit JP, Ncongwane KP, Zwane NN. Drought Risk Analysis in the Eastern Cape Province of South Africa: The Copula Lens. Water. 2020; 12(7):1938. https://doi.org/10.3390/w12071938
Chicago/Turabian StyleBotai, Christina M., Joel O. Botai, Abiodun M. Adeola, Jaco P. de Wit, Katlego P. Ncongwane, and Nosipho N. Zwane. 2020. "Drought Risk Analysis in the Eastern Cape Province of South Africa: The Copula Lens" Water 12, no. 7: 1938. https://doi.org/10.3390/w12071938
APA StyleBotai, C. M., Botai, J. O., Adeola, A. M., de Wit, J. P., Ncongwane, K. P., & Zwane, N. N. (2020). Drought Risk Analysis in the Eastern Cape Province of South Africa: The Copula Lens. Water, 12(7), 1938. https://doi.org/10.3390/w12071938