Groundwater Recharge in the Cerrado Biome, Brazil—A Multi-Method Study at Experimental Watershed Scale
Abstract
:1. Introduction
2. Materials and Methods
2.1. Monitoring and Data Collection
2.2. Numerical Modeling of the Saturated Zone
2.2.1. Conceptual Model
2.2.2. Numerical Model Implementation and Temporal Partition of Database
2.2.3. Numerical Modeling
2.3. Distributed Hydrological Modelling of the Vadose Zone
2.4. Water Table Elevation (WTE)
2.5. Baseflow Separation
3. Results and Discussion
3.1. Numerical Modeling
3.2. Hydrological Modeling
3.3. WTE Method
−5.99 × Sy + 5.34 × UT + 0.0029 × S
3.4. Baseflow Separation
3.5. Comparative Analysis
4. Conclusions
- Among the four methods applied, only hydrological modeling estimates the potential recharge rate accurately. For this method, the result was considered satisfactory, since the average value of 35% for the basin was also estimated by hydrological modeling in other studies for basins in the same biome and with similar physical characteristics. However, the recharge rates in the Cerrado biome may be greater than estimated, as the simulated drainage discharge was probably underestimated in some areas of the basin;
- in terms of effective recharge, of the three applied methods, numerical modeling presented the most promising results because, unlike the Baseflow and WTE methods, the rates are simulated considering the hydrodynamic and physical behavior of the aquifer. According to this method, the average recharge rate in the basin was around 21% of the total rainfall;
- the WTE method also simulated a plausible average effective recharge for the basin of around 29% of the annual precipitation (the average annual rate calculated from point estimates). The baseflow estimate of around 37% was considered overestimated and the parameter of the mathematical filter was arbitrary and needs adjustment. The 25% estimated in Santos [85] for the same study area was considered more reasonable;
- the level of uncertainty for the estimated recharge rates was not measured but was considered high due to uncertainties in the conceptual models of the methods, the uncertainties of the parameters/data, and the limitations of the results;
- in terms of the spatial distribution, the potential recharge map generated by hydrological modeling was considered consistent for combinations between Ferralsols and Cerrado vegetation cover in flatter areas. For the steepest areas with Cambisols, the consistency of the map should be verified by applying another method because, according to Santos [86], the result differs greatly from that obtained by applying SWAT under the same conditions;
- for effective recharge, the spatial distribution generated by numerical modeling was considered more consistent than the map generated by interpolation of the point estimates of the WTE method. However, the prior imposition of recharge zones generated by the method limits and makes the calibration process difficult. An alternative to this is the integrated simulation of the vadose and saturated zone [47];
- all methods applied require at least one type of data or parameter that is not easily available and is difficult to obtain or estimate, indicating two main obstacles: A lack of basic field data, and the difficulty to build conceptual models faithful to the actual configuration of the hydrological processes, notably regarding numerical modeling of the saturated zone;
- the baseflow separation, WTE, and numerical modeling of the saturated zone methods could not have been applied in any area under the typical Cerrado biome conditions, for example, karst, as among the tested methods, only surface distributed hydrological modeling would be feasible to study the recharge process over most of the biome;
- the monitoring intensified in space and time performed at the study area was essential to reaching the results presented. However, for most situations, this intensity of survey would be unfeasible due to the resources required. In this sense, an alternative would be to implement a network of experimental basins, aiming to find an adequate level of representativity for the heterogeneity of the Cerrado biome. In such basins, highly detailed studies could be executed using fewer resources, and the results could be regionalized and transposed to similar areas;
- despite the limitations of the alternative approach proposed—inverse modeling with previous mapping of recharge areas via multicriteria method—the result obtained is relevant because the mean effective recharge estimated for the basin was comparable to estimates obtained by other studies for the Cerrado areas, and the spatial distribution of the previously mapped areas were coherent considering the physical behavior and the interaction between environmental factors. The calibrated model could be refined and applied to the simulation of challenging scenarios for water resources integrated management, such as climate change, water use permits, and overexploitation;
- the divergences between methods applied do not invalidate their results or applicability, since these differences are common and expected, considering the premise and simplifications inherent to each approach. As the actual measured values of the recharge in the area are not available, all of the results we obtained may undergo future evaluation through comparison with other methods, for example, using the lysimeter and chemical tracer methods, to further assess the groundwater recharge process in the Brazilian Cerrado biome.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Xie, Y.; Cook, P.G.; Simmons, C.T.; Partington, D.; Crosbie, R.; Batelaan, O. Uncertainty of groundwater recharge estimated from a water and energy balance model. J. Hydrol. 2018, 561, 1081–1093. [Google Scholar] [CrossRef] [Green Version]
- Hund, S.V.; Allen, D.M.; Morillas, L.; Johnson, M.S. Groundwater recharge indicator as tool for decision makers to increase socio-hydrological resilience to seasonal drought. J. Hydrol. 2018, 563, 1119–1134. [Google Scholar] [CrossRef]
- Lamichhane, S.; Shakya, N.M. Alteration of groundwater recharge areas due to land use/cover change in Kathmandu Valley, Nepal. J. Hydrol. Reg. Stud. 2019, 26, 100635. [Google Scholar] [CrossRef]
- Bhanja, S.N.; Mukherjee, A.; Ramaswamy, R.; Scanlon, B.R.; Malakar, P.; Verma, S. Long-term groundwater recharge rates across India by in situ measurements. Hydrol. Earth Syst. Sci. Discuss. 2018, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Hu, W.; Wang, Y.Q.; Li, H.J.; Huang, M.B.; Hou, M.T.; Li, Z.; She, D.L.; Si, B.C. Dominant role of climate in determining spatio-temporal distribution of potential groundwater recharge at a regional scale. J. Hydrol. 2019, 578. [Google Scholar] [CrossRef]
- Huang, X.; Gao, L.; Crosbie, R.S.; Zhang, N.; Fu, G.; Doble, R. Groundwater recharge prediction using linear regression, multi-layer perception network, and deep learning. Water 2019, 11, 1879. [Google Scholar] [CrossRef] [Green Version]
- Ashaolu, E.D.; Olorunfemi, J.F.; PaulIfabiy, I.; Abdollahi, K.; Batelaan, O. Spatial and temporal recharge estimation of the basement complex in Nigeria, West Africa. J. Hydrol. Reg. Stud. 2020, 27, 100658. [Google Scholar] [CrossRef]
- Mattos, T.S.; de Oliveira, P.T.S.; Lucas, M.C.; Wendland, E. Groundwater recharge decrease replacing pasture by Eucalyptus plantation. Water 2019, 11, 1213. [Google Scholar] [CrossRef] [Green Version]
- Watson, A.; Eilers, A.; Miller, J.A. Recharge estimation using cmb and environmental isotopes in the verlorenvlei estuarine system, south africa and implications for groundwater sustainability in a semi-arid agricultural region. Water 2020, 12, 1362. [Google Scholar] [CrossRef]
- Yihdego, Y.; Khalil, A. Groundwater resources assessment and impact analysis using a conceptual water balance model and time series data analysis: Case of decision making tool. Hydrology 2017, 4, 25. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Liu, S.; Cheng, F.; Shen, Z. WetSpass-based study of the effects of urbanization on the water balance components at regional and quadrat scales in Beijing, China. Water 2017, 10, 5. [Google Scholar] [CrossRef] [Green Version]
- Rukundo, E.; Doğan, A. Dominant influencing factors of groundwater recharge spatial patterns in Ergene river catchment, Turkey. Water 2019, 11, 653. [Google Scholar] [CrossRef] [Green Version]
- Tenenwurcel, M.A.; de Moura, M.S.; da Costa, A.M.; Mota, P.K.; Viana, J.H.M.; Fernandes, L.F.S.; Pacheco, F.A.L. An improved model for the evaluation of groundwater recharge based on the concept of conservative use potential: A study in the river Pandeiros Watershed, Minas Gerais, Brazil. Water 2020, 12, 1001. [Google Scholar] [CrossRef] [Green Version]
- Zhu, R.; Croke, B.F.W.; Jakeman, A.J. Diffuse groundwater recharge estimation confronting hydrological modelling uncertainty. J. Hydrol. 2020, 584, 124642. [Google Scholar] [CrossRef]
- Santos, R.M. Recarga de águas Subterrâneas em Ambiente de Cerrado: Estudo com Base em Modelagem Numérica e Simulação Hidrológica em uma Bacia Experimental (Distrito Federal); Universidade de Brasília: Brasília, Brazil, 2012. [Google Scholar]
- Gonçalves, R.D.; Teramoto, E.H.; Chang, H.K. Regional Groundwater Modeling of the Guarani Aquifer System. Water 2020, 12, 2323. [Google Scholar] [CrossRef]
- Oliveira, P.T.S.; Wendland, E.; Nearing, M.A.; Scott, R.L.; Rosolem, R.; Da Rocha, H.R. The water balance components of undisturbed tropical woodlands in the Brazilian cerrado. Hydrol. Earth Syst. Sci. 2015, 19, 2899–2910. [Google Scholar] [CrossRef] [Green Version]
- de Almeida Salles, L.; Lima, J.E.F.W.; Roig, H.L.; Malaquias, J.V. Environmental factors and groundwater behavior in an agricultural experimental basin of the Brazilian central plateau. Appl. Geogr. 2018, 94, 272–281. [Google Scholar] [CrossRef]
- Lima, J.E.F.W. Situação e perspectivas sobre as águas do cerrado. Cienc. Cult. 2011, 63, 27–29. [Google Scholar] [CrossRef] [Green Version]
- Cambraia Neto, A.J.; Rodrigues, L.N. Evaluation of groundwater recharge estimation methods in a watershed in the Brazilian Savannah. Environ. Earth Sci. 2020, 79, 1–14. [Google Scholar] [CrossRef]
- Seraphim, A.P.A.C.C. Texto para Discussão (TD)—n. 55—Relações Entre as áreas de Recarga dos Aquíferos e áreas Destinadas à Urbanização: Estudo dos Padrões de Ocupação do solo da Unidade Hidrográfica do Lago Paranoá—DF; Universidade de Brasília: Brasília, Brazil, 2018. [Google Scholar]
- Carvalho, F.; Scopel, I. Escoamento superficial e recarga d’água subterrânea em diferentes usos do solo na microbacia do córrego do queixada. Rev. Caminhos Geogr. 2018, 19, 133–145. [Google Scholar] [CrossRef]
- Joshi, S.K.; Rai, S.P.; Sinha, R.; Gupta, S.; Densmore, A.L.; Rawat, Y.S.; Shekhar, S. Tracing groundwater recharge sources in the northwestern Indian alluvial aquifer using water isotopes (δ18O, δ2H and 3H). J. Hydrol. 2018, 559, 835–847. [Google Scholar] [CrossRef]
- Lentswe, G.B.; Molwalefhe, L. Delineation of potential groundwater recharge zones using analytic hierarchy process-guided GIS in the semi-arid Motloutse watershed, eastern Botswana. J. Hydrol. Reg. Stud. 2020, 28, 100674. [Google Scholar] [CrossRef]
- de Andrade Pinto, E.J.; Santo Lima, J.D.; Davis, E.G.; da Silva, A.J.; de Oliveira Dantas, C.E.; de Oliveira Candido, M.; Palmier, L.R.; de Almeida Monte-Mor, R.C. Estimativa Da Recarga Natural Do Aquífero Livre De Uma Sub-Bacia Da Bacia Representativa De Juatuba ( MG ) Aplicando O Método Da Variação Dos Níveis D’ Água (VNA). Available online: https://aguassubterraneas.abas.org/asubterraneas/article/view/23095 (accessed on 7 April 2020).
- Lousada, E.O.; Campos, J.E.G. Estudos isotópicos em águas subterrâneas do Distrito Federal: Subsídios ao modelo conceitual de fluxo. Rev. Bras. Geociências 2011, 41, 355–365. [Google Scholar] [CrossRef] [Green Version]
- Agência Nacional de Águas. Estratégias de Manejo Sustentável dos Sistemas Aquíferos Urucuia e Areado e Conclusões. Relatório Final; Agência Nacional de Águas: Brasília, Brazil, 2017; Volume 3. [Google Scholar]
- Ramires, T.; Manzione, R.L. Groundwater recharge estimation using water budget method for Bauru Aquifer system in a Cerrado environmental protection area. Appl. Res. Agrotechnol. 2019, 12, 25–36. [Google Scholar] [CrossRef]
- Gonçalves, V.F.M.; Manzione, R.L. Estimativa da recarga das águas subterrâneas no Sistema Aquífero Bauru (SAB). Geo UERJ 2019, 35, 2–19. [Google Scholar] [CrossRef]
- Silva, C.O.F. Modelagem Espacial da Recarga de águas Subterrâneas sob Diferentes Usos e Coberturas da Terra; Universidade Estadual Paulista: São Paulo, Brazil, 2019. [Google Scholar]
- Scanlon, B.R.; Healy, R.W.; Cook, P.G. Choosing appropriate techniques for quantifying groundwater recharge. Hydrogeol. J. 2002, 10, 18–39. [Google Scholar] [CrossRef]
- Lacombe, G.; Douangsavanh, S.; Vongphachanh, S.; Pavelic, P. Regional assessment of groundwater recharge in the lower mekong basin. Hydrology 2017, 4, 60. [Google Scholar] [CrossRef] [Green Version]
- Salem, A.; Dezso, J.; El-Rawy, M.; Lóczy, D. Hydrological modeling to assess the efficiency of groundwater replenishment through natural reservoirs in the Hungarian drava river floodplain. Water 2020, 12, 250. [Google Scholar] [CrossRef] [Green Version]
- Walker, D.; Parkin, G.; Schmitter, P.; Gowing, J.; Tilahun, S.A.; Haile, A.T.; Yimam, A.Y. Insights from a multi-method recharge estimation comparison study. Groundwater 2019, 57, 245–258. [Google Scholar] [CrossRef] [Green Version]
- Xu, Y.; Beekman, H.E. Review: Groundwater recharge estimation in arid and semi-arid southern Africa. Hydrogeol. J. 2019, 27, 929–943. [Google Scholar] [CrossRef]
- Neukum, C.; Azzam, R. Impact of climate change on groundwater recharge in a small catchment in the Black Forest, Germany. Hydrogeol. J. 2012, 20, 547–560. [Google Scholar] [CrossRef]
- Wiebe, A.J.; Rudolph, D.L. On the sensitivity of modelled groundwater recharge estimates to rain gauge network scale. J. Hydrol. 2020, 585, 124741. [Google Scholar] [CrossRef]
- Staśko, S.; Tarka, R.; Olichwer, T. Groundwater recharge evaluation based on the infiltration method. Groundw. Qual. Sustain. 2012, 189–198. [Google Scholar] [CrossRef]
- Tarka, R.; Olichwer, T.; Staośko, S. Evaluation of groundwater recharge in Poland using the infiltration coefficient method. Geol. Q. 2016, 61, 384–395. [Google Scholar] [CrossRef] [Green Version]
- Siva Prasad, Y.; Venkateswara Rao, B. Groundwater recharge estimation studies in a khondalitic terrain of India. Appl. Water Sci. 2018, 8, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Yang, W.; Xiao, C.; Liang, X. Extraction method of baseflow recession segments based on second-order derivative of streamflow and comparison with four conventional methods. Water 2020, 12, 1953. [Google Scholar] [CrossRef]
- Lovett, A.; Gordon, D.; Srinivasan, M.S.; White, P. Fabrication and installation of an arable lysimeter for measuring groundwater recharge in New Zealand. Presented at the 17th Gumpensteiner Lysimetertagung: LysimeterForschung-Möglichkeiten und Grenzen Lysimeter research - options and limits, Raumberg-Gumpenstein, Austria, 9–10 May 2017. CAB Direct. Available online: https://www.cabdirect.org/cabdirect/abstract/20183101856 (accessed on 10 March 2020).
- Kohfahl, C.; Molano-Leno, L.; Martínez, G.; Vanderlinden, K.; Guardiola-Albert, C.; Moreno, L. Determining groundwater recharge and vapor flow in dune sediments using a weighable precision meteo lysimeter. Sci. Total Environ. 2019, 656, 550–557. [Google Scholar] [CrossRef]
- Huo, S.; Jin, M.; Liang, X.; Li, X.; Hao, H. Estimating impacts of water-table depth on groundwater evaporation and recharge using lysimeter measurement data and bromide tracer. Hydrogeol. J. 2020, 28, 955–971. [Google Scholar] [CrossRef]
- Collenteur, R.; Bakker, M.; Klammler, G.; Birk, S. Estimating groundwater recharge from groundwater levels using non-linear transfer function noise models and comparison to lysimeter data. Hydrol. Earth Syst. Sci. Discuss. 2020, 1–30. [Google Scholar] [CrossRef]
- Carvalho, V.E.C.; Rezende, K.S.; Paes, B.S.T.; Betim, L.S.; Marques, E.A.G. Estimativa da recarga em uma sub-bacia hidrográfica rural através do método da Variação do Nível d-Água (VNA). Rev. Bras. Recur. Hídricos 2014, 19, 271–280. [Google Scholar] [CrossRef]
- Araujo, D.L. Avaliação dos Impactos da Explotação de águas Subterrâneas na Bacia do Ribeirão Rodeador por Meio de Simulação Integrada Entre os Modelos SWAT e MODFLOW; Universidade de Brasília: Brasília, Brazil, 2018. [Google Scholar]
- Salem, A.; Dezso, J.; El-Rawy, M. Assessment of Groundwater Recharge, Evaporation, and Runoff in the Drava Basin in Hungary with the WetSpass Model. Hydrology 2019, 6, 23. [Google Scholar] [CrossRef] [Green Version]
- Singh, A.; Panda, S.N.; Uzokwe, V.N.E.; Krause, P. An assessment of groundwater recharge estimation techniques for sustainable resource management. Groundw. Sustain. Dev. 2019, 9. [Google Scholar] [CrossRef]
- Yihdego, Y.; Danis, C.; Paffard, A. Why is the Groundwater Level Rising? A Case Study Using HARTT to Simulate Groundwater Level Dynamic. Water Environ. Res. 2017, 89, 2142–2152. [Google Scholar] [CrossRef]
- Cartwright, I.; Cendón, D.; Currell, M.; Meredith, K. A review of radioactive isotopes and other residence time tracers in understanding groundwater recharge: Possibilities, challenges, and limitations. J. Hydrol. 2017, 555, 797–811. [Google Scholar] [CrossRef]
- Richards, L.A.; Magnone, D.; Boyce, A.J.; Casanueva-Marenco, M.J.; van Dongen, B.E.; Ballentine, C.J.; Polya, D.A. Delineating sources of groundwater recharge in an arsenic-affected Holocene aquifer in Cambodia using stable isotope-based mixing models. J. Hydrol. 2018, 557, 321–334. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Jasechko, S.; Si, B. Uncertainties in tritium mass balance models for groundwater recharge estimation. J. Hydrol. 2019, 571, 150–158. [Google Scholar] [CrossRef]
- Parlov, J.; Kovač, Z.; Nakić, Z.; Barešić, J. Using water stable isotopes for identifying groundwater recharge sources of the unconfined alluvial Zagreb aquifer (Croatia). Water 2019, 11, 2177. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, I.M.; Jalludin, M.; Razack, M. Hydrochemical and isotopic assessment of groundwater in the Goda mountains range system. Republic of Djibouti (horn of Africa). Water 2020, 12, 2004. [Google Scholar] [CrossRef]
- Gonçalves, R.D.; Teramoto, E.H.; Engelbrecht, B.Z.; Alfaro Soto, M.A.; Chang, H.K.; van Genuchten, M.T. Quasi-Saturated Layer: Implications for Estimating Recharge and Groundwater Modeling. Groundwater 2019, 58, 432–440. [Google Scholar] [CrossRef]
- Ouyang, Y.; Jin, W.; Grace, J.M.; Obalum, S.E.; Zipperer, W.C.; Huang, X. Estimating impact of forest land on groundwater recharge in a humid subtropical watershed of the Lower Mississippi River Alluvial Valley. J. Hydrol. Reg. Stud. 2019, 26, 100631. [Google Scholar] [CrossRef]
- Petronici, F.; Pujades, E.; Jurado, A.; Marcaccio, M.; Borgatti, L. Numerical modelling of the Mulino Delle Vene Aquifer (Northern Italy) as a tool for predicting the hydrogeological system behavior under different recharge conditions. Water 2019, 11, 2505. [Google Scholar] [CrossRef] [Green Version]
- Bizhanimanzar, M.; Leconte, R.; Nuth, M. Catchment-Scale Integrated Surface Water-Groundwater Hydrologic Modelling Using. Water 2020, 12, 363. [Google Scholar] [CrossRef] [Green Version]
- Yihdego, Y.; Danis, C.; Paffard, A. Groundwater engineering in an environmentally sensitive urban area: Assessment, landuse change/infrastructure impacts and mitigation measures. Hydrology 2017, 4, 37. [Google Scholar] [CrossRef] [Green Version]
- Monte-Mor, R.C.A.; Palmier, L.R.; Pinto, E.J.A.; Lima, J.E.S. Estabilidade temporal da distribuição espacial da umidade do solo em uma bacia intermitente no semiárido de Minas Gerais. Rev. Bras. Recur. Hidricos 2012, 17, 101–113. [Google Scholar] [CrossRef]
- Martins, É.D.S.; Reatto, A.; Carvalho, O.A., Jr.; Guimarães, R.F. Unidades de Paisagem do Distrito Federal, Escala 1: 100.000; Embrapa Cerrados: Planaltina-Distrito Federal, Brazil, 2004. [Google Scholar]
- Reatto, A.; Martins, É.D.S.; Cardoso, E.A.; Spera, S.T.; Carvalho, O.A., Jr.; De Silva, A.V.; Farias, M.F.R. Levantamento de Reconhecimento de Solos de Alta Intensidade do Alto Curso do rio Descoberto; Embrapa Cerrados: Planaltina-Distrito Federal, Brazil, 2003. [Google Scholar]
- CPRM; Embrapa. Zoneamento Ecológico-Econômico da Região Integrada de Desenvolvimento do Distrito Federal e Entorno: Fase I; Ministério do Meio Ambiente: Rio de Janeiro, Brazil, 2003; Volume 1. [Google Scholar]
- Al-aboodi, A.H.; Ibrahim, H.T.; Ibrahim, N. Estimation of Groundwater Recharge in Safwan-Zubair Area, South of Iraq, Using Water Balance and Inverse Modeling Methods. Int. J. Civ. Eng. Technol. 2019, 10, 202–210. [Google Scholar]
- Santos, R.M.; Koide, S. Avaliação da recarga de águas subterrâneas em ambiente de cerrado com base em modelagem numérica do fluxo em meio poroso saturado. Rev. Bras. Recur. Hidricos 2016, 21, 451–465. [Google Scholar] [CrossRef]
- Tucci, C.E.M. Modelos Hidrológicos, 1st ed.; Editora UFRGS: Porto Alegre, Brazil, 2005. [Google Scholar]
- Eiten, G. The Cerrado Vegetation of Brazil. Bot. Rev. 1972, 38, 201–341. [Google Scholar] [CrossRef]
- Canadell, J.; Jackson, R.B.; Mooney, H.A.; Sala, O.E.; Schulze, E.D. Maximum rooting depth of vegetation tyoes at the global scale. Oecologia 1996, 108, 583–595. [Google Scholar] [CrossRef]
- Ferreira, M.D.N. Distribuição Radicular e Consumo de água de Goiabeira (Psidium guajava L.) Irrigada por Microaspersão em Petrolina-PE; Universidade de São Paulo: São Paulo, Brazil, 2004. [Google Scholar]
- Silvério-Júnior, J. Aplicação do método Analytic Hierarchy Process na Avaliação de Indicadores Setoriais de Arranjos Produtivos Locais: Caso do APL de Madeira e Móveis de Paragominas—PA; Universidade Católica de Brasília: Brasília, Brazil, 2006. [Google Scholar]
- Vargas, R.V. Using the analytic hierarchy process (ahp) to select and prioritize projects in a portfolio. In Proceedings of the PMI Global Congress 2010, Washington, DC, USA, 9–12 October 2010; Project Management Institute:: Washington, DC, USA, 2010. [Google Scholar]
- Schlumberger Water Services. Visual MODFLOW V.2.8.2 User’s Manual for Professional Applications in Three-Dimensional Groundwater Flow and Contaminant Transport Modeling; Schlumberger: Kitchener, ON, Canada, 2000. [Google Scholar]
- Hill, M.C.; Tiedman, C.R. Effective Groundwater Model Calibration; Willey: Hoboken, NJ, USA, 2007. [Google Scholar]
- Beven, K.; Freer, J. Equifinality, data assimilation, and uncertainty estimation in mechanistic modelling of complex environmental systems using the GLUE methodology. J. Hydrol. 2001, 249, 11–29. [Google Scholar] [CrossRef]
- Waterloo Hydrogeologic Inc. User’s Manual for WinPEST; Waterloo Hydrogeologic: Waterloo, ON, Canada, 1999. [Google Scholar]
- Liu, Y.B.; DeSmedt, F. WetSpa Extension, A GIS-Based Hydrologic Model for Flood Prediction and Watershed Management Documentation and User Manual; Vrije Universiteit Brussel: Brussel, Belgium, 2004. [Google Scholar]
- Bahremand, A.; De Smedt, F.; Corluy, J.; Liu, Y.B.; Poórová, J.; Velcická, L.; Kunikova, E. Application of WetSpa model for assessing land use impacts on floods in the Margecany-Hornad watershed, Slovakia. Water Sci. Technol. 2006, 53, 37–45. [Google Scholar] [CrossRef]
- Healy, R.W.; Cook, P.G. Using groundwater levels to estimate recharge. Hydrogeol. J. 2002, 10, 91–109. [Google Scholar] [CrossRef]
- Bortolin, T.A.; Reginato, P.A.R.; Presotto, M.A.; Schneider, V.E. Estimativas de recarga aquífera com uso de filtros digitais em sub-bacias hidrográficas do Sistema Aquífero Serra Geral no estado do Rio Grande do Sul. Sci. Ind. 2018, 6, 21–30. [Google Scholar] [CrossRef] [Green Version]
- Wittenberg, H.; Sivapalan, M. Watershed groundwater balance estimation using streamflow recession analysis and baseflow separation. J. Hydrol. 1999, 219, 20–33. [Google Scholar] [CrossRef]
- Safari, A.; De Smedt, F.; Moreda, F. WetSpa model application in the Distributed Model Intercomparison Project (DMIP2). J. Hydrol. 2012, 418–419, 78–89. [Google Scholar] [CrossRef]
- Souza, E.; Pontes, L.M.; Fernandes Filho, E.I.; Schaefer, C.E.G.R.; Santos, E.E. Spatial and temporal potential groundwater recharge: The case of the doce river basin, Brazil. Rev. Bras. Cienc. Solo 2019, 43, 1–27. [Google Scholar] [CrossRef] [Green Version]
- Agência Nacional de Águas. Estudos Hidrogeológicos e de Vulnerabilidade do Sistema Aquífero Urucuia e Proposição de Modelo de Gestão Integrada Compartilhada: Resumo Executivo; Agência Nacional de Águas: Brasília, Brazil, 2017; p. 100. [Google Scholar]
- Santos, M.S. Determinação de Escoamentos Mínimos e Separação de Escoamentos de Base na Bacia do Rio Descoberto; Universidade de Brasília: Brasília, Brazil, 2007. [Google Scholar]
- dos Santos, R.M.; Koide, S.; de Araujo, D.L.; Távora, B.E. Abacus to predict groundwater recharge at non-instrumented hydrographic basins. Water 2020, 12, 3090. [Google Scholar] [CrossRef]
Local Parameters | |
---|---|
Hydraulic conductivity | Function of soil texture class. |
Porosity | |
Field capacity | |
Wilting point | Function of soil texture class. |
Residual moisture content | |
Pore size distribution index | |
Interception capability (minimum and maximum) | Function of land use and cover. |
Root system depth | |
Manning coefficient | |
Percentage of vegetation cover | |
Leaf area index | |
Surface runoff coefficient | Function of slope, soil texture class, and land use and cover. |
Depression storage capacity | Function of slope, soil texture class, and land use and cover. |
Global Parameters | |
Coefficient to correct potential evapotranspiration (Kep) | Used when the evapotranspiration station is located in a site with physical characteristics different from the area simulated. |
Scale factor to calculate subsurface flow (Ki) | Preferential pathways affect subsurface flow. Since WETSPA considers the soil a homogeneous matrix, this parameter was used to compensate for the negative effects of such simplification. |
Aquifer recession coefficient (Kg) | Reflects the aquifer storage pattern in the basin. It can be estimated from river monitoring data or calibrated, comparing observed and simulated flows, for the dry season. |
Aquifer initial storage (G0) | Used to compensate the effects of losses in the aquifer through deep percolation. It can be calibrated by comparing observed and simulated hydrographs, in the low flows of the initial simulation period (mm). |
Aquifer maximum storage (Gmax) | Aquifer maximum storage (mm), calibrated for low flows. |
Coefficient to adjust effective precipitation equation for low intensity precipitation (K_run) | Used to consider the effect of the precipitation intensity in infiltration and generation of surface runoff. |
Precipitation intensity to make “K_run” equals “1” (P_max) | Threshold of precipitation intensity that causes a linear relation between surface runoff coefficient and current soil moisture content. It can be estimated by calibration, comparing high observed and simulated flows. |
Hydraulic Conductivity (m/day) | |||||
---|---|---|---|---|---|
Well | Filter Section Depth (m) | Slug and Pumping Test Estimates | Mean Values for Zones | Calibrated Values | Absolute Difference (%) |
01 | 20 | 3.06 | 4.15 | 3.85 | 8 |
02 | 20 | 4.04 | 4.15 | 3.85 | 8 |
03 | 10 | 19.43 | 4.15 | 3.85 | 8 |
04 | 15 | 4.07 | 4.15 | 3.85 | 8 |
05 | 7 | 2.58 | 3.22 (layer 1) | - | - |
06 | 6 | 3.58 | 3.22 (layer 1) | - | - |
07 | 20 | 0.25 | 0.25 | 0.23 | 9 |
08 | 12 | 6.64 | 6.64 | 12 | 45 |
09 | 20 | 0.91 | 0.91 | 1.56 | 42 |
10 | 7 | 3.54 | 3.22 (layer 1) | - | - |
11 | 21 | 0.26 | 0.25 | 0.23 | 9 |
12 | 15 | 0.26 | 0.25 | 0.23 | 9 |
13 | 15 | 3.23 | 3.23 | 2.15 | 50 |
14 | 7 | 5.51 | 3.22 (layer 1) | - | - |
15 | 9 | 0.07 | 0.25 | 0.23 | 9 |
16 | 8 | 10.62 | 10.62 | 5.00 | 112 |
17 | 8 | 10.62 | 10.62 | 5.00 | 112 |
18 | 15 | 0.25 | 0.25 | 0.23 | 9 |
Specific Yield (DN) | |||||
05 | 7 | 0.120 | 0.12 | 0.13 | 8 |
09 | 20 | 0.012 | 0.015 | 0.01 | 33 |
14 | 7 | 0.089 | 0.89 (layer 1) | - | - |
17–16 | 8 | - | 0.20 (assigned based on the behavior of the medium sand) | 0.22 | 10 |
Local Parameter | Discharge Variation (%) from Parameter Increment of +20% | Discharge Variation (%) from Parameter Increment of −20% |
---|---|---|
Hydraulic conductivity | 2 | −1 |
Porosity | −4 | 9 |
Field capacity | 1 | 1 |
Wilting point | 4 | −2 |
Residual moisture content | 1 | 1 |
Pore size distribution index | −3 | 7 |
Minimum interception capability | 1 | 1 |
Maximum interception capability | 1 | 1 |
Root system depth | −3 | 5 |
Manning coefficient | 1 | 1 |
Percentage of vegetation cover | 1 | 1 |
Minimum leaf area index | 1 | 1 |
Maximum leaf area index | 1 | 1 |
Surface runoff coefficient | 1 | 1 |
Depression storage capacity | 1 | 1 |
Global Parameter | Discharge Variation (%) from Parameter Increment of +20% | Discharge Variation (%) from Parameter Increment of –20% |
Coefficient to correct potential evapotranspiration (Kep) | −17 | 17 |
Scale factor to calculate subsurface flow (Ki) | 1 | 1 |
Aquifer recession coefficient (Kg) | 5 | −5 |
Aquifer initial storage (G0) | 6 | −4 |
Aquifer maximum storage (Gmax) | 1 | 1 |
Coefficient to adjust effective precipitation equation for low intensity precipitation(K_run) | 1 | 1 |
Precipitation intensity to make “K_run” equals “1” (P_max) | 1 | 1 |
Global Parameter | Reference Values or Adjustment Strategy | Calibrated Value |
---|---|---|
Kep (DN) | 1.00 | 0.660 |
Ki (DN) | 1.00–10 (calibrated from the measured and simulated values of the recessive parts of the hydrograph) | 2.753 |
Kg (DN) | Calibrated from model performance for low flow values | 0.010 |
G0 (mm) | Calibrated from initial discharge values | 614 |
Gmax (mm) | Calibrated from model performance for low flow values | 1000 |
K_run (DN) | Calibrated by simulated flow for small storms | 20.312 |
P_max (mm) | Calibrated by simulated flow for small storms | 100 |
Well | Δh(m) 2008/2009 | Sy | Recharge (mm) |
---|---|---|---|
01 | 2.30 | 0.1100 | 253.00 |
02 | 2.00 | 0.1100 | 220.00 |
03 | 2.90 | 0.1100 | 319.00 |
04 | 2.60 | 0.1100 | 286.00 |
05 | 2.50 | 0.1100 | 275.00 |
06 | 4.1 | 0.1100 | 451.00 |
07 | 7.10 | 0.0500 | 355.00 |
08 | 11.40 | 0.0500 | 570.00 |
09 | 18.00 | 0.0135 | 243.00 |
10 | 5.10 | 0.0500 | 255.00 |
11 | 10.50 | 0.0135 | 141.75 |
12 | 7.60 | 0.0500 | 380.00 |
13 | 6.90 | 0.1550 | 1069.50 |
14 | 7.10 | 0.0500 | 355.00 |
15 | 4.30 | 0.0500 | 215.00 |
16 | 6.50 | 0.1550 | 1007.50 |
17 | 1.90 | 0.1550 | 294.50 |
18 | 5.60 | 0.1550 | 868.00 |
Average | 420.00 (29% of the total annual precipitation) |
Hydrological Year | Total Precipitation (mm) | Recharge (mm/year) | Recharge (% prec.) |
---|---|---|---|
2007/2008 | 1551 | 469.50 | 30.30 |
2008/2009 | 1589 | 596.05 | 37.44 |
Method | Recharge 2008/2009 (mm) | Recharge 2008/2009 (% Precipitation) |
---|---|---|
Hydrological modeling—WETSPA model | 519 | 35 (potential recharge) |
Numerical modeling | 327 | 21 (effective recharge) |
Water table elevation—WTE | 230 | 15, from the map, and 29, average of the point estimates (effective recharge) |
Baseflow: Mathematical filter | 596 | 37 (25 in Santos [85]) (effective recharge) |
Method | Data/Parameters Required | Availability | Difficulty to Obtain |
---|---|---|---|
Numerical modeling of water flow in saturated medium | Slope | A | A |
Geology and soil mapping | B | B | |
Time series of water table level | C | C | |
Aquifer parameters (Ksat/Sy) | C | C | |
Aquifer structural characterization (thickness and layers) | C | C | |
Characterization of aquifer’s interaction with external environment (evapotranspiration and baseflow discharge) | B | B | |
Orbital imagery | A | A | |
Surface distributed hydrological modeling | Slope | A | A |
Soil mapping | B | B | |
Land use/cover mapping | A | C | |
Soil’s hydrological characterization | B | B | |
Root system depth | A | A | |
Manning coefficient | A | A | |
Leaf area index | A | A | |
Surface runoff coefficient | A | A | |
Precipitation time series | A | B | |
Meteorological data time series | A | B | |
Total rive discharge time series | A | C | |
Baseflow separation using mathematical filter | Flow temporal series | A | C |
WTE | Piezometric head time series | C | C |
Sy estimations | C | C |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
dos Santos, R.M.; Koide, S.; Távora, B.E.; de Araujo, D.L. Groundwater Recharge in the Cerrado Biome, Brazil—A Multi-Method Study at Experimental Watershed Scale. Water 2021, 13, 20. https://doi.org/10.3390/w13010020
dos Santos RM, Koide S, Távora BE, de Araujo DL. Groundwater Recharge in the Cerrado Biome, Brazil—A Multi-Method Study at Experimental Watershed Scale. Water. 2021; 13(1):20. https://doi.org/10.3390/w13010020
Chicago/Turabian Styledos Santos, Ronaldo Medeiros, Sérgio Koide, Bruno Esteves Távora, and Daiana Lira de Araujo. 2021. "Groundwater Recharge in the Cerrado Biome, Brazil—A Multi-Method Study at Experimental Watershed Scale" Water 13, no. 1: 20. https://doi.org/10.3390/w13010020
APA Styledos Santos, R. M., Koide, S., Távora, B. E., & de Araujo, D. L. (2021). Groundwater Recharge in the Cerrado Biome, Brazil—A Multi-Method Study at Experimental Watershed Scale. Water, 13(1), 20. https://doi.org/10.3390/w13010020