River Water Quality of the Selenga-Baikal Basin: Part I—Spatio-Temporal Patterns of Dissolved and Suspended Metals
Abstract
:1. Introduction
- (i)
- regional background conditions of water and sediment quality, as reflected by upper reaches of unpolluted tributary rivers and streams, and
- (ii)
- current metal concentrations in river water and suspended sediments, considering spatially varying regional conditions, including regions with different anthropogenic impacts.
2. Materials and Methods
2.1. Study Area: Natural Conditions
2.2. Study Area: Anthropogenic Pollution Hotspots
2.3. Field Data Campaigns
2.4. Analytical Procedures
2.5. Data Analysis
3. Results
3.1. Geochemical Properties of River Waters
3.2. Metals in River Waters
3.2.1. Dissolved Metals
3.2.2. Suspended Metals
3.3. Results of Variability Analysis and PCA of the Metals Content
4. Discussion
4.1. Source Apportionment of the Metals Content
4.2. River Water Quality within the Selenga Basin
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Horowitz, A.J. A Primer on Trace Metal-Sediment Chemistry; U.S. Geological Survey: Alexandria, VA, USA, 1985.
- Elbaz-Poulichet, F. River inputs of metals and arsenic. Mediterr. Sea 2005, 211–235. [Google Scholar] [CrossRef]
- Pizarro, J.; Vergara, P.M.; Rodríguez, J.A.; Valenzuela, A.M. Heavy metals in northern Chilean rivers: Spatial variation and temporal trends. J. Hazard. Mater. 2010, 181, 747–754. [Google Scholar] [CrossRef] [PubMed]
- Swinkels, L.H.; Van de Ven, M.W.P.M.; Stassen, M.J.M.; Van der Velde, G.; Lenders, H.J.R.; Smolders, A.J.P. Suspended sediment causes annual acute fish mortality in the Pilcomayo River (Bolivia). Hydrol. Process. 2014, 28, 8–15. [Google Scholar] [CrossRef]
- Pokrovsky, O.S.; Viers, J.; Shirokova, L.S.; Shevchenko, V.P.; Filipov, A.S.; Dupré, B. Dissolved, suspended, and colloidal fluxes of organic carbon, major and trace elements in the Severnaya Dvina River and its tributary. Chem. Geol. 2010, 273, 136–149. [Google Scholar] [CrossRef]
- Audry, S.; Schäfer, J.; Blanc, G.; Jouanneau, J.-M. Fifty-year sedimentary record of heavy metal pollution (Cd, Zn, Cu, Pb) in the Lot River reservoirs (France). Environ. Pollut. 2004, 132, 413–426. [Google Scholar] [CrossRef] [PubMed]
- Gaiero, D.M.; Ross, G.R.; Depetris, P.J.; Kempe, S. Spatial and temporal variability of total non-residual heavy metals content in stream sediments from the Suquia River system, Cordoba, Argentina. Water Air Soil Pollut. 1997, 93, 303–319. [Google Scholar] [CrossRef]
- Ollivier, P.; Radakovitch, O.; Hamelin, B. Major and trace element partition and fluxes in the Rhône River. Chem. Geol. 2011, 285, 15–31. [Google Scholar] [CrossRef]
- Zhang, J. Heavy metal compositions of suspended sediments in the Changjiang (Yangtze River) estuary: Significance of riverine transport to the ocean. Cont. Shelf Res. 1999, 19, 1521–1543. [Google Scholar] [CrossRef]
- Roussiez, V.; Ludwig, W.; Radakovitch, O.; Probst, J.-L.; Monaco, A.; Charrière, B.; Buscail, R. Fate of metals in coastal sediments of a Mediterranean flood-dominated system: An approach based on total and labile fractions. Estuar. Coast. Shelf Sci. 2011, 92, 486–495. [Google Scholar] [CrossRef] [Green Version]
- Roussiez, V.; Heussner, S.; Ludwig, W.; Radakovitch, O.; Durrieu de Madron, X.; Guieu, C.; Probst, J.-L.; Monaco, A.; Delsaut, N. Impact of oceanic floods on particulate metal inputs to coastal and deep-sea environments: A case study in the NW Mediterranean Sea. Cont. Shelf Res. 2012, 45, 15–26. [Google Scholar] [CrossRef] [Green Version]
- Chalov, S.R.; Liu, S.; Chalov, R.S.; Chalova, E.R.; Chernov, A.V.; Promakhova, E.V.; Berkovitch, K.M.; Chalova, A.S.; Zavadsky, A.S.; Mikhailova, N. Environmental and human impacts on sediment transport of the largest Asian rivers of Russia and China. Environ. Earth Sci. 2018, 77, 274. [Google Scholar] [CrossRef]
- Chalov, S.R.; Jarsjö, J.; Kasimov, N.S.O.; Romanchenko, A.O.; Pietroń, J.; Thorslund, J.; Promakhova, E.V. Spatio-temporal variation of sediment transport in the Selenga River Basin, Mongolia and Russia. Environ. Earth Sci. 2014, 73, 663–680. [Google Scholar] [CrossRef]
- Altrell, D. Multipurpose national forest inventory in Mongolia, 2014-2017 - A tool to support sustainable forest management. Geogr. Environ. Sustain. 2019, 12, 167–183. [Google Scholar] [CrossRef] [Green Version]
- Gradel, A.; Sukhbaatar, G.; Karthe, D.; Kang, H. Forest management in Mongolia—A review of challenges and lessons learned with special reference to degradation and deforestation. Geogr. Environ. Sustain. 2019, 12, 133–166. [Google Scholar] [CrossRef] [Green Version]
- Antokhina, O.Y.; Latysheva, I.V.; Mordvinov, V.I. A cases study of Mongolian cyclogenesis during the July 2018 blocking events. Geogr. Environ. Sustain. 2019, 12, 66–78. [Google Scholar] [CrossRef] [Green Version]
- Aschmann, M. Addressing air pollution and beyond in Ulaanbaatar: The role of sustainable mobility. Geogr. Environ. Sustain. 2019, 12, 213–223. [Google Scholar] [CrossRef] [Green Version]
- Garmaev, E.Z.; Kulikov, A.I.; Tsydypov, B.Z.; Sodnomov, B.V.; Ayurzhanaev, A.A. Environmental conditions of Zakamensk town (Dzhida River basin Hotspot). Geogr. Environ. Sustain. 2019, 12, 224–239. [Google Scholar] [CrossRef] [Green Version]
- Shabanova, E.V.; Byambasuren, T.; Ochirbat, G.; Vasil’eva, I.E.; Khuukhenkhuu, B.; Korolkov, A.T. Relationship between major and trace elements in Ulaanbaatar soils: A study based on multivariate statistical analysis. Geogr. Environ. Sustain. 2019, 12, 199–212. [Google Scholar] [CrossRef] [Green Version]
- Kaus, A.; Schäffer, M.; Karthe, D.; Büttner, O.; von Tümpling, W.; Borchardt, D. Regional patterns of heavy metal exposure and contamination in the fish fauna of the Kharaa River basin (Mongolia). Reg. Environ. Chang. 2017, 17, 2023–2037. [Google Scholar] [CrossRef]
- Karthe, D.; Chalov, S.; Moreido, V.; Pashkina, M.; Romanchenko, A.; Batbayar, G.; Kalugin, A.; Westphal, K.; Malsy, M.; Flörke, M. Assessment of runoff, water and sediment quality in the Selenga River basin aided by a web-based geoservice. Water Resour. 2017, 44, 399–416. [Google Scholar] [CrossRef]
- Pietroń, J.; Chalov, S.R.; Chalova, A.S.; Alekseenko, A.V.; Jarsjö, J. Extreme spatial variability in riverine sediment load inputs due to soil loss in surface mining areas of the Lake Baikal basin. Catena 2017, 152, 82–93. [Google Scholar] [CrossRef]
- O’Donnell, D.R.; Wilburn, P.; Silow, E.A.; Yampolsky, L.Y.; Litchman, E. Nitrogen and phosphorus colimitation of phytoplankton in Lake Baikal: Insights from a spatial survey and nutrient enrichment experiments. Limnol. Oceanogr. 2017, 62, 1383–1392. [Google Scholar] [CrossRef]
- Törnqvist, R.; Jarsjö, J.; Pietroń, J.; Bring, A.; Rogberg, P.; Asokan, S.M.; Destouni, G. Evolution of the hydro-climate system in the Lake Baikal basin. J. Hydrol. 2014, 519, 1953–1962. [Google Scholar] [CrossRef] [Green Version]
- Thorslund, J.; Jarsjö, J.; Wällstedt, T.; Mörth, C.M.; Lychagin, M.Y.; Chalov, S.R. Speciation and hydrological transport of metals in non-acidic river systems of the Lake Baikal basin: Field data and model predictions. Reg. Environ. Chang. 2017, 17, 2007–2021. [Google Scholar] [CrossRef] [Green Version]
- Jarsjö, J.; Chalov, S.R.; Pietroń, J.; Alekseenko, A.V.; Thorslund, J. Patterns of soil contamination, erosion and river loading of metals in a gold mining region of northern Mongolia. Reg. Environ. Chang. 2017, 17, 1991–2005. [Google Scholar] [CrossRef]
- Kasimov, N.; Shinkareva, G.; Lychagin, M.; Chalov, S.; Pashkina, M.; Thorslund, J.; Jarsjö, J. River water quality of the Selenga-Baikal basin: Part II–metal partitioning under different hydroclimatic conditions. Water 2020. (under review). [Google Scholar]
- Preobrazhensky, V.S.; Murzaev, E.M. Terrain Types and Natural Zoning of the Buryat Autonomous Soviet Socialist Republic; Nauka: Moscow, USSR, 1959. (In Russian) [Google Scholar]
- Sochava, V.B. Atlas of Transbaikalia; Nauka: Leningrad, USSR, 1967. (In Russian) [Google Scholar]
- Garmaev, E.J.; Khristoforov, A.V. Water Resources of the Rivers of the Lake Baikal Basin: Basics of Their Use and Protection; Geo: Novosibirsk, Russia, 2010. (In Russian) [Google Scholar]
- Kasimov, N.; Kosheleva, N.; Lychagin, M.; Chalov, S.; Alexeenko, A.; Bazilova, V.; Beshentsev, A.; Bogdanova, M.; Chernov, A.; Dorjgotov, D.; et al. Environmental Atlas-monograph “Selenga-Baikal”; Kasimov, N., Kosheleva, N., Lychagin, M., Chalov, S., Eds.; Faculty of Geography, Lomonosov Moscow State University: Moscow, Russia, 2019; ISBN 978-5-9500502-4-4. [Google Scholar]
- Myachkova, N. Climate of the USSR: Textbook; Lomonosov Moscow State University: Moscow, Russia, 1983. (In Russian) [Google Scholar]
- Dgebuadze, Y.; Prokofiev, A.; Slyn’ko, Y.; Mendsaikhan, B. Water Ecosystems of the Selenga Basin; Dgebuadze, Y., Ed.; Nauka: Moscow, Russia, 2009. (In Russian) [Google Scholar]
- Afanasyev, A. Water resources and water balance of the Lake Baikal basin; Nauka: Novosibirsk, USSR, 1976. (In Russian) [Google Scholar]
- Frolova, N.L.; Belyakova, P.A.; Grigoriev, V.Y.; Sazonov, A.A.; Zotov, L.V.; Jarsjö, J. Runoff fluctuations in the Selenga River Basin. Reg. Environ. Chang. 2017, 17, 1965–1976. [Google Scholar] [CrossRef]
- Tulokhonov, A.K. Field Environmental Workshop for Students of Natural Sciences; Publishing House of the BSC SB RAS: Ulan-Ude, Russia, 2001. (In Russian) [Google Scholar]
- Semenov, V.; Myagmarzhav, B. The Hydrological Regime of the Rivers of the River Basin Selenga and Methods of Its Calculation; Gidrometeoizdat: Leningrad, USSR, 1977. (In Russian) [Google Scholar]
- Thorslund, J.; Jarsjö, J.; Chalov, S.R.; Belozerova, E.V. Gold mining impact on riverine heavy metal transport in a sparsely monitored region: The upper Lake Baikal Basin case. J. Environ. Monit. 2012, 14, 2780. [Google Scholar] [CrossRef]
- Theuring, P.; Rode, M.; Behrens, S.; Kirchner, G.; Jha, A. Identification of fluvial sediment sources in the Kharaa River catchment, Northern Mongolia. Hydrol. Process. 2013, 27, 845–856. [Google Scholar] [CrossRef]
- Kasimov, N.; Karthe, D.; Chalov, S. Environmental change in the Selenga River—Lake Baikal Basin. Reg. Environ. Chang. 2017, 17, 1945–1949. [Google Scholar] [CrossRef]
- Timofeev, I.; Kosheleva, N.; Kasimov, N. Contamination of soils by potentially toxic elements in the impact zone of tungsten-molybdenum ore mine in the Baikal region: A survey and risk assessment. Sci. Total Environ. 2018, 642, 63–76. [Google Scholar] [CrossRef] [PubMed]
- Osodoev, P.; Mikheeva, A.; Tsybekmitova, G. Ecological and geographical problems of nature management of transboundary river basins of the Asian part of Russia: Selenga (Russia–Mongolia), Argun (Russia–China). Mod. Probl. Sci. Educ. Russ. 2014, 5, 680. [Google Scholar]
- Bandandorzh, C.; Odontsetseg, D.; Udvaletsag, G. Overview of the socio-economic situation of the Selenga river basin in Mongolia. In Selenga—A River without Borders; Publishing House of BSU: Ulan-Ude, Russia, 2002; pp. 6–7. [Google Scholar]
- Batimaa, P. The total content of suspended particles in the river waters of Mongolia. Res. Environ. Chang. 2000, 3, 51–60. [Google Scholar]
- Batbayar, Z.; Dolgorsuren, G.; Bron, J. Tuul River Basin Integrated Water Management Plan; Technical report; Food and Agriculture Organization of the United Nations: Ulaaanbaatar, Mongolia, 2012; p. 264. [Google Scholar]
- Kasimov, N.S.; Kosheleva, N.E.; Sorokina, O.I.; Bazha, S.N.; Gunin, P.D.; Enkh-Amgalan, S. Ecological-geochemical state of soils in Ulaanbaatar (Mongolia). Eurasian Soil Sci. 2011, 44, 709–721. [Google Scholar] [CrossRef]
- Kosheleva, N.; Kasimov, N.; Dorjgotov, D.; Bazha, S.; Golovanov, D.; Sorokina, O.; Enkh-Amgalan, S. Assessment of heavy metal pollution of soils in industrial cities of Mongolia. Geogr. Environ. Sustain. 2010, 3, 51–65. [Google Scholar] [CrossRef] [Green Version]
- Khazheeva, Z.I.; Plyusnin, A.M. The influence of water management on the state of the watercourses of the Selenga River Basin. Geogr. Nat. Resour. Russ. 2012, 4, 48–52. [Google Scholar]
- Baljinnyam, N.; Gerbish, S.; Ganbold, G.; Lodoysamba, S.; Frontasyeva, M.V.; Pavlov, S.S. Heavy metals in the environmental objects of non-ferrous industrial region of Mongolia, the town of Erdenet. In Proceedings of the XVII International Seminar on Interaction of Neutrons with Nuclei (Neutron Spectroscopy, Nuclear Structure, Related Topics), Dubna, Russia, 27–29 May 2009; 2009; pp. 85–90. [Google Scholar]
- Timofeev, I.V.; Kosheleva, N.E.; Kasimov, N.S.; Gunin, P.D.; Sandag, E.-A. Geochemical transformation of soil cover in copper–molybdenum mining areas (Erdenet, Mongolia). J. Soils Sediments 2015, 16, 1225–1237. [Google Scholar] [CrossRef]
- Kosheleva, N.E.; Timofeev, I.V.; Kasimov, N.S.; Sandag, E.-A. Geochemical transformation of soil cover and woody vegetation in the largest industrial and transport center of Northern Mongolia (Darkhan). Appl. Geochem. 2019, 107, 80–90. [Google Scholar] [CrossRef]
- Zinovieva, I.G.; Sokolov, A.V.; Fedorov, I.B.; Shulgina, L.I. The Second Stage of Measures to Eliminate the Environmental Consequences of the Dzhidinsky Tungsten-molybdenum Mining and Processing Plant in the Zakamensky District of the Republic of Buryatia: Pre-project Studies; Scientific and Technical Report No. 1; Gidrospetstroi: Chita, Russia, 2011 01 December; 213p. (In Russian) [Google Scholar]
- Glotov, V.V.; Postnikova, O.V. Assessment of water quality of rivers of the Transbaikal territory and its changes under the influence of anthropogenic factors. Transbaikal State University J. 2015, 4, 13–18. [Google Scholar]
- Kasimov, N.S.; Kosheleva, N.E.; Timofeev, I.V. Ecological and Geochemical Assessment of Woody Vegetation in Tungsten-Molybdenum Mining Area (Buryat Republic, Russia). IOP Conf. Ser. Earth Environ. Sci. 2016, 41, 012026. [Google Scholar] [CrossRef] [Green Version]
- Karpoff, B.S.; Roscoe, W.E. Report on Placer Gold Properties in the Tuul Valley, Zaamar Goldfield, Mongolia; Roscoe Postle Associates INC: Toronto, Canada, 2005. [Google Scholar]
- Janchivdorj, L. Gold mining and water use. Geol. Issues Mong. 2006, 6, 258–265. [Google Scholar]
- Byambaa, B.; Todo, Y. Impact of placer gold mine technology on water quality: A case study of Tuul river valley in the Zaamar goldfield, Mongolia. In Water Resources Management VI; Brebbia, C.A., Popov, V., Eds.; WIT Press: Southampton, UK, 2011; pp. 309–318. [Google Scholar] [CrossRef] [Green Version]
- Lim, H.-S.; Lee, J.-S.; Chon, H.-T.; Sager, M. Heavy metal contamination and health risk assessment in the vicinity of the abandoned Songcheon Au–Ag mine in Korea. J. Geochem. Explor. 2008, 96, 223–230. [Google Scholar] [CrossRef]
- Rush, E.A.; Baltakova, O.R.; Zhu, V.N.; Frolov, V.S. Ecological and economic approach to the development of the coal mining industry. Bull. KuzSTU. Russ. 2003, 5, 86–91. [Google Scholar]
- Gaillardet, J.; Viers, J.; Dupré, B. Trace Elements in River Waters. In Treatise on Geochemistry; Elsevier Science: Amsterdam, The Netherlands, 2003; pp. 225–272. [Google Scholar] [CrossRef]
- Viers, J.; Dupré, B.; Gaillardet, J. Chemical composition of suspended sediments in World Rivers: New insights from a new database. Sci. Total Environ. 2009, 407, 853–868. [Google Scholar] [CrossRef]
- Wedepohl, K.H. The composition of the continental crust. Geochim. Cosmochim. Acta 1995, 59, 1217–1232. [Google Scholar] [CrossRef]
- Rudnick, R.L.; Gao, S. Composition of the continental crust. In Treatise on Geochemistry; Elsevier Science: Amsterdam, The Netherlands, 2003; pp. 1–64. [Google Scholar] [CrossRef]
- Hu, Z.; Gao, S. Upper crustal abundances of trace elements: A revision and update. Chem. Geol. 2008, 253, 205–221. [Google Scholar] [CrossRef]
- Maximum Permissible Concentrations (MPC) of chemicals in the Water Bodies of Drinking, Cultural and Domestic Water Use; GN 2.1.5.1315-03; Ministry of Health of The Russian Federation: Moscow, Russia, 2017 13 July.
- Mongolian National Standard 4568: Water Quality, General Requirements; Authority for Standard and Measurement; MNS (4586-1998); Mongolian Agency for Standardization and Metrology: Ulaanbaatar, Mongolia, 1998.
- Cotruvo, J.A. 2017 WHO Guidelines for Drinking Water Quality: First Addendum to the Fourth Edition. J. Am. Water Works Assoc. 2017, 109, 44–51. [Google Scholar] [CrossRef] [Green Version]
- Kachinsky, N.A. Mechanical and Micro-aggregate Composition of Soils; Russian Academy of Sciences: Moscow, USSR, 1958. (In Russian) [Google Scholar]
- Kearns, J.; Turner, A. An evaluation of the toxicity and bioaccumulation of bismuth in the coastal environment using three species of macroalga. Environ. Pollut. 2016, 208, 435–441. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Thornton, I. Multi-element contamination of soils and plants in old mining areas, U.K. Appl. Geochem. 1993, 8, 51–56. [Google Scholar] [CrossRef]
- Koval’, P.V.; Ariunbileg, S.; Libatorov, Y.I.; Maksimyuk, I.Y. The Bayanula molybdenum-copper porphyry prospect, Central Mongolia, and its relation to magmatism. Int. Geol. Rev. 1988, 30, 900–911. [Google Scholar] [CrossRef]
- Batbayar, G.; Pfeiffer, M.; von Tümpling, W.; Kappas, M.; Karthe, D. Chemical water quality gradients in the Mongolian sub-catchments of the Selenga River basin. Environ. Monit. Assess. 2017, 189, 420. [Google Scholar] [CrossRef] [PubMed]
- Štyriaková, I.; Štyriak, I.; Oberhänsli, H. Rock weathering by indigenous heterotrophic bacteria of Bacillus spp. at different temperature: A laboratory experiment. Mineral. Petrol. 2012, 105, 135–144. [Google Scholar] [CrossRef]
- Callender, E.; Granina, L. Geochemical mass balances of major elements in Lake Baikal. Limnol. Oceanogr. 1997, 42, 148–155. [Google Scholar] [CrossRef]
- Mironov, Y.B. Uranium of Mongolia; Natural History Museum: London, UK, 2005. [Google Scholar]
- Pinsky, E.M.; Mironov, Y.B.; Afanasiev, G. Uranium ore epochs as a reflection in the Earth’s crust of impulses of the Earth’ internal energy. Reg. Geol. Metallog. Russ. 2015, 64, 76–83. [Google Scholar]
- Nriagu, J.; Nam, D.-H.; Ayanwola, T.A.; Dinh, H.; Erdenechimeg, E.; Ochir, C.; Bolormaa, T.-A. High levels of uranium in groundwater of Ulaanbaatar, Mongolia. Sci. Total Environ. 2012, 414, 722–726. [Google Scholar] [CrossRef] [Green Version]
- Chebykin, E.P.; Sorokovikova, L.M.; Tomberg, I.; Rasskazov, S.V.; Khodzher, T.V.; Grachev, M.A. Current state of the Selenga River waters in the Russian territory concerning major components and trace elements. Chem. Sustain. Dev. 2012, 20, 561–580. [Google Scholar]
- Mochizuki, A.; Murata, T.; Hosoda, K.; Katano, T.; Tanaka, Y.; Mimura, T.; Mitamura, O.; Nakano, S.; Okazaki, Y.; Sugiyama, Y.; et al. Distributions and geochemical behaviors of oxyanion-forming trace elements and uranium in the Hövsgöl–Baikal–Yenisei water system of Mongolia and Russia. J. Geochem. Explor. 2018, 188, 123–136. [Google Scholar] [CrossRef]
- Pfeiffer, M.; Batbayar, G.; Hofmann, J.; Siegfried, K.; Karthe, D.; Hahn-Tomer, S. Investigating arsenic (As) occurrence and sources in ground, surface, waste and drinking water in northern Mongolia. Environ. Earth Sci. 2015, 73, 649–662. [Google Scholar] [CrossRef]
- Isupov, V.; Vladimirov, A.; Sodov, A.; Kolpakova, M.; Shvartsev, S.; Volkova, N. Hydromineral resources of saline lakes of Mongolia and Russian Altai. Adv. Mater. Res. 2015, 1085, 166–170. [Google Scholar] [CrossRef]
- Smedley, P.L.; Kinniburgh, D.G. A review of the source, behaviour and distribution of arsenic in natural waters. Appl. Geochem. 2002, 17, 517–568. [Google Scholar] [CrossRef] [Green Version]
- Dzombak, D.A.; Morel, F.M. Surface Complexation Modeling: Hydrous Ferric Oxide; John Wiley & Sons: New York, NY, USA, 1990. [Google Scholar]
- Watanabe, Y.; Stein, H.J. Re-Os ages for the Erdenet and Tsagaan Suvarga porphyry Cu-Mo deposits, Mongolia, and tectonic implications. Econ. Geol. 2000, 95, 1537–1542. [Google Scholar] [CrossRef]
- Porter, T.M. (Mike) The geology, structure and mineralisation of the Oyu Tolgoi porphyry copper-gold-molybdenum deposits, Mongolia: A review. Geosci. Front. 2016, 7, 375–407. [Google Scholar] [CrossRef] [Green Version]
- Timofeev, I.V.; Kosheleva, N.E. Geochemical disturbance of soil cover in the nonferrous mining centers of the Selenga River basin. Environ. Geochem. Health 2017, 39, 803–819. [Google Scholar] [CrossRef] [PubMed]
- Savenko, V.S. Principal features of the chemical composition of suspended load in world rivers. Dokl. Earth Sci. 2006, 407, 450–454. [Google Scholar] [CrossRef]
- Dalai, B.; Ishiga, H. Geochemical evaluation of present-day Tuul River sediments, Ulaanbaatar basin, Mongolia. Environ. Monit. Assess. 2013, 185, 2869–2881. [Google Scholar] [CrossRef] [PubMed]
- Theuring, P.; Collins, A.L.; Rode, M. Source identification of fine-grained suspended sediment in the Kharaa River basin, northern Mongolia. Sci. Total Environ. 2015, 526, 77–87. [Google Scholar] [CrossRef]
- Saet, Y.E.; Revich, B.A.; Yanin, E.P.; Smirnova, R.S.; Basharkevich, I.L.; Onishchenko, T.L.; Pavlova, L.N.; Trefilova, N.Y.; Achkasov, A.I.; Sargsyan, S.S. Environmental Geochemistry; Nedra: Moscow, Russia, 1990. (In Russian) [Google Scholar]
- Kosheleva, N.E.; Timofeev, I.V.; Kasimov, N.S.; Kisselyova, T.M.; Alekseenko, A.V.; Sorokina, O.I. Trace element composition of poplar in mongolian cities. In Biogenic—Abiogenic Interactions in Natural and Anthropogenic Systems; Frank-Kamenetskaya, O.V., Panova, E.G., Vlasov, D.Y., Eds.; Lecture Notes in Earth System Sciences; Springer International Publishing: Berlin, Germany, 2016; pp. 165–178. [Google Scholar]
- Silow, E.A. The present state of the Lake Baikal contamination. In Ecotechnology in Environmental Protection and Fresh Water Lake Management; Pai Chai University: Taejon, Korea, 2000; pp. 105–110. [Google Scholar]
- Nadmitov, B.; Hong, S.; In Kang, S.; Chu, J.M.; Gomboev, B.; Janchivdorj, L.; Lee, C.-H.; Khim, J.S. Large-scale monitoring and assessment of metal contamination in surface water of the Selenga River Basin (2007–2009). Environ. Sci. Pollut. Res. 2015, 22, 2856–2867. [Google Scholar] [CrossRef]
- Chalov, S.; Kasimov, N.; Lychagin, M.; Belozerova, E.; Shinkareva, G.; Theuring, P.; Romanchenko, A.; Alexeevsky, N.; Garmaev, E. Water resources assessment of the Selenga-Baikal river system. Geoöko 2003, XXXIV, 77–102. [Google Scholar]
- Karthe, D.; Kasimov, N.S.; Chalov, S.R.; Shinkareva, G.L.; Malsy, M.; Menzel, L.; Theuring, P.; Hartwig, M.; Schweitzer, C.; Hofmann, J.; et al. Integrating Multi-Scale Data for the Assessment of Water Availability and Quality in the Kharaa - Orkhon - Selenga River System. Geogr. Environ. Sustain. 2014, 7, 65–86. [Google Scholar] [CrossRef] [Green Version]
- Batsaikhan, B.; Kwon, J.S.; Kim, K.H.; Lee, Y.J.; Lee, J.H.; Badarch, M.; Yun, S.T. Hydrochemical evaluation of the influences of mining activities on river water chemistry in central northern Mongolia. Environ. Sci. Pollut. Res. 2017. [Google Scholar] [CrossRef]
- Mato, R.R.A.M.; Kassenga, G.R. Potential threat of arsenic contamination of water sources from gold mining activities in Lake Victoria areas, Tanzania. In Proceedings of the 7th International Congress and Exhibition on Arsenic in the Environment (AS 2018), Beijing, China, 1–6 July 2018; Zhu, Y., Guo, H., Bhattacharya, P., Ahmad, A., Bundschuh, J., Naidu, R., Eds.; CRC Press: Boca Raton, FL, USA, 2018. [Google Scholar] [CrossRef]
- Bokar, H.; Traoré, A.Z.; Mariko, A.; Diallo, T.; Traoré, A.; Sy, A.; Soumaré, O.; Dolo, A.; Bamba, F.; Sacko, M.; et al. Geogenic influence and impact of mining activities on water soil and plants in surrounding areas of Morila Mine, Mali. J. Geochem. Explor. 2020, 209, 106429. [Google Scholar] [CrossRef]
- Kasimov, N.; Kosheleva, N.; Gunin, P.; Korlyakov, I.; Sorokina, O.; Timofeev, I. State of the environment of urban and mining areas in the Selenga Transboundary River Basin (Mongolia Russia). Environ. Earth Sci. 2016, 75. [Google Scholar] [CrossRef]
- Shinkareva, G.L.; Lychagin, M.Y.; Tarasov, M.K.; Pietroń, J.; Chichaeva, M.A.; Chalov, S.R. Biogeochemical specialization of macrophytes and their role as a biofilter in the Selenga delta. Geogr. Environ. Sustain. 2019, 12, 240–263. [Google Scholar] [CrossRef] [Green Version]
- Ashton, P.J.; Love, D.; Mahachi, H.; Dirks, P.H.G.M. An Overview of the Impact of Mining and Mineral Processing Operations on Water Resources and Water Quality in the Zambezi, Limpopo and Olifants Catchments in Southern Africa. Contract Report to the Mining, Minerals and Sustainable Development, Report No. ENV-P-C 2001-042; CSIREnvironmentek: Pretoria, South Africa; University of Zimbabwe: Harare, Zimbabwe, 2001; p. 336. [Google Scholar]
- Sorokovikova, L.M.; Popovskaya, G.I.; Tomberg, I.V.; Sinyukovich, V.N.; Kravchenko, O.S.; Marinaite, I.I.; Bashenkhaeva, N.V.; Khodzher, T.V. The Selenga River water quality on the border with Mongolia at the beginning of the 21st century. Russ. Meteorol. Hydrol. 2013, 38, 126–133. [Google Scholar] [CrossRef]
- Pastor, J.; Solin, J.; Bridgham, S.D.; Updegraff, K.; Harth, C.; Weishampel, P.; Dewey, B. Global warming and the export of dissolved organic carbon from boreal peatlands. Oikos 2003, 100, 380–386. [Google Scholar] [CrossRef]
- Khodzher, T.V.; Domysheva, V.M.; Sorokovikova, L.M.; Sakirko, M.V.; Tomberg, I.V. Current chemical composition of Lake Baikal water. Inl. Waters 2017, 7, 250–258. [Google Scholar] [CrossRef]
Object | Season I (2011) | Season II (2012) | Season III (2013) | Season IV (2014) | Season V (2015) | Season VI (2016) | Total |
---|---|---|---|---|---|---|---|
River water | 95 | 114 | 110 | 83 | 34 | 39 | 475 |
Suspended sediments | 80 | 113 | 113 | 83 | 34 | 36 | 459 |
Metals | WHO 1 | MNS 2 | MPCD 3 | Hazard Class 3 | World Average 4, Wd | Selenga Basin | |||
---|---|---|---|---|---|---|---|---|---|
Basin Average (n = 475) | Back- ground, Bd (n = 39) | Moderate Anthropogenic Impact, Ad (n = 387) | Hot Spots, Hd (n = 49) | ||||||
As | 10 | 10 | 10 | 1 | 0.6 | 1.1 | 0.6 | 1.1 | 2.7 |
B | 2400 | no data | 500 | 2 | 10.2 | 10.8 | 4.0 | 10.9 | 32.0 |
Bi | no data | no data | 100 | 2 | no data | 0.004 | 0.004 | 0.004 | 0.004 |
Cd | 3 | 5 | 1 | 2 | 0.08 | 0.013 | 0.004 | 0.014 | 0.029 |
Co | no data | 10 | 100 | 2 | 0.1 | 0.09 | 0.06 | 0.08 | 0.19 |
Cr | 50 | 50 | 500 | 3 | 0.7 | 1.2 | 1.5 | 1.2 | 1.2 |
Cu | 2000 | 10 | 1000 | 3 | 1.5 | 1.1 | 0.5 | 1.1 | 1.9 |
Fe | no data | no data | 300 | 3 | 66 | 21 | 21 | 22 | 15 |
Mn | no data | 100 | 100 | 3 | 34 | 4 | 2 | 4 | 12 |
Mo | no data | 250 | 250 | 2 | 0.4 | 1.5 | 0.8 | 1.4 | 3.4 |
Ni | 70 | 10 | 20 | 2 | 0.8 | 0.6 | 0.4 | 0.6 | 0.9 |
Pb | 10 | 10 | 10 | 2 | 0.1 | 0.05 | 0.05 | 0.05 | 0.05 |
Sn | no data | no data | no data | no data | 34 | 0.1 | 0.05 | 0.05 | 0.05 |
Sb | 0.02 | no data | 5 | 2 | 66 | 0.08 | 0.06 | 0.08 | 0.18 |
U | 0.03 | no data | 100 | 2 | 0.4 | 1.3 | 0.8 | 1.3 | 4.1 |
V | no data | no data | 100 | 3 | 0.7 | 1.5 | 1.5 | 1.2 | 1.2 |
W | no data | no data | 50 | 2 | 0.1 | 0.04 | 0.03 | 0.04 | 0.10 |
Zn | no data | 10 | 1000 | 3 | 0.6 | 6.7 | 3.0 | 6.9 | 6.5 |
Metals | World Average *, Ws | Selenga Basin | |||
---|---|---|---|---|---|
Basin Average (n = 460) | Background, Bs (n = 38) | Moderate Anthropogenic Impact, As (n = 378) | Hot Spots, Hs (n = 44) | ||
As | 36.3 | 13.1 | 12.0 | 13.2 | 14.7 |
Mo | 2.98 | 1.05 | 1.28 | 1.03 | 1.56 |
U | 3.3 | 2.8 | 2.8 | 2.8 | 4.4 |
B | – | 38.3 | 27.8 | 39.3 | 42.0 |
Cr | 130 | 56 | 37 | 56 | 56 |
V | 129 | 94 | 85 | 94 | 90 |
Cu | 75.9 | 33.6 | 26.0 | 33.8 | 50.4 |
Zn | 208 | 96 | 78 | 96 | 149 |
Pb | 61.1 | 23.6 | 23.0 | 23.2 | 32.3 |
Bi | 0.85 | 0.53 | 0.51 | 0.54 | 0.55 |
Cd | 1.55 | 0.29 | 0.22 | 0.28 | 0.36 |
W | 1.99 | 1.72 | 1.59 | 1.57 | 3.49 |
Sn | 4.57 | 1.54 | 2.17 | 1.51 | 1.55 |
Sb | 2.19 | 0.34 | 0.28 | 0.36 | 0.63 |
Ni | 74.5 | 38.1 | 29.4 | 38.4 | 40.4 |
Co | 22.5 | 15.8 | 13.0 | 16.0 | 17.1 |
Mn | 1679 | 1576 | 1751 | 1603 | 1192 |
Fe | 58,100 | 40,248 | 31,711 | 40,964 | 40,738 |
Area | WHO | MNS | MPCD |
---|---|---|---|
Tuul River, Ulaanbaatar city | Cr11 * | Mn20As8Zn5 | Mn31As8B3 |
Khan gol River, Erdenet town | – | Cu6Zn5As4 | As4 |
Kharaa-Boroo river system | As82 | As82Zn4Mn4 | As82Mn4 |
Modonkul River | Pb60Cd3 | Pb60Zn56Cu22Mn5Cd2 | Pb60Cd11Mn5Sb4 |
Zakamensk, tailings | Cd2 | Mo6As3 | Mo6Cd5As3 |
Selenga downstream Dzhida River | Cr4 | – | – |
Tugnuj River | – | Mn6Zn5Ni2 | Mn6 |
Selenga Delta | – | – | Mn2 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kasimov, N.; Shinkareva, G.; Lychagin, M.; Kosheleva, N.; Chalov, S.; Pashkina, M.; Thorslund, J.; Jarsjö, J. River Water Quality of the Selenga-Baikal Basin: Part I—Spatio-Temporal Patterns of Dissolved and Suspended Metals. Water 2020, 12, 2137. https://doi.org/10.3390/w12082137
Kasimov N, Shinkareva G, Lychagin M, Kosheleva N, Chalov S, Pashkina M, Thorslund J, Jarsjö J. River Water Quality of the Selenga-Baikal Basin: Part I—Spatio-Temporal Patterns of Dissolved and Suspended Metals. Water. 2020; 12(8):2137. https://doi.org/10.3390/w12082137
Chicago/Turabian StyleKasimov, Nikolay, Galina Shinkareva, Mikhail Lychagin, Natalia Kosheleva, Sergey Chalov, Margarita Pashkina, Josefin Thorslund, and Jerker Jarsjö. 2020. "River Water Quality of the Selenga-Baikal Basin: Part I—Spatio-Temporal Patterns of Dissolved and Suspended Metals" Water 12, no. 8: 2137. https://doi.org/10.3390/w12082137
APA StyleKasimov, N., Shinkareva, G., Lychagin, M., Kosheleva, N., Chalov, S., Pashkina, M., Thorslund, J., & Jarsjö, J. (2020). River Water Quality of the Selenga-Baikal Basin: Part I—Spatio-Temporal Patterns of Dissolved and Suspended Metals. Water, 12(8), 2137. https://doi.org/10.3390/w12082137