River Water Quality of the Selenga-Baikal Basin: Part II—Metal Partitioning under Different Hydroclimatic Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Field Sampling, Analytical Procedures and Interpretation Methods
3. Results and Discussion
3.1. Trends of Seasonal Changes in Metal and Metalloid Partitioning
3.2. Metal Partitioning in Sub-Catchments throughout the Selenga Basin
3.2.1. The Tuul River Basin
3.2.2. The Kharaa River Basin
3.2.3. The Orkhon River Basin
3.2.4. The Dzhida River Basin
3.2.5. The Uda River Basin
3.2.6. Selenga Main Channel
3.3. Main Drivers of Metal Partitioning
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Duarte, B.; Silva, G.; Costa, J.L.; Medeiros, J.P.; Azeda, C.; Sá, E.; Metelo, I.; Costa, M.J.; Caçador, I. Heavy metal distribution and partitioning in the vicinity of the discharge areas of Lisbon drainage basins (Tagus Estuary, Portugal). J. Sea Res. 2014, 93, 101–111. [Google Scholar] [CrossRef]
- Taghinia Hejabi, A.; Basavarajappa, H.T.; Karbassi, A.R.; Monavari, S.M. Heavy metal pollution in water and sediments in the Kabini River, Karnataka, India. Environ. Monit. Assess. 2011, 182, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Wang, Y.; Shen, Z.; Niu, J.; Tang, Z. Distribution and speciation of heavy metals in sediments from the mainstream, tributaries, and lakes of the Yangtze River catchment of Wuhan, China. J. Hazard. Mater. 2009, 166, 1186–1194. [Google Scholar] [CrossRef] [PubMed]
- Enguix González, A.; Ternero Rodríguez, M.; Jiménez Sá, J.C.; Fernández Espinosa, A.J.; Barragán de la Rosa, F.J.; González, A.E.; Rodríguez, M.T.; Sá, J.J.; Espinosa, A.F.; De La Rosa, F.B. Assessment of metals in sediments in a tributary of Guadalquiver River (Spain). Heavy metal partitioning and relation between the water and sediment system. Water Air Soil Pollut. 2000, 121, 11–29. [Google Scholar] [CrossRef]
- Gaillardet, J.; Viers, J.; Dupré, B. Trace Elements in River Waters. In Treatise on Geochemistry; Elsevier: Amsterdam, The Netherlands, 2003; pp. 225–272. ISBN 9780080437514. [Google Scholar]
- Lychagin, M.Y.; Tkachenko, A.N.; Kasimov, N.S.; Kroonenberg, S.B. Heavy Metals in the Water, Plants, and Bottom Sediments of the Volga River Mouth Area. J. Coast. Res. 2015, 314, 859–868. [Google Scholar] [CrossRef]
- Djukić, A.; Lekić, B.; Rajaković-Ognjanović, V.; Veljović, D.; Vulić, T.; Djolić, M.; Naunovic, Z.; Despotović, J.; Prodanović, D. Further insight into the mechanism of heavy metals partitioning in stormwater runoff. J. Environ. Manag. 2016, 168, 104–110. [Google Scholar] [CrossRef]
- Brick, C.M.; Moore, J.N. Diel Variation of Trace Metals in the Upper Clark Fork River, Montana. Environ. Sci. Technol. 1996, 30, 1953–1960. [Google Scholar] [CrossRef]
- Ollivier, P.; Radakovitch, O.; Hamelin, B. Major and trace element partition and fluxes in the Rhône River. Chem. Geol. 2011, 285, 15–31. [Google Scholar] [CrossRef]
- Bradley, S.B. Flood effects on the transport of heavy metals. Int. J. Environ. Stud. 1984, 22, 225–230. [Google Scholar] [CrossRef]
- Barber, L.B.; Paschke, S.S.; Battaglin, W.A.; Douville, C.; Fitzgerald, K.C.; Keefe, S.H.; Roth, D.A.; Vajda, A.M. Effects of an Extreme Flood on Trace Elements in River Water—From Urban Stream to Major River Basin. Environ. Sci. Technol. 2017, 51, 10344–10356. [Google Scholar] [CrossRef]
- Chen, J.; Bouchez, J.; Gaillardet, J.; Louvat, P. Behaviors of Major and Trace Elements During Single Flood Event in the Seine River, France. Procedia Earth Planet. Sci. 2014, 10, 343–348. [Google Scholar] [CrossRef] [Green Version]
- Roussiez, V.; Probst, A.; Probst, J.-L. Significance of floods in metal dynamics and export in a small agricultural catchment. J. Hydrol. 2013, 499, 71–81. [Google Scholar] [CrossRef] [Green Version]
- Censi, P.; Spoto, S.E.; Saiano, F.; Sprovieri, M.; Mazzola, S.; Nardone, G.; Di Geronimo, S.I.; Punturo, R.; Ottonello, D. Heavy metals in coastal water systems. A case study from the northwestern Gulf of Thailand. Chemosphere 2006, 64, 1167–1176. [Google Scholar] [CrossRef] [PubMed]
- Jain, C.K.; Singhal, D.C.; Sharma, M.K. Metal Pollution Assessment of Sediment and Water in the River Hindon, India. Environ. Monit. Assess. 2005, 105, 193–207. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Wang, W.-X. Phase partitioning of trace metals in a contaminated estuary influenced by industrial effluent discharge. Environ. Pollut. 2016, 214, 35–44. [Google Scholar] [CrossRef] [PubMed]
- Karbassi, A.R.; Fakhraee, M.; Heidari, M.; Vaezi, A.R.; Valikhani Samani, A.R. Dissolved and particulate trace metal geochemistry during mixing of Karganrud River with Caspian Sea water. Arab. J. Geosci. 2015, 8, 2143–2151. [Google Scholar] [CrossRef]
- Shafer, M.M.; Overdier, J.T.; Hurley, J.P.; Armstrong, D.; Webb, D. The influence of dissolved organic carbon, suspended particulates, and hydrology on the concentration, partitioning and variability of trace metals in two contrasting Wisconsin watersheds (USA). Chem. Geol. 1997, 136, 71–97. [Google Scholar] [CrossRef]
- Islam, M.S.; Ahmed, M.K.; Raknuzzaman, M.; Habibullah -Al- Mamun, M.; Islam, M.K. Heavy metal pollution in surface water and sediment: A preliminary assessment of an urban river in a developing country. Ecol. Indic. 2015, 48, 282–291. [Google Scholar] [CrossRef]
- Gallo, M.; Trento, A.; Alvarez, A.; Beldoménico, H.; Campagnoli, D. Dissolved and Particulate Heavy Metals in the Salado River (Santa FE, Argentina). Water Air Soil Pollut. 2006, 174, 367–384. [Google Scholar] [CrossRef]
- Nadmitov, B.; Hong, S.; In Kang, S.; Chu, J.M.; Gomboev, B.; Janchivdorj, L.; Lee, C.-H.; Khim, J.S. Large-scale monitoring and assessment of metal contamination in surface water of the Selenga River Basin (2007–2009). Environ. Sci. Pollut. Res. 2015, 22, 2856–2867. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, J.J.; Ali, A.; DeLaune, R.D. Heavy metal distribution and water quality characterization of water bodies in Louisiana’s Lake Pontchartrain Basin, USA. Environ. Monit. Assess. 2016, 188. [Google Scholar] [CrossRef] [PubMed]
- Chalov, S.R.; Liu, S.; Chalov, R.S.; Chalova, E.R.; Chernov, A.V.; Promakhova, E.V.; Berkovitch, K.M.; Chalova, A.S.; Zavadsky, A.S.; Mikhailova, N. Environmental and human impacts on sediment transport of the largest Asian rivers of Russia and China. Environ. Earth Sci. 2018, 77, 274. [Google Scholar] [CrossRef]
- Viers, J.; Dupré, B.; Gaillardet, J. Chemical composition of suspended sediments in World Rivers: New insights from a new database. Sci. Total Environ. 2009, 407, 853–868. [Google Scholar] [CrossRef] [PubMed]
- Dupré, B.; Gaillardet, J.; Rousseau, D.; Allègre, C.J. Major and trace elements of river-borne material: The Congo Basin. Geochim. Cosmochim. Acta 1996, 60, 1301–1321. [Google Scholar] [CrossRef]
- Guéguen, C.; Dominik, J. Partitioning of trace metals between particulate, colloidal and truly dissolved fractions in a polluted river: The Upper Vistula River (Poland). Appl. Geochem. 2003, 18, 457–470. [Google Scholar] [CrossRef]
- Myangan, O.; Kawahigashi, M.; Oyuntsetseg, B.; Fujitake, N. Impact of land uses on heavy metal distribution in the Selenga River system in Mongolia. Environ. Earth Sci. 2017, 76, 346. [Google Scholar] [CrossRef]
- Chalov, S.; Moreido, V.; Sharapova, E.; Efimova, L.; Efimov, V.; Lychagin, M.; Kasimov, N. Hydrodynamic controls of particulate metals partitioning along the lower Selenga River—Main tributary of the Lake Baikal. Water 2020, 12, 1345. [Google Scholar] [CrossRef]
- Chalov, S.; Thorslund, J.; Kasimov, N.; Aybullatov, D.; Ilyicheva, E.; Karthe, D.; Kositsky, A.; Lychagin, M.; Nittrouer, J.; Pavlov, M.; et al. The Selenga River delta: A geochemical barrier protecting Lake Baikal waters. Reg. Environ. Change 2017, 17, 2039–2053. [Google Scholar] [CrossRef]
- Thorslund, J.; Jarsjö, J.; Wällstedt, T.; Mörth, C.M.; Lychagin, M.Y.; Chalov, S.R. Geochemical controls on the partitioning and hydrological transport of metals in a non-acidic river system. Hydrol. Earth Syst. Sci. Discuss. 2014, 11, 9715–9758. [Google Scholar] [CrossRef] [Green Version]
- Thorslund, J.; Jarsjö, J.; Wällstedt, T.; Mörth, C.M.; Lychagin, M.Y.; Chalov, S.R. Speciation and hydrological transport of metals in non-acidic river systems of the Lake Baikal basin: Field data and model predictions. Reg. Environ. Change 2017, 17, 2007–2021. [Google Scholar] [CrossRef] [Green Version]
- Kasimov, N.; Karthe, D.; Chalov, S. Environmental change in the Selenga River—Lake Baikal Basin. Reg. Environ. Change 2017, 17, 1945–1949. [Google Scholar] [CrossRef]
- Chalov, S.S.R.; Jarsjö, J.; Kasimov, N.S.N.S.; O Romanchenko, A.; Pietroń, J.; Thorslund, J.; Promakhova, E.V.E.V.; Romanchenko, A.; Pietroń, J.; Thorslund, J.; et al. Spatio-temporal variation of sediment transport in the Selenga River Basin, Mongolia and Russia. Environ. Earth Sci. 2014, 73, 663–680. [Google Scholar] [CrossRef]
- Moatar, F.; Meybeck, M.; Raymond, S.; Birgand, F.; Curie, F. River flux uncertainties predicted by hydrological variability and riverine material behaviour. Hydrol. Process. 2013, 27, 3535–3546. [Google Scholar] [CrossRef]
- Rode, M.; Suhr, U. Uncertainties in selected river water quality data. Hydrol. Earth Syst. Sci. Discuss. 2007, 11, 863–874. [Google Scholar] [CrossRef] [Green Version]
- Horowitz, A. A Primer on Trace Metal-Sediment Chemistry; US Government Printing Office: Alexandria, VA, USA, 1985. [Google Scholar]
- Robertson, D.M.; Roerish, E.D. Influence of various water quality sampling strategies on load estimates for small streams. Water Resour. Res. 1999, 35, 3747–3759. [Google Scholar] [CrossRef]
- Littlewood, I. Hydrological regimes, sampling strategies, and assessment of errors in mass load estimates for United Kingdom rivers. Environ. Int. 1995, 21, 211–220. [Google Scholar] [CrossRef]
- Birgand, F.; Faucheux, C.; Gruau, G.; Moatar, F.; Meybeck, M. Uncertainties in Assessing Annual Nitrate Loads and Concentration Indicators: Part 2. Deriving Sampling Frequency Charts in Brittany, France. Trans. ASABE 2011, 54, 93–104. [Google Scholar] [CrossRef] [Green Version]
- Kasimov, N.; Shinkareva, G.; Lychagin, M.; Kosheleva, N.; Chalov, S.; Pashkina, M.; Thorslund, J.; Jarsjö, J. River water quality of the Selenga-Baikal basin: Part I—Spatio-temporal patterns of dissolved and suspended metals. Water 2020, 12, 2137. [Google Scholar] [CrossRef]
- Shabanova, E.V.; Byambasuren, T.; Ochirbat, G.; Vasil’eva, I.E.; Khuukhenkhuu, B.; Korolkov, A.T. Relationship between major and trace elements in Ulaanbaatar soils: A study based on multivariate statistical analysis. Geogr. Environ. Sustain. 2019, 12, 199–212. [Google Scholar] [CrossRef] [Green Version]
- Aschmann, M. Addressing air pollution and beyond in Ulaanbaatar: The role of sustainable mobility. Geogr. Environ. Sustain. 2019, 12, 213–223. [Google Scholar] [CrossRef] [Green Version]
- Garmaev, E.Z.; Kulikov, A.I.; Tsydypov, B.Z.; Sodnomov, B.V.; Ayurzhanaev, A.A. Environmental conditions of Zakamensk town (Dzhida River basin Hotspot). Geogr. Environ. Sustain. 2019, 12, 224–239. [Google Scholar] [CrossRef] [Green Version]
- Gradel, A.; Sukhbaatar, G.; Karthe, D.; Kang, H. Forest management in Mongolia—A review of challenges and lessons learned with special reference to degradation and deforestation. Geogr. Environ. Sustain. 2019, 12, 133–166. [Google Scholar] [CrossRef] [Green Version]
- Altrell, D. Multipurpose national forest inventory in Mongolia, 2014-2017—A tool to support sustainable forest management. Geogr. Environ. Sustain. 2019, 12, 167–183. [Google Scholar] [CrossRef] [Green Version]
- Thorslund, J.; Chalov, S.; Karthe, D.; Jarsjö, J. Impacts of hydroclimate and mining on arsenic contamination of groundwater and surface water systems in Central Asia. In Proceedings of the Sixth International Congress on Arsenic in the Environment (As2016), Stockholm, Sweden, 19–23 June 2016; CRC Press: Boca Raton, FL, USA; pp. 185–186. [Google Scholar] [CrossRef]
- Batsaikhan, B.; Kwon, J.S.; Kim, K.H.; Lee, Y.J.; Lee, J.H.; Badarch, M.; Yun, S.T. Hydrochemical evaluation of the influences of mining activities on river water chemistry in central northern Mongolia. Environ. Sci. Pollut. Res. 2017. [Google Scholar] [CrossRef] [PubMed]
- Juřička, D.; Pecina, V.; Brtnický, M.; Kynický, J. Mining as a catalyst of overgrazing resulting in risk of forest retreat, Erdenet Mongolia. Geogr. Environ. Sustain. 2019, 12, 184–198. [Google Scholar] [CrossRef] [Green Version]
- Gelfan, A.N.; Millionshchikova, T.D. Validation of a Hydrological Model Intended for Impact Study: Problem Statement and Solution Example for Selenga River Basin. Water Resour. 2018, 45, 90–101. [Google Scholar] [CrossRef]
- Frolova, N.L.; Belyakova, P.A.; Grigoriev, V.Y.; Sazonov, A.A.; Zotov, L.V.; Jarsjö, J. Runoff fluctuations in the Selenga River Basin. Reg. Environ. Change 2017, 17, 1965–1976. [Google Scholar] [CrossRef]
- Kaus, A.; Schäffer, M.; Büttner, O.; Karthe, D.; Borchardt, D. Regional patterns of heavy metal concentrations in water, sediment and five consumed fish species of the Kharaa River basin, Mongolia. Reg. Environ. Change 2016. [Google Scholar] [CrossRef]
- Karthe, D.; Kasimov, N.S.; Chalov, S.R.; Shinkareva, G.L.; Malsy, M.; Menzel, L.; Theuring, P.; Hartwig, M.; Schweitzer, C.; Hofmann, J.; et al. Integrating multi-scale data for the assessment of water availability and quality in the Kharaa-Orkhon-Selenga river system. Geogr. Environ. Sustain. 2014, 7, 65–86. [Google Scholar] [CrossRef] [Green Version]
- Kasimov, N.; Kosheleva, N.; Lychagin, M.; Chalov, S.; Alexeenko, A.; Bazilova, V.; Beshentsev, А.; Bogdanova, M.; Chernov, A.; Dorjgotov, D.; et al. Environmental Atlas-Monograph “Selenga-Baikal”; Kasimov, N., Kosheleva, N., Lychagin, M., Chalov, S., Eds.; Faculty of Geography of Lomonosov Moscow State University: Moscow, Russia, 2019; ISBN 978-5-9500502-4-4. [Google Scholar]
- Warren, L.A.; Zimmerman, A.P. The influence of temperature and NaCl on cadmium, copper and zinc partitioning among suspended particulate and dissolved phases in an urban river. Water Res. 1994, 28, 1921–1931. [Google Scholar] [CrossRef]
- Benoit, G.; Rozan, T.F. The influence of size distribution on the particle concentration effect and trace metal partitioning in rivers. Geochim. Cosmochim. Acta 1999, 63, 113–127. [Google Scholar] [CrossRef]
- Kasimov, N.S.; Lychagin, M.Y.; Chalov, S.R.; Shinkareva, G.L. Paragenetic associations of chemical elements in landscapes. Vestn. Mosk. Univ. Ser. 5 Geogr. 2019, 6, 20–28. [Google Scholar]
- Pietroń, J.; Chalov, S.R.; Chalova, A.S.; Alekseenko, A.V.; Jarsjö, J. Extreme spatial variability in riverine sediment load inputs due to soil loss in surface mining areas of the Lake Baikal basin. CATENA 2017, 152, 82–93. [Google Scholar] [CrossRef]
- Altansukh, O.; Davaa, G. Application of Index Analysis to Evaluate the Water Quality of the Tuul River in Mongolia. J. Water Resour. Prot. 2011. [Google Scholar] [CrossRef] [Green Version]
- Batbayar, Z.; Dolgorsuren, G.; Bron, J.; Dolgorsuren, G.; Chagnaa, N.; Gerelchuluun, J.; Puntsagsuren, C.; van der Linden, W. Tuul River Basin Integrated Water Management Plan; Preprint; Sh.Gantuul: Ulaanbaatar, Mongolia, 2012. [Google Scholar]
- Byambaa, B.; Todo, Y. Impact of placer gold mine technology on water quality: A case study of Tuul river valley in the Zaamar goldfield, Mongolia. In Proceedings of the Water Resources Management VI; WIT Press: Southampton, UK, 2011; pp. 309–318. [Google Scholar]
- Lee, Y.J.; Yun, S.T.; Badarch, M.; Lee, J.; Ayur, O.; Kwon, J.S.; Kim, D.M. Joint Research between Korea and Mongolia on Water Quality and Contamination of Transboundary Watershed in Northern Mongolia; Korea Environmental Institute, Mongolian Nature and Environment Consortium, Mongolia: Seoul, Korea, 2006; ISBN 978-89-8464-214-0 93530. [Google Scholar]
- Sato, H. Mongolia: the water situation in Ulaanbaatar. Soc. Syst. Rev. 2012, 3, 55–63. [Google Scholar]
- Odontsetseg, D.; Janchivdorj, L.; Udvaltsetseg, G.; Frieden, J. Some Results of Applying DPSIR Analysis for Ulaanbaatar as Part of the Selenge River Basin Integrated Water Management System. Proc. Mong. Acad. Sci. 2011, 22–31. [Google Scholar] [CrossRef] [Green Version]
- Altansukh, O. A Spatio-Temporal Assessment of the Water Quality in Tuul River, Mongolia. Mong. J. Biol. Sci. 2009, 7, 51–59. [Google Scholar] [CrossRef]
- Sikder, M.T.; Kihara, Y.; Yasuda, M.; Mihara, Y.; Tanaka, S.; Odgerel, D.; Mijiddorj, B.; Syawal, S.M.; Hosokawa, T.; Saito, T.; et al. River Water Pollution in Developed and Developing Countries: Judge and Assessment of Physicochemical Characteristics and Selected Dissolved Metal Concentration. CLEAN Soil Air Water 2013, 41, 60–68. [Google Scholar] [CrossRef]
- Dalai, B.; Ishiga, H. Geochemical evaluation of present-day Tuul River sediments, Ulaanbaatar basin, Mongolia. Environ. Monit. Assess. 2013, 185, 2869–2881. [Google Scholar] [CrossRef]
- Sorokina, O.I.; Kosheleva, N.E.; Kasimov, N.S.; Golovanov, D.L.; Bazha, S.N.; Dorzhgotov, D.; Enkh-Amgalan, S. Heavy metals in the air and snow cover of Ulan Bator. Geogr. Nat. Resour. 2013, 34, 291–301. [Google Scholar] [CrossRef]
- Kosheleva, N.; Kasimov, N.; Dorjgotov, D.; Bazha, S.; Golovanov, D.; Sorokina, O.; Enkh-Amgalan, S. Assessment of heavy metal pollution of soils in industrial cities of Mongolia. Geogr. Environ. Sustain. 2010, 3, 51–65. [Google Scholar] [CrossRef] [Green Version]
- Batjargal, T.; Otgonjargal, E.; Baek, K.; Yang, J.-S. Assessment of metals contamination of soils in Ulaanbaatar, Mongolia. J. Hazard. Mater. 2010, 184, 872–876. [Google Scholar] [CrossRef] [PubMed]
- Kasimov, N.S.; Kosheleva, N.E.; Sorokina, O.I.; Bazha, S.N.; Gunin, P.D.; Enkh-Amgalan, S. Ecological-geochemical state of soils in Ulaanbaatar (Mongolia). Eurasian Soil Sci. 2011, 44, 709–721. [Google Scholar] [CrossRef]
- Thorslund, J.; Jarsjö, J.; Chalov, S.R.; Belozerova, E.V. Gold mining impact on riverine heavy metal transport in a sparsely monitored region: The upper Lake Baikal Basin case. J. Environ. Monit. 2012, 14, 2780. [Google Scholar] [CrossRef]
- Inam, E.; Khantotong, S.; Kim, K.-W.; Tumendemberel, B.; Erdenetsetseg, S.; Puntsag, T. Geochemical distribution of trace element concentrations in the vicinity of Boroo gold mine, Selenge Province, Mongolia. Environ. Geochem. Health 2011, 33, 57–69. [Google Scholar] [CrossRef]
- Pfeiffer, M.; Batbayar, G.; Hofmann, J.; Siegfried, K.; Karthe, D.; Hahn-Tomer, S. Investigating arsenic (As) occurrence and sources in ground, surface, waste and drinking water in northern Mongolia. Environ. Earth Sci. 2015, 73, 649–662. [Google Scholar] [CrossRef]
- Hofmann, J.; Watson, V.; Scharaw, B. Groundwater quality under stress: Contaminants in the Kharaa River basin (Mongolia). Environ. Earth Sci. 2015, 73, 629–648. [Google Scholar] [CrossRef]
- Theuring, P.; Rode, M.; Behrens, S.; Kirchner, G.; Jha, A. Identification of fluvial sediment sources in the Kharaa River catchment, Northern Mongolia. Hydrol. Process. 2013, 27, 845–856. [Google Scholar] [CrossRef]
- Hofmann, J.; Hürdler, J.; Ibisch, R.; Schaeffer, M.; Borchardt, D. Analysis of Recent Nutrient Emission Pathways, Resulting Surface Water Quality and Ecological Impacts under Extreme Continental Climate: The Kharaa River Basin (Mongolia). Int. Rev. Hydrobiol. 2011, 96, 484–519. [Google Scholar] [CrossRef]
- Karthe, D.; Heldt, S.; Houdret, A.; Borchardt, D. IWRM in a country under rapid transition: Lessons learnt from the Kharaa River Basin, Mongolia. Environ. Earth Sci. 2015, 73, 681–695. [Google Scholar] [CrossRef]
- Karthe, D.; Borchardt, D.; Kaus, A. Towards an integrated water resources management for the Kharaa catchment, Mongolia. In Proceedings of the IWA 1st Central Asian Regional Young and Senior Water Professionals Conference, Almaty, Kazakhstan, 22–24 September 2011; pp. 79–93. [Google Scholar]
- Alekseevskii, N.I.; Bezozerova, E.V.; Kasimov, N.S.; Chalov, S.R. Spatial variability of suspended sediment transport characteristics in the Selenga Basin during rain floods. Vestn. Mosk. Univ. Ser. Geogr. 2013, 3, 60–65. [Google Scholar]
- Timofeev, I.V.; Kosheleva, N.E.; Kasimov, N.S.; Gunin, P.D.; Sandag, E.-A. Geochemical transformation of soil cover in copper–molybdenum mining areas (Erdenet, Mongolia). J. Soils Sediments 2015, 16, 1225–1237. [Google Scholar] [CrossRef]
- Tarmakhanov, E.E.; Budaev, D.A. The coal industry of Buryatia in 1960–1991. Bull. Buryat State Univ. Pedagog. Philol. Philos. Russ. 2015, 48–51. [Google Scholar] [CrossRef]
- Verkhoturov, A.G.; Razmakhnina, I.B. Geological engineering problems in the development of coal deposits in the Trans-Baikal Territory. Bull. Transbaikal State Univ. Russ. 2015, 8, 123. [Google Scholar]
- Kasimov, N.S.; Korlyakov, I.D.; Kosheleva, N.E. Distribution and factors of accumulation of heavy metals and metaloids in river bottom sediments in the territory of the Ulan-Ude city. Rudn. J. Ecol. Life Saf. 2017, 25, 380–395. [Google Scholar] [CrossRef]
- Tansel, B.; Rafiuddin, S. Heavy metal content in relation to particle size and organic content of surficial sediments in Miami River and transport potential. Int. J. Sediment. Res. 2016, 31, 324–329. [Google Scholar] [CrossRef]
- Promakhova, E.V. Variability of River Water Turbidity in Different Phases of the Water Regime. Ph.D. Thesis, Lomonosov Moscow State University, Moscow, Russia, 19 May 2016. [Google Scholar]
- Pietroń, J.; Nittrouer, J.A.; Chalov, S.R.; Dong, T.Y.; Kasimov, N.; Shinkareva, G.; Jarsjö, J. Sedimentation patterns in the Selenga River delta under changing hydroclimatic conditions. Hydrol. Process. 2018, 32, 278–292. [Google Scholar] [CrossRef]
- Bouchez, J.; Gaillardet, J.; France-Lanord, C.; Maurice, L.; Dutra-Maia, P. Grain size control of river suspended sediment geochemistry: Clues from Amazon River depth profiles. Geochem. Geophys. Geosyst. 2011, 12, Q03008. [Google Scholar] [CrossRef] [Green Version]
- Church, M. Interpreting sediment yield scaling. Earth Surf. Process. Landf. 2017, 42, 1895–1898. [Google Scholar] [CrossRef]
- Lu, H.; Moran, C.J.; Sivapalan, M. A theoretical exploration of catchment-scale sediment delivery. Water Resour. Res. 2005, 41, 1–15. [Google Scholar] [CrossRef]
Season & Year | SSC, mg/L | D0, mm | 100–75% | 75–50% | 50–25% | <25% | |||
---|---|---|---|---|---|---|---|---|---|
Max | Mean | Max | Mean | ||||||
Selenga Average | LW11 n = 32 | 117 | 28 | 0.11 | 0.07 | Bi85W80 | V73Co64Fe60 Cd51Pb50 | Mn49Ni40Cu32 Sn30Cr26 | Zn21As20B6 U3Mo1Sb0,6 |
LW12 n = 40 | 242 | 56 | 0.05 | 0.03 | Bi80 | Fe63Co60V59 Cr57Mn54 | Pb49Cr41Ni40 As35B26 | Zn,W22Sn20 Cd19U6Mo3 | |
HW13 n = 46 | 93 | 28 | 0.15 | 0.04 | Fe98Mn97 Co85Pb83 | Bi74Ni60V55 | Cu40W36Cr,Sn35 Zn32Cd,As31 | Sb15U7B6Mo2 | |
HW14 n = 67 | 49 | 20 | 0.68 | 0.10 | Fe99Mn96Pb92 Co87Ni85 | Bi,W66V64Cr54 | Cd46Sn44Cu40 | As22Sb19Zn6 U4Mo1 | |
LW15 n = 17 | 9 | 2 | 0.05 | 0.04 | Fe94Ni84 | Pb67 | Cu37Sn32Bi28 | As22Zn16Cd15 Co11Cr,V7 W,Sb6Mn4 | |
HW16 n = 7 | 110 | 78 | 0.10 | 0.07 | Fe100Mn,Cr,Pb99 Co,Sn96V94Bi93 Cd90W89Zn87Ni82 | Cu68 | As36Sb29 | U16Mo4 | |
Selenga delta | HW11 n = 15 | 71 | 21 | – | – | W85Bi84 | V72Co64Fe60 | Pb49Mn48Cd47 Ni39Sn31Cu27 | Zn24As,Cr22 B6U4 |
LW12 n = 19 | 199 | 59 | 0.02 | 0.02 | Bi87 | Cr69V,Co65Fe63 Mn56Pb51 | As48Ni42W35Cu32 B30Zn29Cd25 | Sn23U8Mo4 | |
HW13 n = 26 | 52 | 26 | – | – | Fe98Mn97 Pb87Co85 | Bi74Ni58V55 | Cd45Cu40Zn37W36 Cr35Sn33As31 | Sb15U7B6Mo2 | |
HW14 n = 52 | 43 | 19 | 0.68 | 0.11 | Fe98Mn95Co86 Pb85Ni84 | Bi66W64V63Cr53 | Sn43Cd42Cu39 | As22Sb19U4 Zn3Mo1 | |
LW15 n = 12 | 9 | 2.3 | 0.05 | 0.04 | Fe94Ni89 | Pb69Sn51 | Cu37Bi34As27 | Cd24Co19Zn17 Sb,V9Cr8W7 |
Object of Study | Number of Samples (n) | Q, (m3/s) | R, (kg/s) | SSC, (mg/L) | D < 1 μm | D < 10 μm | D0, (mm) |
---|---|---|---|---|---|---|---|
Selenga basin | 440 | – | Ni, V, Cr, As, U, Sb | Zn, W, Sn, As, U, Sb | Fe, W | Fe, Pb, Sb, B | – |
Mongolian rivers | 144 | – | Fe, Mn, Cr, As, U, B | Fe, Mn, Cr, As, U | – | – | – |
Tuul basin | 49 | Cr, Sn | Ni, W, Cu, Sn, As, U, B | Zn, W, Sn, As, U, Sb | Fe, Pb, Bi | Fe, As, Sb, B | Fe, Cu |
Basin Part | Season (N of Samples) | Metal Partitioning * |
---|---|---|
Average | HW (n = 208) | Fe98Mn97Pb91Co87Ni76Bi71V61Cr,W48Cd47Sn45Cu42As24Zn21Sb17B7U6Mo2 |
LW (n = 191) | Bi78Fe67Co53Mn49V48Pb47Ni41Cu33Cr25Cd24W23Sn21Zn20As19B18U5Mo,Sb1 | |
Areas with high anthropogenic impact | HW (n = 18) | Fe99Mn95Pb93Bi85Co82Cr74Sn73V66Ni62Cu47Zn43W40As31Sb18U8B4Mo2 |
LW (n = 18) | Fe81Bi63Pb57Cu53Zn50Mn49V43Co41Ni,Sn31Cd19Cr18W17As10B3U2Mo1Sb0.3 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kasimov, N.; Shinkareva, G.; Lychagin, M.; Chalov, S.; Pashkina, M.; Thorslund, J.; Jarsjö, J. River Water Quality of the Selenga-Baikal Basin: Part II—Metal Partitioning under Different Hydroclimatic Conditions. Water 2020, 12, 2392. https://doi.org/10.3390/w12092392
Kasimov N, Shinkareva G, Lychagin M, Chalov S, Pashkina M, Thorslund J, Jarsjö J. River Water Quality of the Selenga-Baikal Basin: Part II—Metal Partitioning under Different Hydroclimatic Conditions. Water. 2020; 12(9):2392. https://doi.org/10.3390/w12092392
Chicago/Turabian StyleKasimov, Nikolay, Galina Shinkareva, Mikhail Lychagin, Sergey Chalov, Margarita Pashkina, Josefin Thorslund, and Jerker Jarsjö. 2020. "River Water Quality of the Selenga-Baikal Basin: Part II—Metal Partitioning under Different Hydroclimatic Conditions" Water 12, no. 9: 2392. https://doi.org/10.3390/w12092392
APA StyleKasimov, N., Shinkareva, G., Lychagin, M., Chalov, S., Pashkina, M., Thorslund, J., & Jarsjö, J. (2020). River Water Quality of the Selenga-Baikal Basin: Part II—Metal Partitioning under Different Hydroclimatic Conditions. Water, 12(9), 2392. https://doi.org/10.3390/w12092392