Insights onto Hydrologic and Hydro-Chemical Processes of Riparian Groundwater Using Environmental Tracers in the Highly Disturbed Shaying River Basin, China
Abstract
:1. Introduction
2. Study Area
3. Materials and Methods
3.1. Field Sampling and Sample Preparetion
3.2. In-Situ Measurements and Lab Analysis
3.3. Methods
3.3.1. Two Component Mixing Model
3.3.2. 222Rn Mass-Balance Model
4. Results
4.1. Seasonal-Temporal Variations of Hydro-Chemical Characteristics
4.1.1. Chemical Composition
4.1.2. Nitrogen Species
4.2. Seasonal-Temporal Variations of Isotopic Characteristics
4.2.1. 2H and 18O
4.2.2. 222Rn
5. Discussion
5.1. Hydrologic Process of Riparian Groundwater
5.2. Hydro-Chemical Process of Riparian Groundwater
5.2.1. Natural Factors
5.2.2. Anthropogenic Factors
6. Conclusions
- In a combination with hydro-chemical and isotopic parameters, we identified river losing zones and gaining zones in the study area. River losing zones were along the upstream of Jialu River (between Zhengzhou and Kaifeng) and the downstream of the Ying River (Y2-Y4). River gaining zones were distributed at Xihua (J8), Zhoukou (Y1), Luohe (S2), and Shenqiu (SY2), and the fraction of groundwater was 15.37%, 72.14%, 4.58–8.37%, and 26.02–72% in April while 23.23%, 94.26%, 30.77–32.51%, and 31.18–65.36% in August, respectively. The mixing extent with groundwater was greater in wet seasons than in dry seasons under the influence of sluice. Based on the results of 222Rn bass balance, the flux of river recharge is 3.27 × 10−4 m3/(s·m) at 2 km above Zhoukou sluice, and groundwater discharge is 3.50 × 10−3 m3/(s·m) at 3 km above Shenqiu sluice.
- The cation exchange, as well as the dissolution/precipitation of aquifer minerals (including calcite, dolomite, gypsum, and halite), were responsible for geochemical processes in riparian groundwater. Additionally, anthropogenic activities such as untreated sewage discharge and fertilizer usage also had striking effects on groundwater and surface water hydrochemistry.
- Nitrogen pollution in riparian groundwater was severe (NO3-N in 40% of the samples (N = 61) exceeds 10 mg/L). Point pollution (domestic and industrial effluents) was the primary nitrate source in the downstream of Jialu River. In contrast, non-point pollution (chemical fertilizer) was the dominant nitrate source at the Shenqiu county of Shaying River. Our results suggest nitrate from riparian groundwater can deteriorate river quality at the lower reaches of the Jialu River and Shenqiu county of Shaying River through feeding river, which could be more severe during the wet seasons.
- Furthermore, this paper could provide more helpful information for comprehensively managing water resources and effectively controlling water pollution in the SRB. Local governments could take effective policies, such as reduce the industrial discharge and agricultural nitrogen fertilizer in the nitrogen high-risk areas to control the industrial and agricultural contamination of the water environment.
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Winter, T.C.; Harvey, J.W.; Franke, O.L.; Alley, W.M. Groundwater and Surface Water: A Single Resource; U.S. Geological Survey: Reston, VA, USA, 1998; Volume 1139.
- Vilmin, L.; Mogollon, J.M.; Beusen, A.H.W.; Bouwman, A.F. Forms and subannual variability of nitrogen and phosphorus loading to global river networks over the 20th century. Glob. Planet. Chang. 2018, 163, 67–85. [Google Scholar] [CrossRef]
- Pai, H.; Villamizar, S.R.; Harmon, T.C. Synoptic Sampling to Determine Distributed Groundwater-Surface Water Nitrate Loading and Removal Potential Along a Lowland River. Water Resour. Res. 2017, 53, 9479–9495. [Google Scholar] [CrossRef]
- Zhang, P.Y.; Lee, J.; Kang, G.H.; Li, Y.Y.; Yang, D.; Pang, B.; Zhang, Y. Disparity of nitrate and nitrite in vivo in cancer villages as compared to other areas in Huai River Basin, China. Sci. Total Environ. 2017, 612, 966–974. [Google Scholar] [CrossRef]
- Howarth, R.W.; Marino, R. Nitrogen as the limiting nutrient for eutrophication in coastal marine ecosystems: Evolving views over three decades. Limnol. Oceanogr. 2006, 51, 364–376. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Q.Q.; Sun, J.C.; Liu, J.T.; Huang, G.X.; Lu, C.; Zhang, Y.X. Driving mechanism and sources of groundwater nitrate contamination in the rapidly urbanized region of south China. J. Contam. Hydrol. 2015, 182, 221–230. [Google Scholar] [CrossRef] [PubMed]
- Wachniew, P. Environmental tracers as a tool in groundwater vulnerability assessment. Acque Sotterranee 2015, 4. [Google Scholar] [CrossRef]
- Cook, P.G. Estimating groundwater discharge to rivers from river chemistry surveys. Hydrol. Process. 2012, 27, 1–14. [Google Scholar] [CrossRef]
- Kaandorp, V.P.; Doornenbal, P.J.; Kooi, H.; Peter Broers, H.; de Louw, P.G.B. Temperature buffering by groundwater in ecologically valuable lowland streams under current and future climate conditions. J. Hydrol. 2019, 3, 10031. [Google Scholar] [CrossRef]
- Kurtz, W.; Franssen, H.-J.H.; Kaiser, H.P.; Vereecken, H. Joint assimilation of piezometric heads and groundwater temperatures for improved modeling of river-aquifer interactions. Water Resour. Res. 2014, 50, 1665–1688. [Google Scholar] [CrossRef] [Green Version]
- Neupane, R.P.; Mehan, S.; Kumar, S. Use of geochemical tracers for estimating groundwater influxes to the Big Sioux River, eastern South Dakota, USA. Hydrogeol. J. 2017, 25, 1647–1660. [Google Scholar] [CrossRef]
- Qin, D.J.; Zhao, Z.F.; Guo, Y.; Liu, W.C.; Haji, M.; Wang, X.H.; Xin, B.D.; Li, Y.; Yang, Y. Using hydrochemical, stable isotope, and river water recharge data to identify groundwater flow paths in a deeply buried karst system. Hydrol. Process. 2017, 31, 4297–4314. [Google Scholar] [CrossRef]
- Yang, J.; Yu, Z.B.; Yi, Q.; Frape, S.K.; Gong, M.; Zhang, Y.T. Evaluation of surface water and groundwater interactions in the upstream of Kui river and Yunlong lake, Xuzhou, China. J. Hydrol. 2020, 583, 124549. [Google Scholar] [CrossRef]
- Cook, P.G.; Wood, C.; White, T.; Simmons, C.T.; Fass, T.; Brunner, P. Groundwater inflow to a shallow, poorly-mixed wetland estimated from a mass balance of radon. J. Hydrol. 2008, 354, 213–226. [Google Scholar] [CrossRef]
- Gat, J.R. Oxygen and hydrogen isotopes in the hydrologic cycle. Annu. Rev. Earth Planet. Sci. 1996, 24, 225–262. [Google Scholar] [CrossRef] [Green Version]
- Kathleen, A.M.; William, D.M.; James, M. The dynamic relationship between groundwater and the Columbia River: Using deuterium and oxygen-18 as tracers. J. Hydrol. 1992, 135, 1–12. [Google Scholar] [CrossRef]
- Zhao, D.; Wang, G.C.; Liao, F.; Yang, N.; Jiang, W.J.; Guo, L.; Liu, C.L.; Shi, Z.M. Groundwater-surface water interactions derived by hydrochemical and isotopic (Rn-222 deuterium, oxygen-18) tracers in the Nomhon area, Qaidam Basin, NW China. J. Hydrol. 2018, 565, 650–661. [Google Scholar] [CrossRef]
- Petermann, E.; Gibson, J.J.; Knoeller, K.; Pannier, T.; Weiss, H.; Schubert, M. Determination of groundwater discharge rates and water residence time of groundwater-fed lakes by stable isotopes of water (O-18, H-2) and radon (Rn-222) mass balances. Hydrol. Process. 2018, 32, 805–816. [Google Scholar] [CrossRef]
- Liao, F.; Wang, G.C.; Shi, Z.M.; Cheng, G.Q.; Kong, Q.M.; Mu, W.Q.; Guo, L. Estimation of groundwater discharge and associated chemical fluxes into Poyang Lake, China: Approaches using stable isotopes (delta D and delta O-18) and radon. Hydrogeol. J. 2018, 26, 1625–1638. [Google Scholar] [CrossRef]
- Zhang, Y.Z.; Tang, C.Y.; Song, X.F.; Dun, Y.; Meng, W.; Zhang, Y. Concentrations, potential sources and behavior of organochlorines and phenolic endocrine-disrupting chemicals in surficial sediment of the Shaying River, eastern China. Environ. Earth Sci. 2013, 70, 2237–2247. [Google Scholar] [CrossRef]
- Pei, M.; Li, X.Y.; Chen, F.; Liu, S.X.; Hou, C.C. The isotopomer ratios of N 2 O in the Shaying River, the upper Huai River network, Eastern China: The significances of mechanisms and productions of N 2 O in the heavy ammonia polluted rivers. Sci. Total Environ. 2019, 687, 1315–1326. [Google Scholar]
- Yang, L.H.; Song, X.F.; Zhang, Y.H.; Han, D.M.; Zhang, B.; Long, D. Characterizing interactions between surface water and groundwater in the Jialu River basin using major ion chemistry and stable isotopes. Hydrol. Earth Syst. Sci. 2012, 16. [Google Scholar] [CrossRef] [Green Version]
- Ma, P.; Liu, S.; Yu, Q.; Li, X.; Han, X. Sources and transformations of anthropogenic nitrogen in the highly disturbed Huai River Basin, Eastern China. Environ. Sci. Pollut. Res. 2019, 26, 11153–11169. [Google Scholar] [CrossRef]
- He, B.N.; He, J.T.; Wang, L.; Zhang, X.W.; Bi, E.P. Effect of hydrogeological conditions and surface loads on shallow groundwater nitrate pollution in the Shaying River Basin: Based on least squares surface fitting model. Water Res. 2019, 163, 114880. [Google Scholar] [CrossRef] [PubMed]
- Shi, W.; Xia, J.; Zhang, X. Influences of anthropogenic activities and topography on water quality in the highly regulated Huai River basin, China. Environ. Sci. Pollut. R 2016, 23, 21460–21474. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Wang, L.M.; Tian, H.Y.; Liu, H.P.; Wei, C.M.G. Interaction between River and Groundwater in Henan Plain of Huai River Basin. J. North China Univ. Water Resour. Electr. Power (Nat. Sci. Ed.) 2017, 38, 36–40. (In Chinese) [Google Scholar]
- Wang, S.Q.; Tang, C.Y.; Song, X.F.; Wang, Q.X.; Zhang, Y.H.; Yuan, R.Q. The impacts of a linear wastewater reservoir on groundwater recharge and geochemical evolution in a semi-arid area of the Lake Baiyangdian watershed, North China Plain. Sci. Total Environ. 2014, 482, 325–335. [Google Scholar] [CrossRef] [PubMed]
- Yan, Y.N.; Wang, Y.Y.; Zheng, Q.L.; Liu, L.; Zhang, J.W.; Ma, T. Assessment of Groundwater Nitrate Specific Vulnerability: A Case Study in Shaying River Basin. Environ. Sci. Technol. 2015, 38, 234–243. (In Chinese) [Google Scholar]
- Zheng, Q.L.; Wang, Y.Y.; Yan, Y.N.; Liao, M.; Ma, T. Identification of prior control areas for nitrogen pollution blocking in shallow groundwater in Huai River Basin. J. Nanjing Univ. (Nat. Sci.) 2016, 52, 103–114. (In Chinese) [Google Scholar]
- Chen, Z.H.; Ruan, X.H.; Shan, N. Modeling of nitrate flux between groundwater and surface water based on a coupled model in Shaying River Basin. J. Nanjing Univ. (Nat. Sci.) 2017, 53, 860–870. (In Chinese) [Google Scholar]
- Tao, J.H.; Tao, Y.Z.; Liu, P.G. Water exchange between groundwater and main stream of Shaying River. Water Resour. Prot. 2012, 28, 37–40. (In Chinese) [Google Scholar]
- Zuo, Q.T.; Chen, H.; Dou, M.; Zhang, Y.Y.; Li, D.F. Experimental analysis of the impact of sluice regulation on water quality in the highly polluted Huai River Basin, China. Environ. Monit. Assess 2015, 187. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhai, X.Y.; Xia, J.; Zhang, Y.Y. Integrated approach of hydrological and water quality dynamic simulation for anthropogenic disturbance assessment in the Huai River Basin, China. Sci. Total Environ. 2017, 598, 749–764. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.C.; Zhang, Y.K. Application of GSFLOW to a coupled surface water and groundwater model for Shaying River Basin. Hydrogeol. Eng. Geol. 2015, 42, 1–9. (In Chinese) [Google Scholar]
- Zuo, Q.T.; Luo, Z.L.; Shi, Y.Q.; Gan, R.; Liu, J.; Chen, H. Main parameters and physiographic characteristics of Shayinghe River Basin. Water Resour. Hydropower Eng. 2016, 47, 66–72. (In Chinese) [Google Scholar]
- Ma, J.; He, P.; Gaohui, P. Analyzing the Drought Frequency in Shaying River Basin Using the Three-dimensional Copula Function. J. Irrig. Drain. 2017, 36, 102–107. (In Chinese) [Google Scholar]
- Wang, X.K.; Shuan, C.S. Investigation and Evaluation of Groundwater Pollution in the Henan Plain (Huaihe Basin); Henan Insitute of Geologival Survey: Henan, China, 2013; pp. 25–40. [Google Scholar]
- Christophersen, N.; Hooper, R.P. Multivariate analysis of stream water chemical data: The use of principal components analysis for the end-member mixing problem. Water Resour. Res. 1992, 28, 99–107. [Google Scholar] [CrossRef]
- Clark, I.D.; Fritz, P. Environmental Isotopes in Hydrogeology Lewis; Lewis Publishers: New York, NY, USA, 1997; Volumes 12–30. [Google Scholar]
- Kendall, C.; Mcdonnell, J.J. Isotope Tracers in Catchment Hydrology; Elsevier: Amsterdam, The Netherlands, 1998; Volumes 40–60. [Google Scholar]
- Lee, R.W.; Hollyday, E.F. Use of radon measurements in Carters Creek, Maury County, Tennessee, to determine location and magnitude of ground-water seepage. In Field Studies of Radon in Rocks, Soils, and Water; U.S. Geological Survey: Reston, VA, USA, 1993; pp. 237–242. [Google Scholar]
- Meredith, K.T.; Hollins, S.E.; Hughes, C.E.; Cendon, D.I.; Hankin, S.; Stone, D.J.M. Temporal variation in stable isotopes (O-18 and H-2) and major ion concentrations within the Darling River between Bourke and Wilcannia due to variable flows, saline groundwater influx and evaporation. J. Hydrol. 2009, 378, 313–324. [Google Scholar] [CrossRef]
- Smith, A.J.; Pollock, D.W.; Palmer, D. Groundwater interaction with surface drains in the Ord River Irrigation Area, northern Australia: Investigation by multiple methods. Hydrogeol. J. 2010, 18, 1235–1252. [Google Scholar] [CrossRef]
- Su, X.S.; Xu, W.; Yang, F.T.; Zhu, P.C. Using new mass balance methods to estimate gross surface water and groundwater exchange with naturally occurring tracer Rn-222 in data poor regions: A case study in northwest China. Hydrol. Process. 2015, 29, 979–990. [Google Scholar] [CrossRef]
- Stellato, L.; Petrella, E.; Terrasi, F.; Belloni, P.; Belli, M.; Sansone, U.; Celico, F. Some limitations in using (222)Rn to assess river-groundwater interactions: The case of Castel di Sangro alluvial plain (central Italy). Hydrogeol. J. 2008, 16, 701–712. [Google Scholar] [CrossRef]
- Peng, T.H.; Takahashi, T.; Broecker, W.S. Surface Radon Measurements in North Pacific Ocean Station PAPA. J. Geophys. Res. 1974, 79, 1772–1780. [Google Scholar] [CrossRef]
- Ellins, K.K.; Romanmas, A.; Lee, R. Using Rn-sss to examine groundwaters surface discharge interaction in the rio-grande-de-manati, pueto-rico. J. Hydrol. 1990, 115, 319–341. [Google Scholar] [CrossRef]
- Sarikhani, R.; Dehnavi, A.G.; Ahmadnejad, Z.; Kalantari, N. Hydrochemical characteristics and groundwater quality assessment in Bushehr Province, SW Iran. Environ. Earth Sci. 2015, 74, 6265–6281. [Google Scholar] [CrossRef]
- Chung, S.Y.; Venkatramanan, S.; Park, N.; Rajesh, R.; Ramkumar, T.; Kim, B.W. An assessment of selected hydrochemical parameter trend of the Nakdong River water in South Korea, using time series analyses and PCA. Environ. Monit. Assess 2015, 187. [Google Scholar] [CrossRef]
- Bouzourra, H.; Bouhlila, R.; Elango, L.; Slama, F.; Ouslati, N. Characterization of mechanisms and processes of groundwater salinization in irrigated coastal area using statistics, GIS, and hydrogeochemical investigations. Environ. Sci. Pollut. Res. 2015, 22, 2643–2660. [Google Scholar] [CrossRef]
- Critelli, T.; Vespasiano, G.; Apollaro, C.; Muto, F.; Marini, L.; De Rosa, R. Hydrogeochemical study of an ophiolitic aquifer: A case study of Lago (Southern Italy, Calabria). Environ. Earth Sci. 2015, 74, 533–543. [Google Scholar] [CrossRef]
- Apollaro, C.; Fuoco, I.; Brozzo, G.; De Rosa, R. Release and fate of Cr (VI) in the ophiolitic aquifers of Italy: The role of Fe (III) as a potential oxidant of Cr (III) supported by reaction path modelling. Sci. Total Environ. 2019, 660, 1459–1471. [Google Scholar] [CrossRef] [PubMed]
- Parkhurst, D.L.; Appelo, C. User’s guide to PHREEQC (Version 2): A computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations. Water Resour. Investig. Rep. 1999, 99, 312. [Google Scholar]
- WHO. Guidelines for Drinking–Water Quality, 4th ed.; WHO: Geneva, Switzerland, 2011. [Google Scholar]
- Craig, H. Isotopic variations in meteoric waters. Science 1961, 133, 1702–1703. [Google Scholar] [CrossRef] [PubMed]
- Longinelli, A.; Selmo, E. Isotopic composition of precipitation in Italy: A first overall map. J. Hydrol. 2003, 270, 75–88. [Google Scholar]
- Vespasiano, G.; Apollaro, C.; De Rosa, R.; Muto, F.; Larosa, S.; Fiebig, J.; Mulch, A.; Marini, L. The Small Spring Method (SSM) for the definition of stable isotope–elevation relationships in Northern Calabria (Southern Italy). Appl. Geochem. 2015, 63, 333–346. [Google Scholar] [CrossRef]
- Wang, L.H.; Dong, Y.H.; Xu, Z.F. A synthesis of hydrochemistry with an integrated conceptual model for groundwater in the Hexi Corridor, northwestern China. J. Asian Earth Sci. 2017, 146, 20–29. [Google Scholar] [CrossRef]
- Aji, K.; Tang, C.; Song, X.; Kondoh, A.; Sakura, Y.; Yu, J.; Kaneko, S. Characteristics of chemistry and stable isotopes in groundwater of Chaobai and Yongding River basin, North China Plain. Hydrol. Process. 2008, 22, 63–72. [Google Scholar] [CrossRef]
- Li, F.D.; Pan, G.Y.; Tang, C.Y.; Zhang, Q.Y.; Yu, J.G. Recharge source and hydrogeochemical evolution of shallow groundwater in a complex alluvial fan system, southwest of North China Plain. Environ. Geol. 2008, 55, 1109–1122. [Google Scholar] [CrossRef]
- WMO/IAEA. Global Network of Isotopes in Precipitation. The GNIP Database. Available online: http://nds121.Iaea.org/wiser/index.php (accessed on 1 September 2010).
- Kong, Y.L.; Pang, Z.H.; Froehlich, K. Quantifying recycled moisture fraction in precipitation of an arid region using deuterium excess. Tellus B 2013, 65. [Google Scholar] [CrossRef]
- Zheng, Y.H.; Zhang, Y.K.; Liang, X.Y. A Study of Groundwater Flow and Water Quality Characteristics in the Riparian Zone of Jialu River near Zhongmu. Geol. J. China Univ. 2015, 21, 234–242. (In Chinese) [Google Scholar]
- Yi, P.; Luo, H.; Chen, L.; Yu, Z.B.; Jin, H.J.; Chen, X.B.; Wan, C.W.; Aldahan, A.; Zheng, M.J.; Hu, Q.F. Evaluation of groundwater discharge into surface water by using Radon-222 in the Source Area of the Yellow River, Qinghai-Tibet Plateau. J. Environ. Radioact. 2018, 192, 257–266. [Google Scholar] [CrossRef] [PubMed]
- Moore, P.J.; Martin, J.B.; Screaton, E.J.; Neuhoff, P.S. Conduit enlargement in an eogenetic karst aquifer. J. Hydrol. 2010, 393, 143–155. [Google Scholar] [CrossRef]
- Yu, J.C.; Mo, X.X.; Yu, X.H.; Dong, G.C.; Fu, Q.; Xing, F.C. Geochemical characteristics and petrogenesis of Permian basaltic rocks in Keping area, Western Tarim basin: A record of plume-lithosphere interaction. J. Earth Sci. 2012, 23, 442–454. [Google Scholar] [CrossRef]
- Wang, Y.X.; Guo, Q.H.; Su, C.L.; Ma, T. Strontium isotope characterization and major ion geochemistry of karst water flow, Shentou, northern China. J. Hydrol. 2006, 328, 592–603. [Google Scholar] [CrossRef]
- Zang, H.F.; Zheng, X.Q.; Jia, Z.X.; Chen, J.F.; Qin, Z.D. The impact of hydrogeochemical processes on karst groundwater quality in arid and semiarid area: A case study in the Liulin spring area, north China. Arab. J. Geosci. 2015, 8, 6507–6519. [Google Scholar] [CrossRef]
- Negrel, P.; Petelet-Giraud, E. Strontium isotopes as tracers of groundwater-induced floods: The Somme case study (France). J. Hydrol. 2005, 305, 99–119. [Google Scholar] [CrossRef]
- Alvarado, J.A.C.; Paces, T.; Purtschert, R. Dating groundwater in the Bohemian Cretaceous Basin: Understanding tracer variations in the subsurface. Appl. Geochem. 2013, 29, 189–198. [Google Scholar] [CrossRef]
- Paces, T. Steady-state kinetics and equilibrium between ground-water and granitic rock. Geochim. Cosmochim. Acta 1973, 37, 2641–2663. [Google Scholar] [CrossRef]
- Liu, F.; Song, X.F.; Yang, L.H.; Han, D.M.; Zhang, Y.H.; Ma, Y.; Bu, H.M. The role of anthropogenic and natural factors in shaping the geochemical evolution of groundwater in the Subei Lake basin, Ordos energy base, Northwestern China. Sci. Total Environ. 2015, 538, 327–340. [Google Scholar] [CrossRef] [PubMed]
- Edmunds, W.M.; Guendouz, A.H.; Mamou, A.; Moulla, A.; Shand, P.; Zouari, K. Groundwater evolution in the Continental Intercalaire aquifer of southern Algeria and Tunisia: Trace element and isotopic indicators. Appl. Geochem. 2003, 18, 805–822. [Google Scholar] [CrossRef]
- Anornu, G.; Gibrilla, A.; Adomako, D. Tracking nitrate sources in groundwater and associated health risk for rural communities in the White Volta River basin of Ghana using isotopic approach (delta N-15, delta O-18-NO3 and H-3). Sci. Total Environ. 2017, 603, 687–698. [Google Scholar] [CrossRef]
Sampling Site | Dry Season | Wet Season | ||||||
---|---|---|---|---|---|---|---|---|
fRn−222 | fO−18 | fD | fEC | fRn−222 | fO−18 | fD | fEC | |
J8 | 15.37 | - | - | - | 23.20 | - | - | - |
Y1 | - | - | - | - | 72.14 | 94.26 | 93.89 | 5.55 |
S2 | 6.86 | - | 4.68 | 8.37 | 30.77 | - | 32.51 | 32.33 |
SY2 | 26.02 | 72.00 | 55.19 | 52.96 | 65.36 | 58.45 | 65.32 | 31.19 |
Parameters | Zhoukou Sluice (Y2) | Huaidian Sluice (SY2) |
---|---|---|
Rnu (Bq/m3) | 500 | 2118 |
Rnd (Bq/m3) | 81 | 2300 |
Rngw (Bq/m3) | 16,856 | 23,451 |
Qu (m3/s) | 3.26 | 11.19 |
Qd (m3/s) | 2.11 | 13.80 |
L (m) | 60.00 | 150.00 |
Tair (°C) | 24.80 | 24.50 |
D (cm2/s) | 1.32 × 10−5 | 1.31 × 10−5 |
v (m/s) | 0.01 | 0.05 |
h (m) | 5.01 | 3.09 |
w (m) | 102.27 | 95.2 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, B.; Song, X.; Yang, L.; Yao, D.; Xu, Y. Insights onto Hydrologic and Hydro-Chemical Processes of Riparian Groundwater Using Environmental Tracers in the Highly Disturbed Shaying River Basin, China. Water 2020, 12, 1939. https://doi.org/10.3390/w12071939
Li B, Song X, Yang L, Yao D, Xu Y. Insights onto Hydrologic and Hydro-Chemical Processes of Riparian Groundwater Using Environmental Tracers in the Highly Disturbed Shaying River Basin, China. Water. 2020; 12(7):1939. https://doi.org/10.3390/w12071939
Chicago/Turabian StyleLi, Baoling, Xianfang Song, Lihu Yang, Dongxu Yao, and Yingchun Xu. 2020. "Insights onto Hydrologic and Hydro-Chemical Processes of Riparian Groundwater Using Environmental Tracers in the Highly Disturbed Shaying River Basin, China" Water 12, no. 7: 1939. https://doi.org/10.3390/w12071939
APA StyleLi, B., Song, X., Yang, L., Yao, D., & Xu, Y. (2020). Insights onto Hydrologic and Hydro-Chemical Processes of Riparian Groundwater Using Environmental Tracers in the Highly Disturbed Shaying River Basin, China. Water, 12(7), 1939. https://doi.org/10.3390/w12071939