Long-Term Hydro–Climatic Trends in the Mountainous Kofarnihon River Basin in Central Asia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study area
2.2. Data and Materials
3. Methodology
3.1. Mann–Kendall (MK) Test
3.2. Sen’s Slope Test
3.3. Pettitt’s Test
4. Results
4.1. Trend Analysis of the Seasonal Temperature in the Kofarnihon River Basin
4.2. Trend Analysis of the Annual and Decadal Temperature
4.3. Trend Analysis of the Seasonal Precipitation in the Kofarnihon River Basin
4.4. Trend Analysis of the Annual and Decadal Precipitation
4.5. The Trend Analysis of the Seasonal Streamflow in the Kofarnihon River Basin
4.6. Trend Analysis of the Annual Streamflow in the Kofarnihon River Basin
5. Discussion
6. Conclusions
- (1)
- The mean monthly temperature showed a significant increasing trend in spring, summer, and fall at the five climate stations, except for Anzob station, where we found a decreasing trend in winter during the 1951–2012 period. The seasonal mean temperature indicated that in the high-altitude areas of the KRB, the summer temperature trend significantly increased, and the winter temperature trend decreased. The mean annual temperature showed an increasing trend, with the highest trends of 0.25 °C/decade and 0.23 °C/decade at the Dushanbe and Shaartuz stations, respectively; the lowest of 0.01 °C/decade and 0.07 °C/decade was found at the Anzob and Hushyori stations. The change points mainly occurred in the 1970s and 1990s for all stations, except for Anzob station, where the change point appeared in 2007. The Pettitt’s test results showed that the abrupt changes in the high-altitude areas occurred later than those in the middle- and low-altitude areas in the KRB.
- (2)
- The seasonal precipitation exhibited decreasing trends at all six climate stations in spring, while an increasing trend was observed in winter at most climate stations during the 1951–2008 period. Our results for the seasonal precipitation showed a significant decreasing trend in spring and a significant increasing trend in winter in the high-altitude areas of the KRB. The annual precipitation trend at all stations continuously decreased over the basin, with the highest negative trend of −14.63 mm year−1 per decade observed at the Faizobod station and the lowest of −4.76 mm year−1 per decade observed at the Anzob station. Due to their different natural topography and geographical locations, the different stations showed different results for these abrupt changes. Precipitation change points appeared in 1999 at the Faizobod and Shaartuz stations and in 1969 at the Hushtori, Dushanbe, and Isambay stations. At the high-altitude station of Anzob, the change point occurred in 1994. Earlier changes in precipitation were detected in the low-altitude regions of the KRB. These changes might be attributable to the earlier effects of climate change on the low-altitude areas of the mountainous KRB in Central Asia.
- (3)
- The mechanism of change for the monthly streamflow upstream of the KRB is different in different time periods. The winter streamflow exhibited a significant increasing trend during the 1951–2012 period, while during the 1979–2012 period, the winter streamflow exhibited a significant decreasing trend. The original MK test results showed that the mean monthly streamflow significantly increased in spring and summer seasons, while the streamflow trend significantly decreased in fall and winter. The modified MK test result exhibited a significant increasing trend in the annual streamflow in the upstream of the KRB. The increased streamflow in the spring and summer seasons in the snow-fed and glacier-fed mountainous KRB is attributed to global warming, which causes severe melting of the snow and ice. We detected change points in the upstream flow in 1991 during both the 1951–2012 and 1979–2012 periods.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Software Package, “Modifiedmk”
References
- Williams, M.; Konovalov, V. Central Asia Temperature and Precipitation Data, 1879–2003; National Snow and Ice Data Center: Boulder, CL, USA, 2008. [Google Scholar]
- World Bank. Key Issues for Consideration on the Proposed Rogun Hydropower Project. Available online: http://www.worldbank.org/content/dam/Worldbank/Event/ECA/central-asia/ (accessed on 27 May 2018).
- Dukhovniy, V.A.; Ziganshina, D.R.; Sorokin, A.G.; Sorokin, D.A.; Stulina, G.V.; Solodky, G.F.; Muminov, S.H.; Makhramov, M.Y.; Tilyavova, G.K.; Nazariy, A.M.; et al. The future of the Amu Darya River Basin in the Condition of Changing Climate. Interstate Commission for Water Coordination in Central Asia. Available online: www.cawater-infor.net/project/peer-amudarya/ (accessed on 18 May 2018).
- Schaefli, B.; Manso, P.; Fischer, M.; Huss, M.; Farinotti, D. The role of glacier retreat for Swiss hydropower production. Renew. Energy 2019, 132, 615–627. [Google Scholar] [CrossRef] [Green Version]
- Buytaert, W.; Célleri, R.; De Bièvre, B.; Cisneros, F.; Wyseure, G.; Deckers, J.; Hofstede, R. Human impact on the hydrology of the Andean páramos. Earth Sci. Rev. 2006, 79, 53–72. [Google Scholar] [CrossRef]
- Hooke, R.L. Principles of Glacier Mechanics; Cambridge University Press: Cambridge, UK, 2019. [Google Scholar]
- Xu, M.; Kang, S.; Wu, H.; Yuan, X. Detection of spatio-temporal variability of air temperature and precipitation based on long-term meteorological station observations over Tianshan Mountains, Central Asia. Atmos. Res. 2018, 203, 141–163. [Google Scholar] [CrossRef]
- Solomon, S.; Manning, M.; Marquis, M.; Qin, D. Climate Change 2007-The Physical Science Basis: Working Group I Contribution to the Fourth Assessment Report of the IPCC; Cambridge University Press: Cambridge, UK, 2007; Volume 4. [Google Scholar]
- Jones, P.; Lister, D.; Osborn, T.; Harpham, C.; Salmon, M.; Morice, C. Hemispheric and large-scale land-surface air temperature variations: An extensive revision and an update to 2010. J. Geophys. Res. Atmos. 2012, 117. [Google Scholar] [CrossRef] [Green Version]
- Lawrimore, J.H.; Menne, M.J.; Gleason, B.E.; Williams, C.N.; Wuertz, D.B.; Vose, R.S.; Rennie, J. An overview of the Global Historical Climatology Network monthly mean temperature data set, version 3. J. Geophys. Res. Atmos. 2011, 116. [Google Scholar] [CrossRef]
- Hansen, J.; Ruedy, R.; Sato, M.; Lo, K. Global surface temperature change. Rev. Geophys. 2010, 48. [Google Scholar] [CrossRef] [Green Version]
- Rohde, R.; Muller, R.; Jacobsen, R.; Muller, E.; Perlmutter, S.; Rosenfeld, A.; Wurtele, J.; Groom, D.; Wickham, C. A New Estimate of the Average Earth Surface Land Temperature Spanning 1753 to 2011. Geoinform. Geostat. Overv. 2013, 7, 2. [Google Scholar]
- Cohen, J.L.; Furtado, J.C.; Barlow, M.; Alexeev, V.A.; Cherry, J.E. Asymmetric seasonal temperature trends. Geophys. Res. Lett. 2012, 39. [Google Scholar] [CrossRef]
- Giese, E.; Mossig, I.; Rybski, D.; Bunde, A. Long-Term Analysis of Air Temperature Trends in Central Asia (Analyse langjähriger Zeitreihen der Lufttemperatur in Zentralasien). Erdkunde 2007, 61, 186–202. [Google Scholar] [CrossRef]
- Christensen, J.H.; Hewitson, B.; Busuioc, A.; Chen, A.; Gao, X.; Held, R.; Jones, R.; Kolli, R.K.; Kwon, W.; Laprise, R. Regional climate projections. In Climate Change, 2007: The Physical Science Basis. Contribution of Working group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Chapter 11; Cambridge University Press: Cambridge, UK, 2007; pp. 847–940. [Google Scholar]
- Zhang, H.; Ouyang, Z.; Zheng, H.; Wang, X. Recent climate trends on the northern slopes of the Tianshan Mountains, Xinjiang, China. J. Mt. Sci. 2009, 6, 255–265. [Google Scholar] [CrossRef] [Green Version]
- Mannig, B.; Müller, M.; Starke, E.; Merkenschlager, C.; Mao, W.; Zhi, X.; Podzun, R.; Jacob, D.; Paeth, H. Dynamical downscaling of climate change in Central Asia. Glob. Planet. Chang. 2013, 110, 26–39. [Google Scholar] [CrossRef]
- Yao, J.; Chen, Y. Trend analysis of temperature and precipitation in the Syr Darya Basin in Central Asia. Theor. Appl. Climatol. 2015, 120, 521–531. [Google Scholar] [CrossRef]
- Chevallier, P.; Pouyaud, B.; Mojaïsky, M.; Bolgov, M.; Olsson, O.; Bauer, M.; Froebrich, J. River flow regime and snow cover of the Pamir Alay (Central Asia) in a changing climate. Hydrol. Sci. J. 2014, 59, 1491–1506. [Google Scholar] [CrossRef]
- Aalto, J.; Kämäräinen, M.; Shodmonov, M.; Rajabov, N.; Venäläinen, A. Features of Tajikistan’s past and future climate. Int. J. Climatol. 2017, 37, 4949–4961. [Google Scholar] [CrossRef]
- Mitchell, T.D.; Jones, P.D. An improved method of constructing a database of monthly climate observations and associated high-resolution grids. Int. J. Climatol. J. R. Meteorol. Soc. 2005, 25, 693–712. [Google Scholar] [CrossRef]
- Vose, R.S.; Schmoyer, R.L.; Steurer, P.M.; Peterson, T.C.; Heim, R.; Karl, T.R.; Eischeid, J.K. The Global Historical Climatology Network: Long-Term Monthly Temperature, Precipitation, Sea Level Pressure, and Station Pressure Data; Carbon Dioxide Information Analysis Center: Oak Ridge, TN, USA, 1992. [Google Scholar] [CrossRef] [Green Version]
- Becker, A.; Finger, P.; Meyer-Christoffer, A.; Rudolf, B.; Schamm, K.; Schneider, U.; Ziese, M. A description of the global land-surface precipitation data products of the Global Precipitation Climatology Centre with sample applications including centennial (trend) analysis from 1901–present. Earth Syst. Sci. Data 2013, 5, 71–99. [Google Scholar] [CrossRef] [Green Version]
- Smith, T.M.; Arkin, P.A.; Ren, L.; Shen, S.S. Improved reconstruction of global precipitation since 1900. J. Atmos. Ocean. Technol. 2012, 29, 1505–1517. [Google Scholar] [CrossRef]
- Donat, M.G.; Lowry, A.L.; Alexander, L.V.; O’Gorman, P.A.; Maher, N. Addendum: More extreme precipitation in the world’s dry and wet regions. Nat. Clim. Chang. 2017, 7, 154–158. [Google Scholar] [CrossRef] [Green Version]
- Xu, Z.; Gong, T.; Li, J. Decadal trend of climate in the Tibetan Plateau—Regional temperature and precipitation. Hydrol. Process. Int. J. 2008, 22, 3056–3065. [Google Scholar] [CrossRef]
- Li, Z.; Chen, Y.; Fang, G.; Li, Y. Multivariate assessment and attribution of droughts in Central Asia. Sci. Rep. 2017, 7, 1316. [Google Scholar] [CrossRef]
- Chen, F.; Huang, W.; Jin, L.; Chen, J.; Wang, J. Spatiotemporal precipitation variations in the arid Central Asia in the context of global warming. Sci. China Earth Sci. 2011, 54, 1812–1821. [Google Scholar] [CrossRef]
- Ahmed, N.; Wang, G.; Booij, M.J.; Oluwafemi, A.; Hashmi, M.Z.-u.-R.; Ali, S.; Munir, S. Climatic Variability and Periodicity for Upstream Sub-Basins of the Yangtze River, China. Water 2020, 12, 842. [Google Scholar] [CrossRef] [Green Version]
- Song, S.; Bai, J. Increasing winter precipitation over arid central Asia under global warming. Atmosphere 2016, 7, 139. [Google Scholar] [CrossRef] [Green Version]
- Dai, A.; Qian, T.; Trenberth, K.E.; Milliman, J.D. Changes in continental freshwater discharge from 1948 to 2004. J. Clim. 2009, 22, 2773–2792. [Google Scholar] [CrossRef]
- Stocker, T. Climate change 2013: The Physical Science Basis: Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2014. [Google Scholar]
- Piao, S.; Ciais, P.; Huang, Y.; Shen, Z.; Peng, S.; Li, J.; Zhou, L.; Liu, H.; Ma, Y.; Ding, Y. The impacts of climate change on water resources and agriculture in China. Nature 2010, 467, 43–51. [Google Scholar] [CrossRef]
- Kure, S.; Jang, S.; Ohara, N.; Kavvas, M.; Chen, Z. Hydrologic impact of regional climate change for the snowfed and glacierfed river basins in the Republic of Tajikistan: Hydrological response of flow to climate change. Hydrol. Process. 2013, 27, 4057–4070. [Google Scholar] [CrossRef]
- Shen, Y.-J.; Shen, Y.; Fink, M.; Kralisch, S.; Chen, Y.; Brenning, A. Trends and variability in streamflow and snowmelt runoff timing in the southern Tianshan Mountains. J. Hydrol. 2018, 557, 173–181. [Google Scholar] [CrossRef]
- Xu, M.; Han, H.; Kang, S. Modeling glacier mass balance and runoff in the Koxkar River Basin on the South Slope of the Tianshan Mountains, China, from 1959 to 2009. Water 2017, 9, 100. [Google Scholar] [CrossRef]
- Rashid, I.; Majeed, U.; Aneaus, S.; Pelto, M. Linking the Recent Glacier Retreat and Depleting Streamflow Patterns with Land System Changes in Kashmir Himalaya, India. Water 2020, 12, 1168. [Google Scholar] [CrossRef] [Green Version]
- Lobanova, A.; Didovets, I. Analysis of the Water Quality Parameters in the Amudarya River, Berlin, Germany. Available online: http://www.cawater-info.net/amudarya-knowledge-base/pdf/ (accessed on 5 February 2020).
- Martinez, C.J.; Maleski, J.J.; Miller, M.F. Trends in precipitation and temperature in Florida, USA. J. Hydrol. 2012, 452, 259–281. [Google Scholar] [CrossRef]
- Jha, M.K.; Singh, A.K. Trend analysis of extreme runoff events in major river basins of Peninsular Malaysia. Int. J. Water 2013, 7, 142–158. [Google Scholar] [CrossRef]
- Sonali, P.; Kumar, D.N. Review of trend detection methods and their application to detect temperature changes in India. J. Hydrol. 2013, 476, 212–227. [Google Scholar] [CrossRef]
- Tabari, H.; Somee, B.S.; Zadeh, M.R. Testing for long-term trends in climatic variables in Iran. Atmos. Res. 2011, 100, 132–140. [Google Scholar] [CrossRef]
- Mann, H.B. Nonparametric tests against trend. Econom. J. Econom. Soc. 1945, 13, 245–259. [Google Scholar] [CrossRef]
- Kendall, M.G. Rank Correlation Methods; Griffin: London, UK, 1975. [Google Scholar]
- Tan, M.L.; Samat, N.; Chan, N.W.; Lee, A.J.; Li, C. Analysis of precipitation and temperature extremes over the Muda River Basin, Malaysia. Water 2019, 11, 283. [Google Scholar] [CrossRef] [Green Version]
- Yagbasan, O.; Demir, V.; Yazicigil, H. Trend Analyses of Meteorological Variables and Lake Levels for Two Shallow Lakes in Central Turkey. Water 2020, 12, 414. [Google Scholar] [CrossRef] [Green Version]
- Patakamuri, S.K.; Muthiah, K.; Sridhar, V. Long-Term Homogeneity, Trend, and Change-Point Analysis of Rainfall in the Arid District of Ananthapuramu, Andhra Pradesh State, India. Water 2020, 12, 211. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Meshgi, A.; Babovic, V. Spatio-temporal variation of wet and dry spell characteristics of tropical precipitation in Singapore and its association with ENSO. Int. J. Climatol. 2016, 36, 4831–4846. [Google Scholar] [CrossRef]
- Li, X.; Wang, X.; Babovic, V. Analysis of variability and trends of precipitation extremes in Singapore during 1980–2013. Int. J. Climatol. 2018, 38, 125–141. [Google Scholar] [CrossRef]
- Theil, H. A rank-invariant method of linear and polynomial regression analysis. In Henri Theil’s Contributions to Economics and Econometrics; Springer: Berlin, Germany, 1992; pp. 345–381. [Google Scholar]
- Sen, P.K. Estimates of the regression coefficient based on Kendall’s tau. J. Am. Stat. Assoc. 1968, 63, 1379–1389. [Google Scholar] [CrossRef]
- Pettitt, A. A non-parametric approach to the change-point problem. J. R. Stat. Soc. Ser. C (Appl. Stat.) 1979, 28, 126–135. [Google Scholar] [CrossRef]
- Xue, L.; Yang, F.; Yang, C.; Chen, X.; Zhang, L.; Chi, Y.; Yang, G. Identification of potential impacts of climate change and anthropogenic activities on streamflow alterations in the Tarim River Basin, China. Sci. Rep. 2017, 7, 8254. [Google Scholar] [CrossRef] [PubMed]
- Mallakpour, I.; Villarini, G. A simulation study to examine the sensitivity of the Pettitt test to detect abrupt changes in mean. Hydrol. Sci. J. 2016, 61, 245–254. [Google Scholar] [CrossRef] [Green Version]
- Farr, T.G.; Rosen, P.A.; Caro, E.; Crippen, R.; Duren, R.; Hensley, S.; Kobrick, M.; Paller, M.; Rodriguez, E.; Roth, L. The Shuttle Radar Topography Mission. Rev. Geophys. 2007, 45, 1–33. Available online: https://developers.google.com/earth-engine/datasets/catalog/USGS_SRTMGL1_003 (accessed on 11 March 2020). [CrossRef] [Green Version]
- Arino, O.; Ramos Perez, J.J.; Kalogirou, V.; Bontemps, S.; Defourny, P.; Van Bogaert, E. Global Land Cover Map for 2009 (GlobCover 2009); European Space Agency: Paris, France; University College London: London, UK, 2012. [Google Scholar]
- Food and Agriculture Organization. International Institute for Applied Systems Analysis; International Soil Reference and Information Centre; JRC: Harmonized World Soil Database (Version 1.2); FAO: Rome, Italy; IIASA: Laxenburg, Austria, 2012. [Google Scholar]
- Central Asian Countries Geoportal of Tajikistan. Available online: http://www.geoportal-tj.org/index.php/geology (accessed on 13 July 2020).
- Tajik Development Gateway in Russian. Available online: https://www.tajik-gateway.org/wp/geography/flora/ (accessed on 13 July 2020).
- Stocker, T.F.; Qin, D.; Plattner, G.-K.; Tignor, M.; Allen, S.K.; Boschung, J.; Nauels, A.; Xia, Y.; Bex, V.; Midgley, P.M. Climate Change 2013: The Physical Science Basis; Cambridge University Press: Cambridge, UK, 2013. [Google Scholar]
- Stahl, K.; Tallaksen, L.M.; Hannaford, J.; Van Lanen, H. Filling the white space on maps of European runoff trends: Estimates from a multi-model ensemble. Hydrol. Earth Syst. Sci. 2012, 16, 2035–2047. [Google Scholar] [CrossRef] [Green Version]
- Xu, S.; Qin, M.; Ding, S.; Zhao, Q.; Liu, H.; Li, C.; Yang, X.; Li, Y.; Yang, J.; Ji, X. The Impacts of Climate Variation and Land Use Changes on Streamflow in the Yihe River, China. Water 2019, 11, 887. [Google Scholar] [CrossRef] [Green Version]
- Zeleňáková, M.; Purcz, P.; Blišťan, P.; Vranayová, Z.; Hlavatá, H.; Diaconu, D.C.; Portela, M.M. Trends in Precipitation and Temperatures in Eastern Slovakia (1962–2014). Water 2018, 10, 727. [Google Scholar] [CrossRef] [Green Version]
- Mu, X.; Wang, H.; Zhao, Y.; Liu, H.; He, G.; Li, J. Streamflow into Beijing and Its Response to Climate Change and Human Activities over the Period 1956–2016. Water 2020, 12, 622. [Google Scholar] [CrossRef] [Green Version]
- Hamed, K.H. Trend detection in hydrologic data: The Mann–Kendall trend test under the scaling hypothesis. J. Hydrol. 2008, 349, 350–363. [Google Scholar] [CrossRef]
- Mavromatis, T.; Stathis, D. Response of the water balance in Greece to temperature and precipitation trends. Theor. Appl. Climatol. 2011, 104, 13–24. [Google Scholar] [CrossRef]
- Yue, S.; Wang, C.Y. Applicability of prewhitening to eliminate the influence of serial correlation on the Mann-Kendall test. Water Resour. Res. 2002, 38, 4-1–4-7. [Google Scholar] [CrossRef]
- Li, C.; Stevens, B.; Marotzke, J. Eurasian winter cooling in the warming hiatus of 1998–2012. Geophys. Res. Lett. 2015, 42, 8131–8139. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Chen, W. The East Asian winter monsoon: Re-amplification in the mid-2000s. Chin. Sci. Bull. 2014, 59, 430–436. [Google Scholar] [CrossRef]
- Kayumov, A.; Novikov, V. (Eds.) The Third National Communication of the Republic of Tajikistan Under the UN Framework Convention on Climate Change; The Government of the Republic of Tajikistan: Dushanbe, Tajikistan, 2014; p. 155.
- Gulakhmadov, A.; Chen, X.; Gulahmadov, N.; Liu, T.; Anjum, M.N.; Rizwan, M. Simulation of the Potential Impacts of Projected Climate Change on Streamflow in the Vakhsh River Basin in Central Asia under CMIP5 RCP Scenarios. Water 2020, 12, 1426. [Google Scholar] [CrossRef]
- Pachauri, R.K.; Allen, M.R.; Barros, V.R.; Broome, J.; Cramer, W.; Christ, R.; Church, J.A.; Clarke, L.; Dahe, Q.; Dasgupta, P. Climate change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; IPCC: Geneva, Switzerland, 2014. [Google Scholar]
- Barry, R.G.; Chorley, R.J. Atmosphere, Weather and Climate; Routledge: Abingdon, UK, 2009. [Google Scholar]
- Barry, R.G.; Blanken, P.D. Microclimate and Local Climate; Cambridge University Press: Cambridge, UK, 2016. [Google Scholar]
- Xin, J.; Gong, C.; Wang, S.; Wang, Y. Aerosol direct radiative forcing in desert and semi-desert regions of northwestern China. Atmos. Res. 2016, 171, 56–65. [Google Scholar] [CrossRef]
- Bollasina, M.A.; Ming, Y.; Ramaswamy, V. Anthropogenic aerosols and the weakening of the South Asian summer monsoon. Science 2011, 334, 502–505. [Google Scholar] [CrossRef] [Green Version]
- Folini, D.; Wild, M. The effect of aerosols and sea surface temperature on China’s climate in the late twentieth century from ensembles of global climate simulations. J. Geophys. Res. Atmos. 2015, 120, 2261–2279. [Google Scholar] [CrossRef]
- Pendergrass, A.G.; Knutti, R.; Lehner, F.; Deser, C.; Sanderson, B.M. Precipitation variability increases in a warmer climate. Sci. Rep. 2017, 7, 17966. [Google Scholar] [CrossRef] [Green Version]
- Wang, C. Impact of anthropogenic absorbing aerosols on clouds and precipitation: A review of recent progresses. Atmos. Res. 2013, 122, 237–249. [Google Scholar] [CrossRef]
- Jaweso, D.; Abate, B.; Bauwe, A.; Lennartz, B. Hydro-meteorological trends in the upper Omo-Ghibe river basin, Ethiopia. Water 2019, 11, 1951. [Google Scholar] [CrossRef] [Green Version]
- Hagg, W.; Braun, L.; Weber, M.; Becht, M. Runoff modelling in glacierized Central Asian catchments for present-day and future climate. Hydrol. Res. 2006, 37, 93–105. [Google Scholar] [CrossRef] [Green Version]
- Zhang, R.; Xu, Z.; Zuo, D.; Ban, C. Hydro-Meteorological Trends in the Yarlung Zangbo River Basin and Possible Associations with Large-Scale Circulation. Water 2020, 12, 144. [Google Scholar] [CrossRef] [Green Version]
- Lee, C.-H.; Yeh, H.-F. Impact of Climate Change and Human Activities on Streamflow Variations Based on the Budyko Framework. Water 2019, 11, 2001. [Google Scholar] [CrossRef] [Green Version]
- Hamed, K.H.; Rao, A.R. A modified Mann-Kendall trend test for autocorrelated data. J. Hydrol. 1998, 204, 182–196. [Google Scholar] [CrossRef]
- Yue, S.; Pilon, P.; Phinney, B.; Cavadias, G. The influence of autocorrelation on the ability to detect trend in hydrological series. Hydrol. Process. 2002, 16, 1807–1829. [Google Scholar] [CrossRef]
- Team, R.C. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2015; Volume 2018, p. 2013. [Google Scholar]
- Patakamuri, S.; O’Brien, N.M. Modified Versions of Mann Kendall and Spearman’s Rho Trend Tests 2019; The R Project for Statistical Computing: Vienna, Austria, 2019. [Google Scholar]
WMO Nr | Climate Station | Lat. (°N) | Lon. (°E) | Elev. (m) | T (°C) (Win, Spr, Sum, Aut) | P (mm) (Win, Spr, Sum, Aut) |
---|---|---|---|---|---|---|
38,719 | Anzob | 39.50 | 68.52 | 3373 | −1.8 (−11.5, −3.1, 8.4, −0.8) | 308 (131, 31, 67, 79) |
38,833 | Hushyori | 38.53 | 68.50 | 1361 | 11.3 (0.3, 10.6, 22.4, 12.0) | 1226 (403, 546, 67, 210) |
38,845 | Faizobod | 38.32 | 69.19 | 1215 | 12.9 (1.8, 12.3, 24.0, 13.6) | 838 (250, 439, 32, 117) |
38,836 | Dushanbe | 38.35 | 68.44 | 800 | 14.7 (3.5, 14.9, 25.8, 14.5) | 643 (223, 323, 11, 86) |
38,838 | Isambay | 38. 3 | 68. 21 | 563 | 16.3 (3.6, 16.0, 29.1, 16.3) | 311 (119, 149, 11, 32) |
38,937 | Shaartuz | 36.58 | 68.20 | 378 | 17.5 (4.8, 18.3, 30.3, 16.7) | 187 (74, 86, 6, 21) |
WMO Nr | Discharge station | Lat. (°N) | Lon. (°E) | Elev. (m) | F (m3/s) (Win, Spr, Sum, Aut) | |
17,150 | Dahana | 38.59 | 68.77 | 1295 | 46.7 (13.1, 37.6, 103.4, 32.8) |
Climate Station | Anzob | Hushyori | Faizobod | Dushanbe | Isambay | Shaartuz |
---|---|---|---|---|---|---|
Elevation (m) | 3373 | 1361 | 1215 | 800 | 563 | 378 |
Period | 1951–2012 | |||||
January | −1.756 * | +0.164 | +0.523 | +1.015 | +1.483 | +1.713 * |
February | −1.051 | +0.03 | +0.741 | +0.286 | +0.583 | +0.207 |
March | −0.912 | +1.107 | +1.853 * | +2.011 * | +2.061 * | +1.593 |
April | +0.985 | +2.978 *** | +2.559 ** | +2.595 ** | +2.638 ** | +2.000 * |
May | +0.359 | +0.694 | +1.137 | +1.252 | +1.252 | +1.574 |
June | 1.951 * | +0.48 | +1.679 * | +2.013 * | +1.618 | +4.142 *** |
July | +0.401 | −1.089 | −0.48 | +2.469 * | +0.693 | +2.569 * |
August | +2.037 ** | +0.0001 | +0.657 | +5.015 *** | +0.894 | +4.076 *** |
September | +1.958 * | +0.500 | +0.657 | +4.346 *** | +1.758 * | +4.033 *** |
October | +1.526 | +0.420 | +0.900 | +3.027 ** | +1.465 | +2.875 ** |
November | +1.641 | +1.994 ** | +1.525 | +2.200 * | +2.352 * | +2.540 * |
December | −1.118 | −0.237 | +0.316 | +1.616 | +0.748 | +0.912 |
Period | 1979–2012 | |||||
January | −2.567 * | −0.356 | −0.282 | −0.104 | +1.350 | +1.305 |
February | −1.202 | +0.030 | +0.504 | +0.163 | +1.023 | +0.430 |
March | +0.519 | +2.539 * | +2.536 * | +2.136 * | +3.294 *** | +2.374 * |
April | +0.001 | +1.959 * | +0.608 | +0.445 | +1.721* | +0.519 |
May | −0.015 | +0.891 | +0.341 | −0.386 | +0.519 | +0.222 |
June | +0.668 | +1.232 | +0.816 | −1.203 | +0.742 | +1.072 |
July | −1.483 | −0.386 | −1.959 * | −2.420 * | +0.297 | −0.878 |
August | +1.173 | +1.635 | +0.134 | −0.460 | +1.885 * | +1.591 |
September | +0.817 | +2.186 * | +1.276 | −0.564 | +2.213 * | +2.467 * |
October | +1.231 | +1.708 * | +1.381 | −0.044 | +2.240 * | +2.003 * |
November | −0.875 | −0.030 | −1.320 | −1.483 | −0.015 | −0.163 |
December | −2.790 ** | −1.217 | −1.735 * | −1.143 | −1.142 | −1.113 |
Temperature Trend (°C Per Decade) | ||
---|---|---|
Dataset | Land Areas over the Globe 1951–2012 | Land Areas over the Globe 1979–2012 |
Climatic Research Unit Temperature Anomalies Over Land version 4 (CRUTEM4.1.1.0) [9] | 0.175 ± 0.037 | 0.254 ± 0.050 |
Global Historical Climatology Network Version 3 (GHCNv3.2.0) [10] | 0.197 ± 0.031 | 0.273 ± 0.047 |
Goddard Institute of Space Studies (GISS) [11] | 0.188 ± 0.032 | 0.267 ± 0.054 |
Berkeley [12] | 0.175 ± 0.029 | 0.254 ± 0.049 |
Climate Station | 1951–2012, °C | ||||||
---|---|---|---|---|---|---|---|
Abrupt | Z (Modified) | Z (Original) | T/D | p-Value | Slope | Significance Based on the Modified MK Test | |
Anzob | 2007 | 0.914 | 0.413 | 0.012 | 0.360 | 0.002 | NS |
Hushyori | 1998 | 2.473 | 1.385 | 0.067 | 0.013 | 0.006 | ** |
Faizobod | 1976 | 6.078 | 2.229 | 0.122 | 0.000 | 0.012 | *** |
Dushanbe | 1976 | 7.593 | 4.610 | 0.253 | 0.000 | 0.024 | *** |
Isambay | 1996 | 6.046 | 3.608 | 0.192 | 0.000 | 0.017 | *** |
Shaartuz | 1978 | 9.997 | 4.574 | 0.228 | 0.000 | 0.022 | *** |
Climate Station | 1979–2012, °C | ||||||
Anzob | 2007 | −1.713 | −0.978 | −0.185 | 0.086 | −0.017 | * |
Hushyori | 1998 | 4.147 | 2.239 | 0.257 | 0.000 | 0.025 | *** |
Faizobod | 1996 | 0.755 | 0.400 | 0.051 | 0.450 | 0.003 | NS |
Dushanbe | 1990 | −0.771 | −0.252 | −0.049 | 0.440 | −0.003 | NS |
Isambay | 1996 | 6.836 | 3.528 | 0.367 | 0.000 | 0.036 | *** |
Shaartuz | 1997 | 5.431 | 2.283 | 0.216 | 0.000 | 0.024 | *** |
Climate Station | Anzob | Hushyori | Faizobod | Dushanbe | Isambay | Shaartuz |
---|---|---|---|---|---|---|
Elevation (m) | 3373 | 1361 | 1215 | 800 | 563 | 378 |
Period | 1951–2008 | |||||
January | +3.173 ** | +0.322 | +1.000 | +0.402 | +0.503 | −0.503 |
February | +2.294 * | +0.288 | −0.215 | +0.59 | −0.409 | −0.101 |
March | −0.349 | −1.322 | −1.939 * | −1.905 * | −0.745 | −0.436 |
April | −2.308 * | −0.631 | −1.368 | −1.583 | −2.408 * | −2.375 * |
May | −2.918 ** | −0.865 | −1.275 | −1.248 | −2.086 * | −2.449 * |
June | −2.650 ** | +0.329 | +0.262 | +0.684 | +1.016 | +1.777 * |
July | −0.859 | +0.819 | +1.878 * | +0.666 | +2.371 * | +0.845 |
August | −0.845 | +1.309 | +0.504 | −0.345 | +0.954 | +1.079 |
September | +1.288 | +1.556 | +2.019 * | +2.590 ** | −0.231 | +2.135 * |
October | −0.382 | +0.423 | −0.282 | +0.537 | +0.357 | +0.36 |
November | +0.610 | −0.389 | −0.309 | −0.356 | −0.691 | +0.107 |
December | +3.173 ** | +0.322 | +1.000 | +0.402 | +0.503 | −0.503 |
Precipitation Trends in mm yr−1 Per Decade, 1951–2008 | ||
---|---|---|
Dataset | Land Areas over the Mid-Latitude North Hemisphere (30 °N–60 °N) | Land Areas over the Globe |
Climatic Research Unit (CRU) TS 3.10.01 [21] | 1.13 ± 2.01 | −2.12 ± 3.52 |
Global Historical Climatology Network Version 2 (GHCN V2) [22] | 1.39 ± 1.98 | −2.77 ± 3.92 |
Global Precipitation Climatology Centre Version 6 (GPCC V6) [23] | 1.50 ± 1.93 | −1.54± 4.50 |
Smith et al. [24] | 0.97 ± 0.88 | 0.68 ± 2.07 |
Climate Station | 1951–2008, mm | ||||||
---|---|---|---|---|---|---|---|
Abrupt | Z (Modified) | Z (Original) | P/D | p-Value | Slope | Significance Based on the Modified MK Test | |
Anzob | 1994 | −1.661 | −0.765 | −4.759 | 0.096 | −0.554 | NS |
Hushyori | 1969 | −1.033 | −0.328 | −12.894 | 0.301 | −0.928 | NS |
Faizobod | 1999 | −1.314 | −0.684 | −14.636 | 0.188 | −1.141 | NS |
Dushanbe | 1969 | −1.975 | −0.858 | −5.223 | 0.048 | −1.330 | ** |
Isambay | 1969 | −2.861 | −1.207 | −7.771 | 0.004 | −0.773 | *** |
Shaartuz | 1999 | −3.104 | −1.388 | −8.944 | 0.002 | −1.031 | *** |
Discharge Station | Dahana | |
---|---|---|
Elevation (m) | 1295 | |
Period | 1951–2012 | 1979–2012 |
January | +1.082 | −1.246 |
February | +1.841 * | −0.104 |
March | +1.318 | +1.393 |
April | +1.877 * | +1.231 |
May | +1.853 * | +1.618 |
June | +1.094 | +1.038 |
July | +0.614 | +0.638 |
August | −0.559 | +0.445 |
September | −0.516 | −0.193 |
October | −2.375 * | −2.654 ** |
November | −0.735 | −1.839 * |
December | +0.261 | −1.306 |
Discharge Station | Dahana | |
---|---|---|
Statistics\Period | 1951–2012 | 1979–2012 |
Abrupt | 1991 | 1991 |
Z (modified) | 3.671 | 4.259 |
Z (original) | 1.543 | 1.364 |
p-value | 0.001 | 0.000 |
Slope | 0.125 | 0.168 |
Significance based on the modified MK test | *** | *** |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gulakhmadov, A.; Chen, X.; Gulahmadov, N.; Liu, T.; Davlyatov, R.; Sharofiddinov, S.; Gulakhmadov, M. Long-Term Hydro–Climatic Trends in the Mountainous Kofarnihon River Basin in Central Asia. Water 2020, 12, 2140. https://doi.org/10.3390/w12082140
Gulakhmadov A, Chen X, Gulahmadov N, Liu T, Davlyatov R, Sharofiddinov S, Gulakhmadov M. Long-Term Hydro–Climatic Trends in the Mountainous Kofarnihon River Basin in Central Asia. Water. 2020; 12(8):2140. https://doi.org/10.3390/w12082140
Chicago/Turabian StyleGulakhmadov, Aminjon, Xi Chen, Nekruz Gulahmadov, Tie Liu, Rashid Davlyatov, Safarkhon Sharofiddinov, and Manuchekhr Gulakhmadov. 2020. "Long-Term Hydro–Climatic Trends in the Mountainous Kofarnihon River Basin in Central Asia" Water 12, no. 8: 2140. https://doi.org/10.3390/w12082140
APA StyleGulakhmadov, A., Chen, X., Gulahmadov, N., Liu, T., Davlyatov, R., Sharofiddinov, S., & Gulakhmadov, M. (2020). Long-Term Hydro–Climatic Trends in the Mountainous Kofarnihon River Basin in Central Asia. Water, 12(8), 2140. https://doi.org/10.3390/w12082140