Glaciers in Xinjiang, China: Past Changes and Current Status
Abstract
:1. Introduction
2. Study Region
3. Data and Methods
4. Glacier Changes from the 1960s to 2000s
5. Monitored Glacier Change Process
6. Discussion: Current Status
6.1. Is the Glacier Mass Loss Accelerating or Slowing Recently?
6.2. Glacier Response to Climate Change
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Barry, R.; Gan, T.Y. The Global Cryosphere: Past, Present and Future; Cambridge University Press: Cambridge, MA, USA, 2011. [Google Scholar]
- Qin, D.; Ding, Y.; Xiao, C.; Kang, S.; Ren, J.; Yang, J.; Zhang, S. Cryospheric Science: Research framework and disciplinary system. Natl. Sci. Rev. 2017, 5, 255–268. [Google Scholar] [CrossRef] [Green Version]
- Yang, M.; Wang, X.; Pang, G.; Wan, G.; Liu, Z. The Tibetan Plateau cryosphere: Observations and model simulations for current status and recent changes. Earth-Sci. Rev. 2019, 190, 353–369. [Google Scholar] [CrossRef]
- Immerzeel, W.W.; Van Beek, L.P.H.; Bierkens, M.F.P. Climate change will affect the Asian Water Towers. Science 2010, 328, 1382–1385. [Google Scholar] [CrossRef] [PubMed]
- Intergovernmental Panel on Climate Change (IPCC). Special Report on the Ocean and Cryosphere in a Changing Climate. Available online: https://www.ipcc.ch/srocc/ (accessed on 10 August 2020).
- Zemp, M.; Huss, M.; Thibert, E.; Eckert, N.; McNabb, R.W.; Huber, J.; Barandun, M.; Machguth, H.; Nussbaumer, S.U.; Gärtner-Roer, I.; et al. Global glacier mass changes and their contributions to sea-level rise from 1961 to 2016. Nature 2019, 568, 382–386. [Google Scholar] [CrossRef] [PubMed]
- Viviroli, D.; Dürr, H.H.; Messerli, B.; Meybeck, M.; Weingartner, R. Mountains of the world, water towers for humanity: Typology, mapping, and global significance. Water Resour. Res. 2007, 43, 07447. [Google Scholar] [CrossRef] [Green Version]
- Sorg, A.; Bolch, T.; Stoffel, M.; Solomina, O.; Beniston, M. Climate change impacts on glaciers and runoff in Tien Shan (Central Asia). Nat. Clim. Chang. 2012, 2, 725–731. [Google Scholar] [CrossRef]
- Farinotti, D.; Longuevergne, L.; Moholdt, G.; Duethmann, D.; Mölg, T.; Bolch, T.; Vorogushyn, S.; Güntner, A. Substantial glacier mass loss in the Tien Shan over the past 50 years. Nat. Geosci. 2015, 8, 716–722. [Google Scholar] [CrossRef]
- Pang, Z.; Kong, Y.; Froehlich, K.; Huang, T.; Yuan, L.; Li, Z.; Wang, F. Processes affecting isotopes in precipitation of an arid region. Tellus B Chem. Phys. Meteorol. 2011, 63, 352–359. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Li, Z.; Fan, Y.; Wang, H.; Deng, H. Progress and prospects of climate change impacts on hydrology in the arid region of northwest China. Environ. Res. 2015, 139, 11–19. [Google Scholar] [CrossRef]
- Li, Z.; Li, H.; Chen, Y. Mechanisms and simulation of accelerated shrinkage of continental glaciers: A case study of Urumqi Glacier No. 1 in eastern Tianshan, Central Asia. J. Earth Sci. 2011, 22, 423–430. [Google Scholar] [CrossRef]
- Wang, P.; Li, Z.; Li, H.; Wang, W.; Yao, H. Comparison of glaciological and geodetic mass balance at Urumqi Glacier No. 1, Tian Shan, Central Asia. Glob. Planet. Chang. 2014, 114, 14–22. [Google Scholar] [CrossRef]
- Xu, C.; Li, Z.-Q.; Li, H.; Feiteng, W.; Zhou, P. Long-range terrestrial laser scanning measurements of annual and intra-annual mass balances for Urumqi Glacier No. 1, eastern Tien Shan, China. Cryosphere 2019, 13, 2361–2383. [Google Scholar] [CrossRef] [Green Version]
- Wang, P.; Li, Z.; Li, H.; Wang, W.; Zhou, P.; Wang, L. Characteristics of a partially debris-covered glacier and its response to atmospheric warming in Mt. Tomor, Tien Shan, China. Glob. Planet. Chang. 2017, 159, 11–24. [Google Scholar] [CrossRef]
- Wang, P.; Li, Z.; Zhou, P.; Wang, W.; Jin, S.; Li, H.; Wang, F.; Yao, H.; Zhang, H.; Wang, L. Recent changes of two selected glaciers in Hami Prefecture of eastern Xinjiang and their impact on water resources. Quat. Int. 2015, 358, 146–152. [Google Scholar] [CrossRef]
- Zhang, H.; Li, Z.; Zhou, P.; Zhu, X.; Wang, L. Mass-balance observations and reconstruction for Haxilegen Glacier No.51, eastern Tien Shan, from 1999 to 2015. J. Glaciol. 2018, 64, 689–699. [Google Scholar] [CrossRef] [Green Version]
- Zhu, M.; Yao, T.; Yang, W.; Xu, B.; Wu, G.; Wang, X.; Xie, Y. Reconstruction of the mass balance of Muztag Ata No. 15 glacier, eastern Pamir, and its climatic drivers. J. Glaciol. 2018, 64, 259–274. [Google Scholar] [CrossRef] [Green Version]
- Li, K.M.; Li, Z.Q.; Wang, C.Y.; Huai, B.J. Shrinkage of Mt. Bogda Glaciers of Eastern Tian Shan in Central Asia during 1962–2006. J. Earth Sci. 2016, 27, 139–150. [Google Scholar] [CrossRef]
- Li, Z.Q.; Li, K.M.; Wang, L. Study on recent glacier changes and their impact on water resources in Xinjiang, north western China. Quat. Sci. 2010, 30, 96–106. (In Chinese) [Google Scholar]
- Xing, W.C.; Li, Z.Q.; Zhang, H.; Zhang, M.J.; Liang, P.B.; Mu, J.X. Spatial-temporal variation of glacier resources in Chinese Tianshan Mountains since 1959. Acta Geograph. Sin. 2017, 72, 1594–1605. (In Chinese) [Google Scholar]
- Cogley, J.G. Glacier shrinkage across High Mountain Asia. Ann. Glaciol. 2016, 57, 41–49. [Google Scholar] [CrossRef] [Green Version]
- Brun, F.; Berthier, E.; Wagnon, P.; Kääb, A.; Treichler, D. A spatially resolved estimate of High Mountain Asia glacier mass balances from 2000 to 2016. Nat. Geosci. 2017, 10, 668–673. [Google Scholar] [CrossRef]
- Brun, F.; Wagnon, P.; Berthier, E.; Jomelli, V.; Maharjan, S.B.; Shrestha, F.; Kraaijenbrink, P.D.A. Heterogeneous Influence of Glacier Morphology on the Mass Balance Variability in High Mountain Asia. J. Geophys. Res. Earth Surf. 2019, 124, 1331–1345. [Google Scholar] [CrossRef]
- Dehecq, A.; Gourmelen, N.; Gardner, A.; Brun, F.; Goldberg, D.; Nienow, P.W.; Berthier, E.; Vincent, C.; Wagnon, P.; Trouve, E. Twenty-first century glacier slowdown driven by mass loss in High Mountain Asia. Nat. Geosci. 2018, 12, 22–27. [Google Scholar] [CrossRef]
- Yao, T.; Thompson, L.; Yang, W.; Yu, W.; Gao, Y.; Guo, X.; Yang, X.; Duan, K.; Zhao, H.; Xu, B.; et al. Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings. Nat. Clim. Chang. 2012, 2, 663–667. [Google Scholar] [CrossRef]
- Intergovernmental Panel on Climate Change (IPCC). Climate Change 2013: The Physical Science Basis: Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013. [Google Scholar]
- Hu, R. Physical Geography of the Tianshan Mountains in China; China Environmental Science Press: Beijing, China, 2004. [Google Scholar]
- Luo, M.; Liu, T.; Meng, F.; Duan, Y.; Bao, A.; Xing, W.; Feng, X.; De Maeyer, P.; Frankl, A. Identifying climate change impacts on water resources in Xinjiang, China. Sci. Total Environ. 2019, 676, 613–626. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.F. Concise Glacier Inventory of China; Shanghai Popular Science Press: Shanghai, China, 2005. (In Chinese) [Google Scholar]
- Guo, W.Q.; Liu, S.Y.; Xu, J.; Wu, L.; Shangguan, D.; Yao, X.; Wei, J.; Bao, W.; Yu, P.; Liu, Q.; et al. The second Chinese glacier inventory: Data, methods and results. J. Glaciol. 2015, 61, 357–372. [Google Scholar] [CrossRef] [Green Version]
- Liu, S.; Yao, X.; Guo, W.; Xu, J.; Shangguan, D.; Wei, J.; Bao, W.; Wu, L. The contemporary glaciers in China based on the second Chinese glacier inventory. Acta Geograph. Sin. 2015, 70, 3–16. (In Chinese) [Google Scholar]
- Liu, S.Y.; Zhang, Y.; Liu, Q.; Sun, M.P. Impact and Risks of Climate Change on Glaciers; Science Press: Beijing, China, 2017. (In Chinese) [Google Scholar]
- Zemp, M.; Hoelzle, M.; Haeberli, W. Six decades of glacier mass-balance observations: A review of the worldwide monitoring network. Ann. Glaciol. 2009, 50, 101–111. [Google Scholar] [CrossRef] [Green Version]
- Che, Y.J.; Zhang, M.J.; Li, Z.Q.; Jin, S.; Wang, W.B.; Wang, S.J. Monitoring and calculating of mass balance in Qingbingtan Glacier No. 72. J. Glaciol. Geocryol. 2019, 41, 1–14. (In Chinese) [Google Scholar]
- Zhang, Y.; Liu, S.; Ding, Y.; Li, J.; Shangguan, D. Preliminary study of mass balance on the Keqicar Baxi Glacier on the south slopes of Tianshan Mountains. J. Glaciol. Geocryol. 2006, 28, 477–484. (In Chinese) [Google Scholar]
- Xie, C.W.; Ding, Y.J.; Chen, C.P.; Han, T.D. Study on the change of Keqikaer Glacier during the last 30 years, Mt. Tuomuer, Western China. Environ. Geol. 2007, 51, 1165–1170. [Google Scholar]
- Wang, P.; Li, Z.; Li, H.; Wang, W.; Wu, L.; Zhang, H.; Huai, B.; Wang, L. Recent Evolution in Extent, Thickness, and Velocity of Haxilegen Glacier No. 51, Kuytun River Basin, Eastern Tianshan Mountains. Arct. Antarct. Alp. Res. 2016, 48, 241–252. [Google Scholar] [CrossRef] [Green Version]
- Wu, G.H.; Ageta, Y.; Qiu, J.Q. Physical geographic features and climate conditions of glacial development in Bogda area, Tianshan. J. Glaciol. Geocryol. 1983, 5, 5–16. (In Chinese) [Google Scholar]
- Wang, P.; Li, Z.; Li, H.; Cao, M.; Wang, W.; Wang, F. Glacier No. 4 of Sigong River over Mt. Bogda of eastern Tianshan, central Asia: Thinning and retreat during the period 1962–2009. Environ. Earth Sci. 2011, 66, 265–273. [Google Scholar] [CrossRef]
- Wang, P.; Li, Z.; Wang, W.; Li, H.; Wu, L.; Huai, B.; Zhou, P.; Jin, S.; Wang, L. Comparison of changes in glacier area and thickness on the northern and southern slopes of Mt. Bogda, eastern Tianshan Mountains. J. Appl. Geophys. 2016, 132, 164–173. [Google Scholar] [CrossRef]
- Wang, Z.T. A discussion on the questions of development of Heigou Glacier No. 8, Bogda-peak Region. J. Glaciol. Geocryol. 1991, 13, 141–158. (In Chinese) [Google Scholar]
- Wu, Z.; Liu, S.; Zhang, S.; Shangguan, D. Accelerated thinning of Hei Valley No. 8 Glacier in the Tianshan Mountains, China. J. Earth Sci. 2013, 24, 1044–1055. [Google Scholar] [CrossRef]
- Li, Z.Q.; Wang, F.; Zhu, G.; Li, H. Basic features of the Miaoergou flat-topped glacier in east Tianshan Mountains and its thickness change over the past 24 years. J. Glaciol. Geocryol. 2007, 29, 61–65. (In Chinese) [Google Scholar]
- Climate Change Center of China Meteorological Administration (CMA). Blue Book on Climate Change in China; Climate Change Center of China Meteorological Administration: Beijing, China, 2019. (In Chinese) [Google Scholar]
- Gardner, A.; Moholdt, G.; Cogley, J.G.; Wouters, B.; Arendt, A.; Wahr, J.; Berthier, E.; Hock, R.; Pfeffer, W.T.; Kaser, G.; et al. A Reconciled Estimate of Glacier Contributions to Sea Level Rise: 2003 to 2009. Science 2013, 340, 852–857. [Google Scholar] [CrossRef] [Green Version]
- Wang, N.; Wu, H.; Wu, Y.; Chen, A. Variations of the glacier mass balance and lake water storage in the Tarim Basin, northwest China, over the period of 2003–2009 estimated by the ICESat-GLAS data. Environ. Earth Sci. 2015, 74, 1997–2008. [Google Scholar] [CrossRef]
- Wu, H.; Wang, N.; Guo, Z.; Wu, Y. Regional glacier mass loss estimated by ICESat-GLAS data and SRTM digital elevation model in the West Kunlun Mountains, Tibetan Plateau, 2003–2009. J. Appl. Remote Sens. 2014, 8, 83515. [Google Scholar] [CrossRef]
- Neckel, N.; Kropáček, J.; Bolch, T.; Hochschild, V. Glacier mass changes on the Tibetan Plateau 2003–2009 derived from ICESat laser altimetry measurements. Environ. Res. Lett. 2014, 9, 014009. [Google Scholar] [CrossRef]
- Xu, A.W.; Yang, T.B.; Wang, C.Q.; Ji, Q. Variation of glaciers in the Shaksgam River Basin, Karakoram Mountains during 1978–2015. Prog. Geogr. 2016, 35, 878–888. (In Chinese) [Google Scholar]
- He, Y.; Yang, T.B.; Chen, J.; Ji, Q. Remote Sensing Detection of Glacier Changes in Dong Tianshan Bogda Region in 1972–2013. Sci. Geogr. Sin. 2015, 35, 925–932. (In Chinese) [Google Scholar]
- Wang, Y.Q.; Zhao, J.; Li, Z.Q.; Zhang, M.J. Glacier changes in the Sawuer Mountain during 1977–2017 and their response to climate change. J. Nat. Resour. 2019, 34, 802–814. (In Chinese) [Google Scholar]
- Gardelle, J.; Berthier, E.; Arnaud, Y. Slight mass gain of Karakoram glaciers in the early twenty-first century. Nat. Geosci. 2012, 5, 322–325. [Google Scholar] [CrossRef]
- Kääb, A.; Treichler, D.; Nuth, C.; Berthier, E. Brief Communication: Contending estimates of 2003–2008 glacier mass balance over the Pamir–Karakoram–Himalaya. Cryosphere 2015, 9, 557–564. [Google Scholar] [CrossRef] [Green Version]
- Doris, D.; Christoph, M.; Tong, J.; Sergiy, V. Projections for headwater catchments of the Tarim River reveal glacier retreat and decreasing surface water availability but uncertainties are large. Environ. Res. Lett. 2016, 11, 054024. [Google Scholar]
- Duethmann, D.; Bolch, T.; Farinotti, D.; Kriegel, D.; Vorogushyn, S.; Merz, B.; Pieczonka, T.; Jiang, T.; Su, B.; Güntner, A. Attribution of streamflow trends in snow and glacier melt-dominated catchments of the Tarim River, Central Asia. Water Resour. Res. 2015, 51, 4727–4750. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.X.; Feng, Q.; Li, Z.J.; Yuan, R.F.; Gui, J.; Lv, Y.M. Climate background, fact and hydrological effect of multiphase water transformation in cold regions of the Western China: A review. Earth-Sci. Rev. 2019, 190, 33–57. [Google Scholar]
- Shangguan, D.; Liu, S.-Y.; Ding, Y.; Li, J.; Zhang, Y.; Wang, X.; Xie, C. Glacier changes in the west Kunlun Shan from 1970 to 2001 derived from Landsat TM/ETM+ and Chinese glacier inventory data. Ann. Glaciol. 2007, 46, 204–208. [Google Scholar] [CrossRef] [Green Version]
- Shangguan, D.H.; Liu, S.-Y.; Ding, Y.; Guo, W.-Q.; Xu, B.; Xu, J.; Jiang, Z. Characterizing the May 2015 Karayaylak Glacier surge in the eastern Pamir Plateau using remote sensing. J. Glaciol. 2016, 62, 944–953. [Google Scholar] [CrossRef] [Green Version]
Mountain | Region | Glacier Name | Lat. (N) | Long. (E) | Period | Geodetic MB (m w.e./a) | Period | Glaciological MB (m w.e./a) | Period | Terminus Change (m/a) | Source |
---|---|---|---|---|---|---|---|---|---|---|---|
Tien Shan | Mt. Tomor | Qingbingtan No. 72 | 41°45′ | 79°54′ | 1964–2008 | −0.20 | 2008–2014 | −0.38 | 1964–2008; 2008–2013 | −41.2; −32.2 | [15,35] |
Keqikar | 41°49′ | 80°10′ | 1981–2004 | −0.45~−1.35 | 2003–2005 | −0.44 | 1976–2003 | −10.3 | [36,37] | ||
Kuitun River Basin | Haxilegen No. 51 | 43°43′ | 84°24′ | 1999–2015 | −0.37 | 1999–2003; 2004–2006; 2010–2011 | −0.22; −0.38; −0.68 | 1964–1999; 1999–2010 | −1.4; −5.3 | [17,38] | |
Urumqi River Basin | UG1 | 43°06′ | 86°49′ | 1981–2009; 2015–2017 | −0.44; −0.70 | 1960–2018 1981–1996 1996–2010 2010–2018 | −0.35; −0.25; −0.69; −0.67 | 1962–2018; 1962–1993; 1994–2018 | −4.8; −4.5; −5.2 | This study | |
North of Mt. Bogda | No. 4 of Sigong River | 43°49′ | 88°21′ | 1962–2009 | −0.29 | 1962–1981; 1981–2006; 2006–2009 | −6.0; −8.9; −13.3 | [39,40] | |||
Fan−Shaped Diffluence | 43°48′ | 88°20′ | 1962–2009 | −0.27 | 1962–2009 | −8.8 | [39,41] | ||||
South of Mt. Bogda | Heigou No. 8 | 43°46′ | 88°23′ | 1969–2000; 2000–2009 | −0.38; −1.37 | 1962–2009 | −11.0 | [41,42,43] | |||
Harlik Mountains | Miaoergou Ice Cap | 43°02′ | 94°20′ | 1981–2005; 1981–2007 | −0.21; −0.35 | 1972–2005; 2005–2009 | −2.3; −2.7 | [16,44] | |||
Yushugou No. 6 | 43°05′ | 94°19′ | 1972–2011 | −0.46 | 1972–2005; 2005–2011 | −6.4; −7.0 | [16] | ||||
Altai | Sawir Mountains | Muz Taw | 47°04′ | 85°34′ | 2015–2016; 2016–2017; 2017–2018 | −0.98; −1.19; −1.29 | 1989–2018 | −11.5 | [45] | ||
Pamir Plateau | Eastern Pamir | Muztag No. 15 | 38°14′ | 75°03′ | 1980–1997; 1998–2012 | −0.16; +0.06 | 2005–2009 | +0.25 | 2002–2010 | −1.70 | [18,26] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, P.; Li, Z.; Li, H.; Zhang, Z.; Xu, L.; Yue, X. Glaciers in Xinjiang, China: Past Changes and Current Status. Water 2020, 12, 2367. https://doi.org/10.3390/w12092367
Wang P, Li Z, Li H, Zhang Z, Xu L, Yue X. Glaciers in Xinjiang, China: Past Changes and Current Status. Water. 2020; 12(9):2367. https://doi.org/10.3390/w12092367
Chicago/Turabian StyleWang, Puyu, Zhongqin Li, Hongliang Li, Zhengyong Zhang, Liping Xu, and Xiaoying Yue. 2020. "Glaciers in Xinjiang, China: Past Changes and Current Status" Water 12, no. 9: 2367. https://doi.org/10.3390/w12092367
APA StyleWang, P., Li, Z., Li, H., Zhang, Z., Xu, L., & Yue, X. (2020). Glaciers in Xinjiang, China: Past Changes and Current Status. Water, 12(9), 2367. https://doi.org/10.3390/w12092367