Experimental Study at the Reservoir Head of Run-of-River Hydropower Plants in Gravel Bed Rivers. Part I: Delta Formation at Operation Level
Abstract
:1. Introduction
2. Idealized Gravel Bed River and Experimental Setup
2.1. Idealized Medium Sized Gravel Bed River
2.2. Experimental Setup
2.3. Sediment Mixture and Analysis
2.3.1. Sediment Scaling
2.3.2. Sediment Mixture
2.3.3. Grain Size Distributions from Mass Fractions and from a Novel Surface-Based Method
2.3.4. Sediment Transport Analysis
2.4. Experimental Procedure
3. Results
3.1. Characteristics of the Free Flowing Section
3.1.1. Sediment Transport Rates for the Free-Flowing Section
3.1.2. Measured vs. Calculated Transport Rates
3.2. Delta Formation at the Head of the Reservoir
3.2.1. Sediment Transport Rates at the Head of the Reservoir
3.2.2. Water and Bed Surface Evolution at the Head of the Reservoir
3.2.3. Grain Size Distributions of the Delta Formation
3.2.4. Measured vs. Calculated Transport Rates at the Head of the Reservoir
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Grill, G.; Lehner, B.; Thieme, M.; Geenen, B.; Tickner, D.; Antonelli, F.; Babu, S.; Borrelli, P.; Cheng, L.; Crochetiere, H.; et al. Mapping the world’s free-flowing rivers. Nature 2019, 569, 215–221. [Google Scholar] [CrossRef]
- Wagner, B.; Hauer, C.; Schoder, A.; Habersack, H. A review of hydropower in Austria: Past, present and future development. Renew. Sustain. Energy Rev. 2015, 50, 304–314. [Google Scholar] [CrossRef]
- Sindelar, C.; Schobesberger, J.; Habersack, H. Effects of weir height and reservoir widening on sediment continuity at run-of-river hydropower plants in gravel bed rivers. Geomorphology 2017, 291. [Google Scholar] [CrossRef]
- Hauer, C.; Wagner, B.; Aigner, J.; Holzapfel, P.; Flödl, P.; Liedermann, M.; Tritthart, M.; Sindelar, C.; Pulg, U.; Klösch, M.; et al. State of the art, shortcomings and future challenges for a sustainable sediment management in hydropower: A review. Renew. Sustain. Energy Rev. 2018, 98, 40–55. [Google Scholar] [CrossRef]
- Habersack, H.; Baranya, S.; Holubova, K.; Vartolomei, F.; Skiba, H.; Babic-Mladenovic, M.; Cibilic, A.; Schwarz, U.; Krapesch, M.; Gmeiner, P.; et al. Danube Sediment Management Guidance; Output 6.1 of the Interreg Danube Transnational Project Danube Sediment co-funded by the European Commission; BOKU—University of Natural Resources and Life Sciences: Vienna, Austria, 2019. [Google Scholar]
- Harb, G.; Badura, H.; Schneider, J.; Zenz, G. Verlandungsproblematik bei Wasserkraftanlagen mit niedrigen Fallhohen. Österreichische Wasser Abfallwirtschaft 2015, 67, 315–324. [Google Scholar] [CrossRef]
- Habersack, H.; Hein, T.; Stanica, A.; Liska, I.; Mair, R.; Jager, E.; Hauer, C.; Bradley, C. Challenges of river basin management: Current status of, and prospects for, the River Danube from a river engineering perspective. Sci. Total Environ. 2016, 543, 828–845. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hauer, C.; Unfer, G.; Habersack, H.; Pulg, U.; Schnell, J. Bedeutung von Flussmorphologie und Sedimenttransport in Bezug auf die Qualität und Nachhaltigkeit von Kieslaichplätzen. KW Korrespondenz Wasserwirtschaft 2013, 4, 189–197. [Google Scholar]
- Pulg, U.; Barlaup, B.T.; Sternecker, K.; Trepl, L.; Unfer, G. Restoration of spawning habitats of brown trout (Salmo trutta) in a regulated chalk stream. River Res. Appl. 2013, 29, 172–182. [Google Scholar] [CrossRef]
- Sindelar, C.; Gold, T.; Reiterer, K.; Schobesberger, J.; Lichtneger, P.; Hauer, C.; Habersack, H. Delta formation in reservoirs of run-of-river hydropower plants in gravel bed rivers—Experimental studies with nonuniform sediments. In Proceedings of the 38th IAHR World Congress, Panama City, Panama, 1–6 September 2019; pp. 71–78. [Google Scholar]
- WFD. Water Framework Directive 2000/60/EC. European Parliament and The Council of The European Union. Off. J. Eur. Commun. 2000, L327, 1–72. [Google Scholar]
- RRED. Revised Renewable Energy Directive 2018/2001/EU. European Parliament and The Council of The European Union. Off. J. Eur. Union 2018, 82–209. [Google Scholar]
- Bizzi, S.; Dinh, Q.; Bernardi, D.; Denaro, S.; Schippa, L.; Soncini-Sessa, R. On the control of riverbed incision induced by run-of-river power plant. Water Resour. Res. 2015, 51, 5023–5040. [Google Scholar] [CrossRef]
- Badura, H.; Knoblauch, H.; Schneider, J.; Harreiter, H.; Demel, S. Wasserwirtschaftliche Optimierung der Stauraumspülungen an der Oberen Mur Best practise flushing strategy at the Upper Mur River. Österreichische Wasser Abfallwirtschaft 2007, 59, 61–68. [Google Scholar] [CrossRef]
- Bock, N.; Gökler, G.; Reindl, R.; Reingruber, J.; Schmalfuß, R.; Badura, H.; Frik, G.; Leobner, I.; Lettner, J.; Scharsching, M.; et al. Feststoffmanagement bei Wasserkraftanlagen in Österreich. Österreichische Wasser Abfallwirtschaft 2019, 71, 125–136. [Google Scholar] [CrossRef] [Green Version]
- Schneider, J.; Schreiber, C. Sustainable Hydropower in Alpine Rivers Ecosystems (Ref. 5-2-3-IT)—WP4 (Action 4.4); SHARE Report: Graz, Austria, 2012. [Google Scholar]
- Knoblauch, H. Sustainable Sediment Management in Alpine Reservoirs Considering Ecological and Economical Aspects; Alpreserv Report: Neubiberg, Germany, 2006. [Google Scholar]
- Kondolf, G.M.; Gao, Y.; Annandale, G.W.; Morris, G.L.; Jiang, E.; Zhang, J.; Cao, Y.; Carling, P.; Fu, K.; Guo, Q.; et al. Sustainable sediment management in reservoirs and regulated rivers: Experiences from five continents. Earth’s Future 2014, 2, 256–280. [Google Scholar] [CrossRef]
- Annandale, G.W.; Morris, G.L.; Karki, P. Extending the Life of Reservoirs: Sustainable Sediment. Management for Dams and Run-of-River Hydropower; Directions in Development. License: Creative Commons Attribution CC BY 3.0 IGO; World Bank: Washington, DC, USA, 2016. [Google Scholar] [CrossRef]
- Morris, G.L.; Fan, J. Reservoir Sedimentation Handbook; McGraw-Hill Book Co.: New York, NY, USA, 2010. [Google Scholar]
- Reiterer, K. Experimental study at the reservoir head of run-of-river hydropower plants in gravel bed rivers. Part II: Effects of reservoir flushing on delta degradation. 2020, in press. [Google Scholar]
- Kobus, H. Wasserbauliches Versuchswesen; DVWK; Paul Parey: Hamburg/Berlin, Germany, 1984; Volume 39. [Google Scholar]
- Meyer-Peter, E.; Müller, R. Formulas for Bed-Load Transport. In Proceedings of the IAHSR International Association for Hydraulic Research 2nd Meeting, Stockholm, Sweden, 7–9 June 1948; pp. 39–64. [Google Scholar]
- Smart, G.M. Sediment Transport Formula for Steep Channels. J. Hydraul. Eng. 1984, 110, 267–276. [Google Scholar] [CrossRef]
- Wu, W.M.; Wang, S.S.Y.; Jia, Y.F. Nonuniform sediment transport in alluvial rivers. J. Hydraul. Res. 2000, 38, 427–434. [Google Scholar] [CrossRef]
- Wilcock, P.R.; Crowe, J.C. Surface-based Transport Model for Mixed-Size Sediment. J. Hydraul. Eng. 2003, 129, 120–128. [Google Scholar] [CrossRef]
- Hunziker, R.P. Fraktionsweiser Geschiebetransport, Mitteilung 138; VAW, ETH Zürich: Zürich, Switzerland, 1995. [Google Scholar]
- Einstein, H.A. The bed-load function for sediment transportation in open channel flows. US Dept. Agric. Tech. Bull. 1950, 1026, 1–71. [Google Scholar]
- Egiazaroff, P. Calculation of non-uniform sediment concentrations. J. Hydraul. Div. 1965, 91, 225–247. [Google Scholar]
- Bollrich, G. Technische Hydromechanik, Band 1, 6th ed.; Huss-Medien GmbH: Berlin, Germany, 2007. [Google Scholar]
- Rössert, R. Hydraulik im Wasserbau, 10th ed.; R. Oldenbourg Verlag: München/Wien/Oldenbourg, Germany, 1999. [Google Scholar]
- Zanke, U.C.E. Hydraulik für den Wasserbau; Springer: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Blom, A.; Ribberink, J.S.; de Vriend, H.J. Vertical sorting in bed forms: Flume experiments with a natural and a trimodal sediment mixture. Water Resour. Res. 2003, 39. [Google Scholar] [CrossRef]
- Blom, A.; Parker, G. Vertical sorting and the morphodynamics of bed form-dominated rivers: A modeling framework. J. Geophys. Res. Earth Surface 2004, 109. [Google Scholar] [CrossRef] [Green Version]
- Julien, P.Y. Erosion and Sedimentation, 2nd ed.; Cambridge University Press: New York, NY, USA, 2010; pp. 319–321. [Google Scholar]
- El-Manadely, M.S.; Abdel-Bary, R.M.; El-Sammany, M.S.; Ahmed, T.A. Characteristics of the delta formation resulting from sediment deposition in Lake Nasser, Egypt: Approach to tracing lake delta formation. Lakes Reserv. Res. Manag. 2002, 7, 81–86. [Google Scholar] [CrossRef]
- Sindelar, C.; Tritthart, M.; Habersack, H.; Pfemeter, M.; Sattler, S.; Hengl, M. Sohlenstabilisierung bei Aufweitungen und geschiebedefizitären Flüssen. Wasserwirtschaft 2019, 109, 12–18. [Google Scholar] [CrossRef]
River Parameters | Flow Rate (m3/s) |
---|---|
Catchment area 1364.5 km2 | MQ = 22 |
River width W0 = 20 m | Qd = 35 |
Bed slope S0 = 0.005 | HQ1 = 104 |
Fraction No. | Grain Size 1:20 (mm) | Grain Size 1:1 (mm) 2 | Color | Initial Mass Fraction (%) |
---|---|---|---|---|
1 | 0.7–1.2 | 14–24 | Yellow | 15 |
2 | 1.2–2.0 | 24–40 | Red | 15 |
3 | 2.0–3.0 | 40–60 | Green | 20 |
4 | 3.0–4.0 | 60–80 | Black | 25 |
5 | 4.0–6.0 | 80–120 | White | 25 |
Flow Rate | Duration | Rep. nbr. | Transport Rate (kg/hm) | Input/Output (-) | Bed Slope (-) | Water Surface Slope (-) |
---|---|---|---|---|---|---|
0.5 × HQ1 | 8 h | 1 | 7 | 0.93 | 0.0046 | 0.0047 |
0.6 × HQ1 | 8 h | 1 | 27 | 1.04 | 0.0045 | 0.0050 |
0.7 × HQ1 | 8 h | 1 | 51 | 0.98 | 0.0048 | 0.0048 |
0.7 × HQ1 | 8 h | 2 | 52 | 1.02 | 0.0048 | 0.0049 |
0.7 × HQ1 | 8 h | 3 | 53 | 0.98 | 0.0049 | 0.0048 |
0.8 × HQ1 | 4 h | 1 | 117 | 1.09 | 0.005 ± 10% | 0.005 ± 10% |
SJ | WC | WU | MPM-5 | MPM-8 | Measured |
---|---|---|---|---|---|
252 (−24%) | 256 (−23%) | 376 (+13%) | 396 (+19%) | 517 (+56%) | 332 |
Test Run | Input (kg/h) | Output 0–4 h (kg/h) | Output 4–6 h (kg/h) | Output 6–8 h (kg/h) | Yellow Fraction (%) | Red Fraction (%) |
---|---|---|---|---|---|---|
D1 | 45 | 1.5 | 1.5 | 1.3 | 46 | 36 |
D2 | 52 | 0.5 | 0.35 | 0.20 | 45 | 35 |
D3 | 52 | 1.4 | 11.5 | 35.5 | 15 | 23 |
Test Run | Hour | Delta Section | Bed Slope | Water Slope | Energy Slope | θ |
---|---|---|---|---|---|---|
D2 | 4 | tail | 0.56 | 0.38 | 0.53 | 0.065 |
D2 | 4 | top | 0.30 | −0.38 | 0.00002 | 0.0003 |
D2 | 4 | downstream | 0.32 | 0.08 | 0.14 | 0.024 |
D2 | 8 | tail | 0.52 | 0.37 | 0.49 | 0.061 |
D2 | 8 | top | 0.06 | 0.29 | 0.13 | 0.017 |
D3 | 4 | tail | 0.45 | 0.37 | 0.45 | 0.051 |
D3 | 8 | tail | 0.47 | 0.47 | 0.47 | 0.051 |
Test Run | Hour | Delta Section | θ | MPM-5 | SJ | WC | WU | Exp |
---|---|---|---|---|---|---|---|---|
D2 | 4 | downstream | 0.024 | 0 | 0 | 0.12 | 0.14 | 0.4 |
D2 | 8 | top | 0.017 | 0 | 0 | 5 × 10−3 | 4 × 10−6 | 0.2 |
D3 | 8 | tail | 0.051 | 82 | 10 | 14 | 14 | 36 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sindelar, C.; Gold, T.; Reiterer, K.; Hauer, C.; Habersack, H. Experimental Study at the Reservoir Head of Run-of-River Hydropower Plants in Gravel Bed Rivers. Part I: Delta Formation at Operation Level. Water 2020, 12, 2035. https://doi.org/10.3390/w12072035
Sindelar C, Gold T, Reiterer K, Hauer C, Habersack H. Experimental Study at the Reservoir Head of Run-of-River Hydropower Plants in Gravel Bed Rivers. Part I: Delta Formation at Operation Level. Water. 2020; 12(7):2035. https://doi.org/10.3390/w12072035
Chicago/Turabian StyleSindelar, Christine, Thomas Gold, Kevin Reiterer, Christoph Hauer, and Helmut Habersack. 2020. "Experimental Study at the Reservoir Head of Run-of-River Hydropower Plants in Gravel Bed Rivers. Part I: Delta Formation at Operation Level" Water 12, no. 7: 2035. https://doi.org/10.3390/w12072035
APA StyleSindelar, C., Gold, T., Reiterer, K., Hauer, C., & Habersack, H. (2020). Experimental Study at the Reservoir Head of Run-of-River Hydropower Plants in Gravel Bed Rivers. Part I: Delta Formation at Operation Level. Water, 12(7), 2035. https://doi.org/10.3390/w12072035