Climate Change Impacts on Soil Erosion and Sediment Yield in a Watershed
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Long Term Climate and Hydrological Changes
2.3. The Physiographic Soil Erosion-Deposition Model (PSED Model)
2.4. Computational Cells
2.5. Input Data and Model Setup
2.6. Model Verification
3. Results
3.1. Impacts of Climate Change on Erosion Volume and Sediment Yield
3.2. Climate Change Effect on Erosion and Erosion Distribution
3.3. Climate Change Effects on Deposition Volume and the Deposition Distribution
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Diodato, N.; Filizola, N.; Borrelli, P.; Panagos, P.; Bellocchi, G. The Rise of Climate-Driven Sediment Discharge in the Amazonian River Basin. Atmosphere 2020, 11, 208. [Google Scholar] [CrossRef] [Green Version]
- Babur, M.; Shrestha, S.; Bhatta, B.; Datta, A.; Ullah, H. Integrated Assessment of Extreme Climate and Landuse Change Impact on Sediment Yield in a Mountainous Transboundary Watershed of India and Pakistan. J. Mt. Sci. 2020, 17, 624–640. [Google Scholar] [CrossRef]
- Gupta, S.; Kumar, S. Simulating Climate Change Impact on Soil Erosion Using Rusle Model—A Case Study in a Watershed of Mid-Himalayan Landscape. J. Earth Syst. Sci. 2017, 126, 43. [Google Scholar] [CrossRef]
- Chen, C.-N.; Tsai, C.-H.; Tsai, C.-T. Simulation of Sediment Yield from Watershed by Physiographic Soil Erosion–Deposition Model. J. Hydrol. 2006, 327, 293–303. [Google Scholar] [CrossRef]
- Wang, H.-W.; Kondolf, M.; Tullos, D.; Kuo, W.-C. Sediment Management in Taiwan’s Reservoirs and Barriers to Implementation. Water 2018, 10, 1034. [Google Scholar] [CrossRef] [Green Version]
- Stefanidis, S.; Stathis, D. Effect of Climate Change on Soil Erosion in a Mountainous Mediterranean Catchment (Central Pindus, Greece). Water 2018, 10, 1469. [Google Scholar] [CrossRef] [Green Version]
- Jha, M. Impacts of Climate Change on Streamflow in the Upper Mississippi River Basin: A Regional Climate Model Perspective. J. Geophys. Res. 2004, 109, 1–12. [Google Scholar] [CrossRef]
- Abbaspour, K.C.; Faramarzi, M.; Ghasemi, S.S.; Yang, H. Assessing the Impact of Climate Change on Water Resources in Iran. Water Resour. Res. 2009, 45, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Zhang, R.; Corte-Real, J.; Moreira, M.; Kilsby, C.; Birkinshaw, S.; Burton, A.; Fowler, H.J.; Forsythe, N.; Nunes, J.P.; Sampaio, E.; et al. Downscaling Climate Change of Water Availability, Sediment Yield and Extreme Events: Application to a Mediterranean Climate Basin. Int. J. Climatol. 2019, 39, 2947–2963. [Google Scholar] [CrossRef]
- Chang, T.J.; Hsu, M.H.; Lin, G.F.; Lai, J.S.; Pan, T.Y. Investigation on Analysis Method of Flood Vulnerability and Risk; Water Resources Agency: Taipei, Taiwan, 2010.
- Zarghami, M.; Abdi, A.; Babaeian, I.; Hassanzadeh, Y.; Kanani, R. Impacts of Climate Change on Runoffs in East Azerbaijan, Iran. Glob. Planet. Chang. 2011, 78, 137–146. [Google Scholar] [CrossRef]
- Kumar, N.; Tischbein, B.; Kusche, J.; Laux, P.; Beg, M.K.; Bogardi, J.J. Impact of Climate Change on Water Resources of Upper Kharun Catchment in Chhattisgarh, India. J. Hydrol. Reg. Stud. 2017, 13, 189–207. [Google Scholar] [CrossRef]
- Leta, O.T.; El-Kadi, A.I.; Dulai, H.; Ghazal, K.A. Assessment of Climate Change Impacts on Water Balance Components of Heeia Watershed in Hawaii. J. Hydrol. Reg. Stud. 2016, 8, 182–197. [Google Scholar] [CrossRef] [Green Version]
- Thodsen, H.; Hasholt, B.; Kjærsgaard, J.H. The Influence of Climate Change on Suspended Sediment Transport in Danish Rivers. Hydrol. Process. 2008, 22, 764–774. [Google Scholar] [CrossRef]
- Phan, D.B.; Wu, C.C.; Hsieh, S.C. Impact of Climate Change on Stream Discharge and Sediment Yield in Northern Viet Nam. Water Resour. 2011, 38, 827–836. [Google Scholar] [CrossRef]
- Cousino, L.K.; Becker, R.H.; Zmijewski, K.A. Modeling the Effects of Climate Change on Water, Sediment, and Nutrient Yields from the Maumee River Watershed. J. Hydrol. Reg. Stud. 2015, 4, 762–775. [Google Scholar] [CrossRef]
- Zhou, Y.; Xu, Y.; Xiao, W.; Wang, J.; Huang, Y.; Yang, H. Climate Change Impacts on Flow and Suspended Sediment Yield in Headwaters of High-Latitude Regions—A Case Study in China’s Far Northeast. Water 2017, 9, 966. [Google Scholar] [CrossRef] [Green Version]
- Azari, M.; Moradi, H.R.; Saghafian, B.; Faramarzi, M. Climate Change Impacts on Streamflow and Sediment Yield in the North of Iran. Hydrol. Sci. J. 2016, 61, 123–133. [Google Scholar] [CrossRef]
- Zhang, S.; Li, Z.; Lin, X.; Zhang, C. Assessment of Climate Change and Associated Vegetation Cover Change on Watershed-Scale Runoff and Sediment Yield. Water 2019, 11, 1373. [Google Scholar] [CrossRef] [Green Version]
- Renard, K.G.; Foster, G.R.; Weesies, G.A.; Porter, J.P. Rusle: Revised Universal Soil Loss Equation. J. Soil Water Consv. 1991, 46, 30–33. [Google Scholar]
- Tfwala, S.; Wang, Y.-M. Estimating Sediment Discharge Using Sediment Rating Curves and Artificial Neural Networks in the Shiwen River, Taiwan. Water 2016, 8, 53. [Google Scholar] [CrossRef] [Green Version]
- Water Resources Agency. Assessment of the Efficiency of Dredging Engineering in the Kaoping River Watershed; Ministry of Economic Affairs: Taichung, Taiwan, 2014.
- Yu, S.-W.; Tsai, L.L.; Talling, P.J.; Lin, A.T.; Mii, H.-S.; Chung, S.-H.; Horng, C.-S. Sea Level and Climatic Controls on Turbidite Occurrence for the Past 26kyr on the Flank of the Gaoping Canyon Off Sw Taiwan. Mar. Geol. 2017, 392, 140–150. [Google Scholar] [CrossRef]
- Central Geological Survey. Geological Information Service; Affairs, M.O.E., Ed.; Central Geological Survey: Taipei, Taiwan, 2000.
- Chen, C.N.; Tsai, C.H.; Tsai, C.T. Simulation of Runoff and Suspended Sediment Transport Rate in a Basin with Multiple Watersheds. Water Resour. Manage. 2011, 25, 793–816. [Google Scholar] [CrossRef] [Green Version]
- Lin, C.-P.; Chen, C.-N.; Wang, Y.-M.; Tsai, C.-H.; Tsai, C.-T. Spatial Distribution of Soil Erosion and Suspended Sediment Transport Rate for Chou-Shui River Basin. J. Earth Syst. Sci. 2014, 123, 1517–1539. [Google Scholar] [CrossRef]
- Taiwan Agricultural Research Institute. Soil Maps of Taiwan; Council of Agriculture: Taichung, Taiwan, 2004.
- National Land Surveying and Mapping Center. Land Use Maps of Taiwan; Ministry of the Interior: Taichung, Taiwan, 2006.
- Intergovernmental Panel on Climate Change. Climate Change 2014: Synthesis Report; IPCC: Geneva, Switzerland, 2014; p. 151. [Google Scholar]
- Chen, C.-N.; Tfwala, S. Impacts of Climate Change and Land Subsidence on Inundation Risk. Water 2018, 10, 157. [Google Scholar] [CrossRef] [Green Version]
- Pal, S.C.; Chakrabortty, R. Simulating the Impact of Climate Change on Soil Erosion in Sub-Tropical Monsoon Dominated Watershed Based on Rusle, Scs Runoff and Miroc5 Climatic Model. Adv. Space Res. 2019, 64, 352–377. [Google Scholar] [CrossRef]
- Giang, P.Q.; Giang, L.T.; Toshiki, K. Spatial and Temporal Responses of Soil Erosion to Climate Change Impacts in a Transnational Watershed in Southeast Asia. Climate 2017, 5, 22. [Google Scholar] [CrossRef]
Return Period | Average Maximum Rainfall Intensity (mm/hr) | Average Annual Rainfall (mm) | ||||
---|---|---|---|---|---|---|
Baseline (1980–1999) | A1B-S (2020–2039) | Increase Rate (%) | Baseline (1980–1999) | A1B-S (2020–2039) | Increase Rate (%) | |
2 | 27.52 | 29.14 | 5.89 | 411.18 | 434.90 | 5.77 |
5 | 39.00 | 41.90 | 7.43 | 584.82 | 627.39 | 7.28 |
10 | 46.53 | 51.63 | 10.97 | 701.12 | 776.94 | 10.81 |
25 | 55.10 | 65.92 | 19.65 | 843.42 | 1004.26 | 19.07 |
50 | 61.12 | 78.24 | 27.99 | 957.97 | 1212.17 | 26.53 |
100 | 66.96 | 91.98 | 37.36 | 1094.72 | 1466.32 | 33.95 |
200 | 72.75 | 107.35 | 47.56 | 1280.60 | 1794.54 | 40.13 |
Return Period | Total Erosion (m3) | Total Sediment Yield (m3) | ||||
---|---|---|---|---|---|---|
Baseline (1980–1999) | A1B-S (2020–2039) | Increase Rate (%) | Baseline (1980–1999) | A1B-S (2020–2039) | Increase Rate (%) | |
2 | 25,025,101 | 26,158,002 | 4.53 | 3,610,538 | 3,919,368 | 8.55 |
5 | 33,683,874 | 35,566,538 | 5.59 | 6,312,775 | 7,083,252 | 12.21 |
10 | 38,589,952 | 41,576,563 | 7.74 | 8,280,890 | 9,711,170 | 17.27 |
25 | 43,557,305 | 49,077,034 | 12.67 | 10,631,451 | 13,811,304 | 29.91 |
50 | 46,687,318 | 54,601,150 | 16.95 | 12,325,453 | 17,496,549 | 41.95 |
100 | 49,482,826 | 59,940,637 | 21.13 | 14,010,777 | 21,564,822 | 53.92 |
200 | 52,023,499 | 65,223,943 | 25.37 | 15,708,576 | 25,927,062 | 65.05 |
Return Period | Area Increase (m2) | Increase Rate (%) |
---|---|---|
2 | 11,888,256 | 0.54 |
5 | 16,749,128 | 0.7 |
10 | 29,890,573 | 1.22 |
25 | 42,155,931 | 1.67 |
50 | 47,859,021 | 1.92 |
100 | 50,239,407 | 1.97 |
200 | 58,921,624 | 2.3 |
Return Period | Baseline (m3) (1980–1999) | A1B-S (m3) (2020–2039) | Deposition Volume Increase for Baseline and A1B-S Scenarios (m3) | Increase Rate (%) |
---|---|---|---|---|
2 | 9,499,196 | 9,720,588 | 221,392 | 2.33 |
5 | 11,984,107 | 12,425,532 | 441,425 | 3.68 |
10 | 13,292,933 | 14,141,714 | 848,781 | 6.39 |
25 | 14,618,375 | 16,252,862 | 1,634,487 | 11.18 |
50 | 15,424,874 | 17,836,223 | 2,411,349 | 15.63 |
100 | 16,180,722 | 19,313,894 | 3,133,172 | 19.36 |
200 | 16,855,567 | 20,857,945 | 4,002,378 | 23.75 |
River | Actual Dredged Amount (104 m3) | |||
---|---|---|---|---|
2010 | 2011 | 2012 | 2013 | |
Laonong | 947.26 | 1516.37 | 855.74 | 623.36 |
Zhuokou | 27.68 | 75.00 | 6.49 | 44.60 |
Qishan | 423.07 | 241.70 | 187.77 | 244.46 |
Ailiao | 555.21 | 689.79 | 184.91 | 139.99 |
Gaoping | 534.61 | 203.68 | 104.33 | 81.54 |
Total | 2487.83 | 2726.54 | 1339.24 | 1133.95 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, C.-N.; Tfwala, S.S.; Tsai, C.-H. Climate Change Impacts on Soil Erosion and Sediment Yield in a Watershed. Water 2020, 12, 2247. https://doi.org/10.3390/w12082247
Chen C-N, Tfwala SS, Tsai C-H. Climate Change Impacts on Soil Erosion and Sediment Yield in a Watershed. Water. 2020; 12(8):2247. https://doi.org/10.3390/w12082247
Chicago/Turabian StyleChen, Ching-Nuo, Samkele S. Tfwala, and Chih-Heng Tsai. 2020. "Climate Change Impacts on Soil Erosion and Sediment Yield in a Watershed" Water 12, no. 8: 2247. https://doi.org/10.3390/w12082247
APA StyleChen, C. -N., Tfwala, S. S., & Tsai, C. -H. (2020). Climate Change Impacts on Soil Erosion and Sediment Yield in a Watershed. Water, 12(8), 2247. https://doi.org/10.3390/w12082247