Evaluation of the Effect of Gold Mining on the Water Quality in Monterrey, Bolívar (Colombia)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Water Physicochemical Analysis, Heavy Metals, and Cyanide Detection
2.3. Bioassays
2.3.1. Endpoint and Toxic Response Model
2.3.2. Toxicity
2.4. Ames Test
2.5. Statistic Analysis
2.6. Microbiological Analysis
3. Results
3.1. Physicochemical Parameters
3.2. Bioassays
3.3. Ames Test
3.4. Statistical Analysis
3.5. Microbiological Analysis
4. Discussion
4.1. Bioassays
4.1.1. Hydra attenuata and Daphnia magna
4.1.2. Lactuca Sativa
4.2. Ames Test
4.3. Statistical Analysis
4.4. Total Coliforms, Escherichia Coli, and Somatic Coliphages
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Physicochemical Parameters (n = 9) | Village Gato | Village Tigui | Water Catchment of the Boque River | Limit of the Regulations | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Number of Sampling | S1 | S2 | S3 | S1 | S2 | S3 | S1 | S2 | S3 | Normative 0631/2015 [37] |
pH | 7.36 | 7.49 | 7.33 | 7.55 | 6.05 | 6.57 | 7.61 | 7.56 | 7.63 | 6.0–9.0 |
COD (mg/L) | 32.67 | <0.001 | 5.52 | 22.46 | <0.001 | 24.17 | 29.63 | 40.72 | 4.82 | 150 |
Total solids (g/10 mL) | 0.0024 | 0.00165 | 0.0 | 0.0007 | 0.0058 | 0.0029 | 0.0001 | 0.00316 | 0.0005 | 50 |
Cyanide (mg/L) | <0.025 | <0.025 | 0.025 | 1.02 | 1.32 | <0.025 | <0.025 | 1.57 | <0.025 | 1.0 |
Cadmium (Cd) (mg/L) | 0.05 | 0.03 | 0.02 | <1.0 × 10−2 | 0.02 | 0.02 | <1.0 × 10−2 | 0.02 | 0.01 | 0.05 |
Chrome (Cr) (mg/L) | <1.0 × 10−6 | <1.0 × 10−6 | <1.0 × 10−6 | 0.06 | <1.0 × 10−6 | 0.04 | <1.0 × 10−6 | <1.0 × 10−6 | <1.0 × 10−6 | 0.5 |
Mercury (Hg) (mg/L) | 0.0008 | 0.0029 | 0.0003 | 0.001 | 0.0025 | 0.0008 | 0.0022 | 0.002 | 0.0008 | 0.002 |
Nickel (Ni) (mg/L) | <1.0 × 10−3 | <1.0 × 10−3 | <1.0 × 10−3 | <1.0 × 10−3 | <1.0 × 10−3 | <1.0 × 10−3 | <1.0 × 10−3 | <1.0 × 10−3 | <1.0 × 10−3 | 0.5 |
Zinc (Zn) (mg/L) | <1.0 × 10−3 | <1.0 × 10−3 | <1.0 × 10−3 | <1.0 × 10−3 | <1.0 × 10−3 | <1.0 × 10−3 | <1.0 × 10−3 | <1.0 × 10−3 | <1.0 × 10−3 | 3.0 |
Physicochemical Parameters (n = 6) | House | Deep-Well Underground | Limit of the Regulations | ||||
---|---|---|---|---|---|---|---|
Number of sampling | S1 | S2 | S3 | S1 | S2 | S3 | Normative 2115/2007 [38] |
pH | 7.6 | 7.53 | 7.44 | 6.95 | 6.79 | 6.61 | 6.5–9.0 |
Cyanide (mg/L) | <0.025 | 1.11 | <0.025 | <0.025 | <0.025 | <0.025 | 0.05 |
Cadmium (Cd) (mg/L) | <1.0 × 10−2 | 0.03 | 0.03 | <1.0 × 10−2 | 0.01 | <1.0 × 10−2 | 0.003 |
Chrome (Cr) (mg/L) | 0.02 | <1.0 × 10−6 | <1 × 10−6 | <1.0 × 10−6 | <1.0 × 10−6 | <1.0 × 10−6 | 0.05 |
Mercury (Hg) (mg/L) | 0.0004 | 0.0005 | 0.0003 | 0.0007 | 0.0003 | 0.0007 | 0.001 |
Nickel (Ni) (mg/L) | <1.0 × 10−3 | <1.0 × 10−3 | <1.0 × 10−3 | <1.0 × 10−3 | <1.0 × 10−3 | <1.0 × 10−3 | 0.2 |
Zinc (Zn) (mg/L) | <1.0 × 10−3 | <1.0 × 10−3 | <1.0 × 10−3 | <1.0 × 10−3 | <1.0 × 10−3 | <1.0 × 10−3 | 3.0 |
References
- UNIDO Green Industry Initiative for Sustainable Industrial Development 2011. Available online: https://www.greengrowthknowledge.org/sites/default/files/downloads/resource/Green_Industry_Initiative_for_Sustainable_Development_UNIDO.pdf (accessed on 12 February 2020).
- Ogola, J.S.; Mitullah, W.V.; Omulo, M.A. Impact of gold mining on the environment and human health: A case study in the Migori Gold Belt, Kenya. Environ. Geochem. Health 2002, 24, 141–157. [Google Scholar] [CrossRef]
- Gafur, N.A.; Sakakibara, M.; Sano, S.; Sera, K. A case study of heavy metal pollution in water of Bone River by artisanal small-scale gold mine activities in eastern part of Gorontalo, Indonesia. Water 2018, 10, 1507. [Google Scholar] [CrossRef] [Green Version]
- Carranza-Lopez, L.; Caballero-Gallardo, K.; Cervantes-Ceballos, L.; Turizo-Tapia, A.; Olivero-Verbel, J. Multicompartment mercury contamination in major gold mining districts at the department of Bolivar, Colombia. Arch. Environ. Contam. Toxicol. 2019, 76, 640–649. [Google Scholar] [CrossRef] [PubMed]
- Pinedo-Hernández, J.; Marrugo-Negrete, J.; Díez, S. Speciation and bioavailability of mercury in sediments impacted by gold mining in Colombia. Chemosphere 2015, 119, 1289–1295. [Google Scholar] [CrossRef] [PubMed]
- Von Behren, J.; Liu, R.; Sellen, J.; Duffy, C.N.; Gajek, R.; Choe, K.-Y.; DeGuzman, J.; Janes, M.K.; Hild, J.; Reynolds, P. Heavy metals in California women living in a gold mining-impacted community. Int. J. Environ. Res. Public Health 2019, 16, 2252. [Google Scholar] [CrossRef] [Green Version]
- Ouboter, P.E.; Landburg, G.; Satnarain, G.U.; Starke, S.Y.; Nanden, I.; Simon-Friedt, B.; Hawkins, W.B.; Taylor, R.; Lichtveld, M.Y.; Harville, E.; et al. Mercury levels in women and children from interior villages in Suriname, South America. Int. J. Environ. Res. Public Health 2018, 15, 1007. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Producción de oro en Colombia Creció 7% en el Primer Trimestre de 2020. Available online: https://www.elespectador.com/economia/produccion-de-oro-en-colombia-crecio-7-en-el-primer-trimestre-de-2020-articulo-920587/ (accessed on 22 May 2020).
- Robles Mengoa, M.E.; Urán, A. Colombia: Legal loopholes behind illegal gold trade. In Global Gold Production Touching Ground, 1st ed.; Springer International Publishing: New York, NY, USA, 2020; pp. 151–161. [Google Scholar]
- Güiza, L. Small scale mining in Colombia: Not such a small activity. DYNA 2013, 80, 109–117. [Google Scholar]
- DANE Proyecciones de Población Departamentales Por Área 2015–2020. Available online: https://www.dane.gov.co/files/investigaciones/poblacion/proyepobla06_20/7Proyecciones_poblacion.pdf (accessed on 22 February 2020).
- Ministerio de Minas y Energía Censo Minero Departamental 2010–2011. Available online: https://www.minenergia.gov.co/documents/10180/698204/CensoMinero.pdf/093cec57-05e8-416b-8e0c-5e4f7c1d6820 (accessed on 8 February 2020).
- De la Hoz, V.J. Economía y conflicto en el Cono Sur del Departamento de Bolívar. Banco de la República 2009, 110, 1–109. [Google Scholar]
- Alcaldía de Simití-Bolívar Plan de Desarrollo ¡Simití Pata Todos! 2016–2019. Available online: https://simitibolivar.micolombiadigital.gov.co/sites/simitibolivar/content/files/000132/6580_plan-de-desarrollo-municipal-20162019.pdf (accessed on 22 July 2020).
- Grajales, A.K. El Río Grande la Magdalena Como Eje Estructurante del Desarrollo territorial. Estudio de Caso: Magdalena Medio 1950–2010; Empresas Publicas de Medellin (EPM): Medellin, Colombia, 2012; pp. 1–65. [Google Scholar]
- Donato, D.B.; Nichols, O.; Possingham, H.; Moore, M.; Ricci, P.F.; Noller, B.N. A critical review of the effects of gold cyanide-bearing tailings solutions on wildlife. Environ. Int. 2007, 33, 974–984. [Google Scholar] [CrossRef]
- Hilson, G. Abatement of mercury pollution in the small-scale gold mining industry: Restructuring the policy and research agendas. Sci. Total Environ. 2006, 362, 1–14. [Google Scholar] [CrossRef]
- Hilson, G.; Murck, B. Progress toward pollution prevention and waste minimization in the North American gold mining industry. J. Clean Prod. 2001, 9, 405–415. [Google Scholar] [CrossRef]
- Cordy, P.; Veiga, M.M.; Salih, I.; Al-Saadi, S.; Console, S.; Garcia, O.; Mesa, L.A.; Velásquez-López, P.C.; Roeser, M. Mercury contamination from artisanal gold mining in Antioquia, Colombia: The world’s highest per capita mercury pollution. Sci. Total Environ. 2011, 410, 154–160. [Google Scholar] [CrossRef] [PubMed]
- Bohórquez-Echeverry, P.; Duarte-Castañeda, M.; León-López, N.; Caicedo-Carrascal, F.; Vásquez-Vásquez, M.; Campos-Pinilla, C. Selection of a bioassay battery to assess toxicity in the affluents and effluents of three water-treatment plants. Univ. Sci. 2012, 17, 152–166. [Google Scholar] [CrossRef] [Green Version]
- Keddy, C.J.; Greene, J.C.; Bonnell, M.A. Review of whole-organism bioassays: Soil, freshwater sediment, and freshwater assessment in Canada. Ecotoxicol. Environ. Saf. 1995, 30, 221–251. [Google Scholar] [CrossRef]
- Miller, W.E.; Peterson, S.A.; Greene, J.C.; Callahan, C.A. Comparative toxicology of laboratory organisms for assessing Hazardous Waste Sites. J. Environ. Qual. 1985, 14, 569–574. [Google Scholar] [CrossRef]
- Férard, J.F.; Burga Pérez, K.F.; Blaise, C.; Péry, A.; Sutthivaiyakit, P.; Gagné, F. Microscale ecotoxicity testing of Moselle river watershed (Lorraine Province, France) sediments. J. Xenobiot. 2015, 5, 1–7. [Google Scholar] [CrossRef]
- Castillo, G.C.; Vila, I.C.; Ella, N. Ecotoxicity assessment of metals and wastewater using multitrophic assays. Environ. Toxicol. 2000, 15, 370–375. [Google Scholar] [CrossRef]
- MacGregor, J.T.; Casciano, D.; Müller, L. Strategies and testing methods for identifying mutagenic risks. Mutat. Res. 2000, 455, 3–20. [Google Scholar] [CrossRef]
- Maron, D.M.; Ames, B.N. Revised methods for the Salmonella mutagenicity test. Mutat. Res. 1983, 113, 173–215. [Google Scholar] [CrossRef]
- González Scancella, T. Evaluación del Sistema de Abastecimiento de Agua Potable y Disposición de Excretas de la Población del Corregimiento de Monterrey, Municipio de Simití, Departamento de Bolívar, Proponiendo Soluciones Integrales al Mejoramiento de Los Sistemas y la Salud de la Comunidad; Ecology College Degree, Pontificia Universidad Javeriana: Bogotá, Colombia, 2013. [Google Scholar]
- Barrera, J.A.; Espinosa, A.J.; Álvarez, J.P. Contaminación en el Lago de Tota, Colombia: Toxicidad aguda en Daphnia magna (Cladocera: Daphniidae) e Hydra attenuata (Hydroida: Hydridae). Rev. biol. Trop. 2019, 67, 11–23. [Google Scholar] [CrossRef]
- Espinosa-Ramírez, A.J. El Agua, un Reto Para la Salud Pública. La Calidad del Agua y las Oportunidades Para la Vigilancia en Salud Ambiental. Ph.D. Thesis, Universidad Nacional de Colombia, Bogotá, Colombia, 2018. [Google Scholar]
- Zeiger, E. The test that changed the world: The Ames test and the regulation of chemicals. Mutat. Res. 2019, 841, 43–48. [Google Scholar] [CrossRef] [PubMed]
- American Public Health Association 2310 B. Titration method. In Standard Methods for the Examination of Water and Wastewater; American Public Health Association: Washington, DC, USA, 2012; p. 1946. [Google Scholar]
- American Public Health Association 5220 D. Closed reflux, colorimetric method. In Standard Methods for the Examination of Water and Wastewater; American Public Health Association: Washington, DC, USA, 2012; p. 1946. [Google Scholar]
- American Public Health Association 2540 B. Total solids dried at 103–105 °C. In Standard Methods for the Examination of Water and Wastewater; American Public Health Association: Washington, DC, USA, 2012; p. 1946. [Google Scholar]
- American Public Health Association 3111. Metals by flame atomic absorption spectrometry. In Standard Methods for the Examination of Water and Wastewater; American Public Health Association: Washington, DC, USA, 2012; p. 1946. [Google Scholar]
- American Public Health Association 3112B. Metals by cold-vapor atomic absorption spectrometry. In Standard Methods for the Examination of Water and Wastewater; American Public Health Association: Washington, DC, USA, 2012; p. 1946. [Google Scholar]
- American Public Health Association 4500-CN-E. Colorimetric method. In Standard Methods for the Examination of Water and Wastewater; American Public Health Association: Washington, DC, USA, 2012; p. 1946. [Google Scholar]
- Ministerio de Ambiente y Desarrollo Sostenible Resolución 0631 de 2015, Parámetros y los Valores Límites Máximos Permisibles en los Vertimientos Puntuales a Cuerpos de Aguas Superficiales y a Los Sistemas de al Cantarillado Público y se Dictan Otras Disposiciones. Available online: https://www.minambiente.gov.co/images/normativa/app/resoluciones/d1-res_631_marz_2015.pdf (accessed on 21 March 2020).
- Ministerio de Protección Social, Ministerio de Ambiente, Vivienda y Desarrollo Territorial Resolución 2115 de 2007, Características, Instrumentos Básicos y Frecuencias del Sistema de Control y Vigilancia Para la Calidad del Agua Para Consumo Humano. Available online: https://www.minambiente.gov.co/images/GestionIntegraldelRecursoHidrico/pdf/Legislaci%C3%B3n_del_agua/Resoluci%C3%B3n_2115.pdf (accessed on 21 March 2020).
- Dutka, B. Short-term root elongation toxicity bioassay. In Methods for Toxicological Analysis of Waters, Wastewaters and Sediments, Rivers Research Branch; Canada Centre for Inland Waters, National Water Research Institute: Burlington, ON, Canada, 1989; pp. 120–122. [Google Scholar]
- Trottier, S.; Biaise, C.; Kusui, T.; Johnson, E.M. Acute toxicity assessment of aqueous samples using a microplate-based hydra attenuata assay. Environ. Toxicol. Water Qual. 1997, 12, 265–271. [Google Scholar] [CrossRef]
- Dutka, B. Daphnia magna 48 hours static bioassay method for acute toxicity in environmental samples. In Methods for Toxicological Analysis of Waters, Wastewaters and Sediments; Rivers Research Branch; Canada Centre for Inland Waters, National Water Research Institute: Burlington, ON, Canada, 1989; pp. 55–59. [Google Scholar]
- EPA. Method for Measuring the Acute Toxicity of Effluents to Freshwater and Marine Organism, 3rd ed.; Environmental Monitoring Systems Laboratory, Office of Research and Development Environmental Protection Agency: Washington, DC, USA, 1985; p. 231.
- Finney, D.J. Probit Analysis, 2nd ed.; Cambridge University Press: New York, NY, USA, 1952; p. 318. [Google Scholar]
- Hamilton, M.A.; Russo, R.C.; Thurston, R.V. Trimmed spearman-karber method for estimating median lethal concentrations in toxicity bioassays. Environ. Sci. Technol. 1977, 11, 714–719. [Google Scholar] [CrossRef]
- Williams, L.; Preston, J.E. Interim Procedures for Conducting the Salmonella/Microsomal Mutagenicity Assay (Ames Test); Environmental Protection Agency: Las Vegas, NV, USA, 1983; p. 40.
- Ames, B.N.; Kammen, H.O.; Yamasaki, E. Hair Dyes are mutagenic: Identification of a variety of mutagenic ingredients. Proc. Natl. Acad. Sci. USA 1975, 72, 2423–2427. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- International Organization for Standardization. ISO 9308-1: Water Quality—Enumeration of Escherichia coli and Coliform Bacteria-Part 1: Membrane Filtration Method for Waters with Low Bacterial Background Flora, 3rd ed.; International Organization for Standardization: Geneva, Switzerland, 2014. [Google Scholar]
- International Organization for Standardization. ISO 10705-2: Water Quality. Detection and Enumeration of Bacteriophages-Part 2: Enumeration of Somatic Coliphages, 1st ed.; International Organization for Standardization: Geneva, Switzerland, 2000. [Google Scholar]
- de Ministerio, A. Decreto 1594 de 1984, Por el cual se Reglamenta Parcialmente el del Decreto Ley 2811 de 1974 en Cuanto a Usos del Agua y Residuos Líquidos. Available online: https://www.minambiente.gov.co/images/GestionIntegraldelRecursoHidrico/pdf/normativa/Decreto_1594_de_1984.pdf (accessed on 6 February 2020).
- Holdway, D.A.; Lok, K.; Semaan, M. The acute and chronic toxicity of cadmium and zinc to two hydra species. Environ. Toxicol. 2001, 16, 557–565. [Google Scholar] [CrossRef]
- Riethmuller, N.; Markich, S.J.; Van Dam, R.A.; Parry, D. Effects of water hardness and alkalinity on the toxicity of uranium to a tropical freshwater hydra (hydra viridissima). Biomarkers 2001, 6, 45–51. [Google Scholar] [CrossRef]
- Sundaram, R.; Smith, B.W.; Clark, T.M. pH-dependent toxicity of serotonin selective reuptake inhibitors in taxonomically diverse freshwater invertebrate species. Mar. Freshw. Res. 2015, 66, 518–525. [Google Scholar] [CrossRef]
- Forget, G.; Gagnon, P.; Sanchez, W.A.; Dutka, B.J. Overview of methods and results of the eight country International Development Research Centre (IDRC) WaterTox project. Environ. Toxicol. 2000, 15, 264–276. [Google Scholar] [CrossRef]
- de Castro-Català, N.; Kuzmanovic, M.; Roig, N.; Sierra, J.; Ginebreda, A.; Barceló, D.; Pérez, S.; Petrovic, M.; Picó, Y.; Schuhmacher, M.; et al. Ecotoxicity of sediments in rivers: Invertebrate community, toxicity bioassays and the toxic unit approach as complementary assessment tools. Sci. Total Environ. 2016, 540, 297–306. [Google Scholar] [CrossRef] [Green Version]
- Yuan, N.; Pei, Y.; Bao, A.; Wang, C. The Physiological and Biochemical Responses of Daphnia magna to Dewatered Drinking Water Treatment Residue. Int. J. Environ. Res. Public Health 2020, 17, 5863. [Google Scholar] [CrossRef]
- Lattuada, R.M.; Menezes, C.T.B.; Pavei, P.T.; Peralba, M.C.R.; Dos Santos, J.H.Z. Determination of metals by total reflection X-ray fluorescence and evaluation of toxicity of a river impacted by coal mining in the south of Brazil. J. Hazard. Mater. 2009, 163, 531–537. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.G.; Xu, Y.N.; Zhang, J.H.; Hu, S.H. Evaluation of ecological risk and primary empirical research on heavy metals in polluted soil over Xiaoqinling gold mining region, Shaanxi, China. Trans. Nonferrous Met. Soc. China 2010, 20, 688–694. [Google Scholar] [CrossRef]
- Charles, J.; Sancey, B.; Morin-Crini, N.; Badot, P.M.; Degiorgi, F.; Trunfio, G.; Crini, G. Evaluation of the phytotoxicity of polycontaminated industrial effluents using the lettuce plant (Lactuca sativa) as a bioindicator. Ecotoxicol Environ. Saf. 2011, 74, 2057–2064. [Google Scholar] [CrossRef]
- Cornu, J.Y.; Denaix, L.; Schneider, A.; Pellerin, S. Temporal variability of solution Cd2+ concentration in metal-contaminated soils as affected by soil temperature: Consequences on lettuce (Lactuca sativa L.) exposure. Plant. Soil 2008, 307, 51–65. [Google Scholar] [CrossRef]
- Tang, X.; Pang, Y.; Ji, P.; Gao, P.; Nguyen, T.H.; Tong, Y. Cadmium uptake in above-ground parts of lettuce (Lactuca sativa L.). Ecotoxicol. Environ. Saf. 2016, 125, 102–106. [Google Scholar] [CrossRef] [PubMed]
- Retamal-Salgado, J.; Hirzel, J.; Walter, I.; Matus, I. Bioabsorption and Bioaccumulation of Cadmium in the Straw and Grain of Maize (Zea mays L.) in Growing Soils Contaminated with Cadmium in Different Environment. Int. J. Environ. Res. Public Health 2017, 14, 1399. [Google Scholar] [CrossRef] [Green Version]
- Duri, L.; Visconti, D.; Fiorentino, N.; Adamo, P.; Fagnano, M.; Caporale, A. Health risk assessment in agricultural soil potentially contaminated by Geogenic Thallium: Influence of plant species on metal mobility in soil-plant system. Agronomy 2020, 10, 890. [Google Scholar] [CrossRef]
- Mercado-Garcia, D.; Beeckman, E.; Van Butsel, J.; Arroyo, N.D.; Peña, M.S.; Van Buggendhoudt, C.; Saeyer, N.D.; Forio, M.A.E.; Schamphelaere, K.A.C.D.; Wyseure, G.; et al. Assessing the freshwater quality of a large-scale miningwatershed: The need for integrated approaches. Water 2019, 11, 1797. [Google Scholar] [CrossRef] [Green Version]
- Atsdr, E.P.A. Agency for toxic substances and disease registry case studies in environmental medicine (CSEM). Cadmium 2011, 1, 1–63. [Google Scholar]
- Guidelines for Drinking-Water Quality. Available online: https://www.paho.org/en/documents/guidelines-drinking-water-quality-4o-ed-2011 (accessed on 19 March 2020).
- Castillo Rodriguez, F. Biotecnología Ambiental; Editorial Tebar Flores: Madrid, Spain, 2005; p. 592. [Google Scholar]
- New Jersey Department of Health and Senior Services Hazardous Substance Fact Sheet 2007. Available online: http://www.nj.gov/health/eoh/rtkweb/documents/fs/0027.pdf (accessed on 22 March 2020).
- Ames, B.N.; Lee, F.D.; Durston, W.E. An improved bacterial test system for the detection and classification of Mutagens and Carcinogens. Proc. Natl. Acad. Sci. USA 1973, 70, 782–786. [Google Scholar] [CrossRef] [Green Version]
- Orozco, L.Y.; Zuleta, M. Detección de mutacarcinógenos en aguas del Río Pantanillo y efecto genotóxico de esta agua en el DNA nuclear y mitocondrial de células eucarióticas. Iatreia 2000, 13, 94. [Google Scholar]
- Meléndez, I.; Zuleta, M.; Marín, I.; Calle, J.; Salazar, D. Actividad mutagénica de aguas de consumo humano antes y después de clorar en la planta de Villa Hermosa, Medellín. Iatreia 2001, 14, 167–175. [Google Scholar]
- Sierra, J.; Benitez, N.; Bravo, E.; Larmat, F.; Soto, A. Evaluation of the mutagenic activity of waters collected from the Cauca River in the city Cali, Colombia by using the Salmonella/Microsome Assay. Revista de Ciencias 2012, 16, 131. [Google Scholar]
- Mesquidaz, E.D.; Negrete, J.M.; Hernández, J.P. Exposición a mercurio en trabajadores de una mina de oro en el norte de Colombia. Salud Uninorte 2013, 29, 534–541. [Google Scholar]
- Manjarres-Suarez, A.; Olivero-Verbel, J. Hematological parameters and hair mercury levels in adolescents from the Colombian Caribbean. Environ. Sci. Pollut. Res. 2020, 27, 14216–14227. [Google Scholar] [CrossRef]
- Zahir, F.; Rizwi, S.J.; Haq, S.K.; Khan, R.H. Low dose mercury toxicity and human health. Environ. Toxicol Pharmacol. 2005, 20, 351–360. [Google Scholar] [CrossRef]
- Næss, S.; Kjellevold, M.; Dahl, L.; Nerhus, I.; Midtbø, L.K.; Bank, M.S.; Rasinger, J.D.; Markhus, M.W. Effects of seafood consumption on mercury exposure in Norwegian pregnant women: A randomized controlled trial. Environ. Int. 2020, 141, 105759. [Google Scholar] [CrossRef]
- Pateda, S.; Sakakibara, M.; Sera, K. Lung function assessment as an early biomonitor of mercury-induced health disorders in artisanal and small-scale gold mining areas in Indonesia. Int. J. Environ. Res. Public Health 2018, 15, 2480. [Google Scholar] [CrossRef] [Green Version]
- Park, J.-D.; Zheng, W. Human exposure and health effects of inorganic and elemental mercury. J. Prev. Med. Public Health 2012, 34445, 344–352. [Google Scholar] [CrossRef]
- Gyamfi, O.; Sorenson, P.B.; Darko, G.; Ansah, E.; Bak, J.L. Human health risk assessment of exposure to indoor mercury vapour in a Ghanaian artisanal small-scale gold mining community. Chemosphere 2020, 241, 125014. [Google Scholar] [CrossRef]
- Patra, M.; Bhowmik, N.; Bandopadhyay, B.; Sharma, A. Comparison of mercury, lead and arsenic with respect to genotoxic effects on plant systems and the development of genetic tolerance. Environ. Exp. Bot. 2004, 52, 199–223. [Google Scholar] [CrossRef]
- Clarkson, T.W.; Magos, L. The toxicology of mercury and its chemical compounds. Crit. Rev. Toxicol. 2006, 36, 609–662. [Google Scholar] [CrossRef] [PubMed]
- Campos-Pinilla, C.; Cárdenas-Guzmán, M.; Guerrero-Cañizares, A. Comportamiento de los indicadores de contaminación fecal en diferente tipo de aguas de la sabana de Bogotá (Colombia). Univ. Sci. 2008, 13, 103–108. [Google Scholar]
- Sánchez-Alfonso, A.C.; Venegas, C.; Díez, H.; Méndez, J.; Blanch, A.R.; Jofre, J.; Campos, C. Microbial indicators and molecular markers used to differentiate the source of faecal pollution in the Bogotá River (Colombia). Int. J. Hyg. Environ. Health 2020, 225, 113450. [Google Scholar] [CrossRef] [PubMed]
- Lucena, F.; Méndez, X.; Morón, A.; Calderón, E.; Campos, C.; Guerrero, A.; Cárdenas, M.; Gantzer, C.; Shwartzbrood, L.; Skraber, S.; et al. Occurrence and densities of bacteriophages proposed as indicators and bacterial indicators in river waters from Europe and South America. J. Appl. Microbiol. 2003, 94, 808–815. [Google Scholar] [CrossRef]
- Augustyn, Ł.; Babula, A.M.; Joniec, J.; Stanek-Tarkowska, J.; Hajduk, E.; Kaniuczak, J. Microbiological indicators of the quality of river water, used for drinking water supply. Pol. J. Environ. Stud. 2016, 25, 511–519. [Google Scholar] [CrossRef] [Green Version]
- Jofre, J.; Lucena, F.; Blanch, A.R.; Muniesa, M. Coliphages as model organisms in the characterization and management of water resources. Water 2016, 8, 199. [Google Scholar] [CrossRef] [Green Version]
Sampling Station (n = 15) | 1S % (v/v) Effect | 2S % (v/v) Effect | 3S % (v/v) Effect |
---|---|---|---|
Village Gato | 33% Inhibition to 75% | 27% Inhibition to 100% | 133% Growth to 25% |
Village Tigui | 44% Inhibition to 25% | 24% Inhibition to 25% | 4% Inhibition to 50% |
Water catchment of the Boque River | 0% Inhibition to 100% | 27% Inhibition to 100% | 110% Growth to 100% |
House | 34% Inhibition to 25% | 19% Inhibition to 75% | 6% Inhibition to 50% |
Deep-well underground | 35% Inhibition to 50% | 36% Inhibition to 75% | 6% Inhibition to 75% |
Sampling Station | 3S % (v/v) Effect |
---|---|
(n = 15) | |
Village Tigui | 17% mortality to 75% |
Village Gato | 33% mortality to 100% |
Water catchment of the Boque River | 23% mortality to 50% |
House | 47% mortality to 100% |
Deep-well underground | 43% mortality to 100% |
Sampling Stations (n = 15) | Concentration v/v (%) | TA98 | TA100 | ||||
---|---|---|---|---|---|---|---|
(MI) | (MI) | ||||||
S1 | S2 | S3 | S1 | S2 | S3 | ||
Village Gato | 25 | 0.77 | 1.07 | 0.00 | 0.97 | 0.46 | 1.00 |
50 | 0.86 | 0.87 | 0.20 | 1.09 | 0.68 | 1.20 | |
75 | 1.06 | 1.49 | 0.60 | 1.27 | 0.77 | 1.70 | |
100 | 1.12 | 1.93 | 1.00 | 1.51 | 1.14 | 2.40 | |
Village Tigui | 25 | 0.97 | 0.70 | 0.00 | 1.37 | 0.20 | 0.60 |
50 | 0.95 | 0.74 | 0.00 | 1.39 | 0.34 | 0.90 | |
75 | 1.12 | 1.14 | 0.10 | 1.48 | 0.33 | 1.00 | |
100 | 1.21 | 1.82 | 0.40 | 1.81 | 0.56 | 1.20 | |
Water catchment of the Boque River | 25 | 1.17 | 0.39 | 0.30 | 0.94 | 0.27 | 0.60 |
50 | 1.39 | 0.63 | 0.50 | 1.00 | 0.24 | 0.70 | |
75 | 1.41 | 0.47 | 0.60 | 1.21 | 0.35 | 1.10 | |
100 | 1.50 | 0.59 | 0.90 | 1.71 | 0.44 | 1.30 | |
House | 25 | 0.68 | 41.78 | 0.40 | 1.01 | 11.05 | 0.60 |
50 | 1.00 | 48.49 | 0.60 | 1.17 | 12.39 | 1.00 | |
75 | 1.06 | 56.62 | 0.80 | 1.36 | 13.75 | 2.00 | |
100 | 1.21 | 58.31 | 1.10 | 1.70 | 15.09 | 2.50 | |
Deep-well underground | 25 | 88.0 | 0.39 | 0.20 | 1.02 | 0.37 | 0.80 |
50 | 0.88 | 0.50 | 0.50 | 1.16 | 1.21 | 1.20 | |
75 | 1.00 | 0.50 | 0.80 | 1.23 | 0.42 | 1.70 | |
100 | 0.55 | 0.64 | 0.90 | 1.28 | 0.64 | 2.00 |
Sampling Stations (n = 15) | Microbiological Indicators | ||||||||
---|---|---|---|---|---|---|---|---|---|
Total Coliforms CFU/100 mL | E. coli CFU/100 mL | Somatic Coliphages PFU/100 mL | |||||||
1S | 2S | 3S | 1S | 2S | 3S | 1S | 2S | 3S | |
Village Gato | 7.0 × 103 | 1.1 × 105 | 4.1 × 105 | 1.0 × 103 | 4.0 × 103 | 8.0 × 104 | 1.4 × 103 | 1.0 × 102 | 4.5 |
Village Tigui | 1.3 × 105 | 3.2 × 104 | 2.2 × 105 | 2.0 × 103 | 2.0 × 103 | 3.0 × 104 | 4.9 × 103 | 3.0 × 102 | <1.0 × 103 |
Water catchment of the Boque River | 2.4 × 104 | 1.7 × 104 | 4.0 × 105 | 1.0 × 103 | 1.0 × 103 | 1.0 × 104 | <1.0 × 102 | <1.0 × 103 | 1.9 |
House | 4.0 × 104 | 1.4 × 105 | 2.8 × 105 | 1.0 × 103 | 3.0 × 104 | 3.0 × 104 | 1.0 × 102 | 2.0 × 104 | 1.0 × 102 |
Deep-well underground | 3.2 × 104 | 6.0 × 104 | 3.8 × 105 | 1.0 × 103 | 4.0 × 104 | 4.0 × 104 | 2.0 × 102 | <1.0 × 103 | 1.0 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martín, A.; Arias, J.; López, J.; Santos, L.; Venegas, C.; Duarte, M.; Ortíz-Ardila, A.; de Parra, N.; Campos, C.; Zambrano, C.C. Evaluation of the Effect of Gold Mining on the Water Quality in Monterrey, Bolívar (Colombia). Water 2020, 12, 2523. https://doi.org/10.3390/w12092523
Martín A, Arias J, López J, Santos L, Venegas C, Duarte M, Ortíz-Ardila A, de Parra N, Campos C, Zambrano CC. Evaluation of the Effect of Gold Mining on the Water Quality in Monterrey, Bolívar (Colombia). Water. 2020; 12(9):2523. https://doi.org/10.3390/w12092523
Chicago/Turabian StyleMartín, Alison, Juliana Arias, Jennifer López, Lorena Santos, Camilo Venegas, Marcela Duarte, Andrés Ortíz-Ardila, Nubia de Parra, Claudia Campos, and Crispín Celis Zambrano. 2020. "Evaluation of the Effect of Gold Mining on the Water Quality in Monterrey, Bolívar (Colombia)" Water 12, no. 9: 2523. https://doi.org/10.3390/w12092523
APA StyleMartín, A., Arias, J., López, J., Santos, L., Venegas, C., Duarte, M., Ortíz-Ardila, A., de Parra, N., Campos, C., & Zambrano, C. C. (2020). Evaluation of the Effect of Gold Mining on the Water Quality in Monterrey, Bolívar (Colombia). Water, 12(9), 2523. https://doi.org/10.3390/w12092523