Digestate Liquid Fraction Treatment with Filters Filled with Recovery Materials
Abstract
:1. Introduction
2. Materials and Methods
2.1. Filter Structure and Composition
2.2. Filter Loading
2.3. Chemical–Physical Analysis
2.4. Statistical Analysis
3. Results and Discussion
3.1. Digestate Physical Characteristics
3.1.1. Nitrogen
3.1.2. Phosphorus
3.1.3. Chemical Oxygen Demand (COD)
4. Conclusions
- -
- DLF turbidity was lowered only by REFR 20–30 and GRAVEL filtering materials.
- -
- EC was only slightly abated by filters, and thus remains a challenge for the establishment of CW vegetation.
- -
- The effect of filtration on TN and NH4-N removal began after about one month of loading, suggesting that this is the period after which bacterial activation occurs.
- -
- REFR 20–30 was the only filtering material able to significantly remove TN and NH4-N from the DLF to values suitable for CW vegetation.
- -
- For P removal, filling material particle size appeared more important than its composition. Indeed, the best performances were observed with GRAVEL.
Author Contributions
Funding
Conflicts of Interest
References
- Benato, A.; Macor, A. Italian biogas plants: Trend, subsidies, cost, biogas composition and engine emissions. Energies 2019, 12, 979. [Google Scholar] [CrossRef] [Green Version]
- Möller, K.; Müller, T. Effects of anaerobic digestion on digestate nutrient availability and crop growth: A review. Eng. Life Sci. 2012, 12, 242–257. [Google Scholar] [CrossRef]
- Sánchez-Ramírez, J.E.; Pastor, L.; Martí, N.; Claros, J.; Doñate, S.; Bouzas, A. Analysis of uncontrolled phosphorus precipitation in anaerobic digesters under thermophilic and mesophilic conditions. Environ. Technol. 2019, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Marcato, C.E.; Pinelli, E.; Pouech, P.; Winterton, P.; Guiresse, M. Particle size and metal distributions in anaerobically digested pig slurry. Bioresour. Technol. 2008, 99, 2340–2348. [Google Scholar] [CrossRef] [Green Version]
- Tambone, F.; Scaglia, B.; D’Imporzano, G.; Schievano, A.; Orzi, V.; Salati, S.; Adani, F. Assessing amendment and fertilizing properties of digestates from anaerobic digestion through a comparative study with digested sludge and compost. Chemosphere 2010, 81, 577–583. [Google Scholar] [CrossRef]
- Nkoa, R. Agricultural benefits and environmental risks of soil fertilization with anaerobic digestates: A review. Agron. Sustain. Dev. 2014, 34, 473–492. [Google Scholar] [CrossRef] [Green Version]
- Tampio, E.; Salo, T.; Rintala, J. Agronomic characteristics of five different urban waste digestates. J. Environ. Manag. 2016, 169, 293–302. [Google Scholar] [CrossRef]
- Emmerling, C.; Barton, J. Anaerobic co-digestion of topinambour (Helianthus tuberosus L.) and properties of the remaining biogas manure. Arch. Agron. Soil Sci. 2007, 53, 683–690. [Google Scholar] [CrossRef]
- De Boer, H.C. Co-digestion of animal slurry can increase short-term Nitrogen recovery by crops. J. Environ. Qual. 2008, 37, 1968–1973. [Google Scholar] [CrossRef]
- Möller, K.; Schulz, R.; Müller, T. Substrate inputs, nutrient flows and nitrogen loss of two centralized biogas plants in southern Germany. Nutr. Cycl. Agroecosystems 2010, 87, 307–325. [Google Scholar] [CrossRef]
- Maucieri, C.; Barbera, A.C.; Borin, M. Effect of injection depth of digestate liquid fraction on soil carbon dioxide emission and maize biomass production. Ital. J. Agron. 2016, 11, 6–11. [Google Scholar] [CrossRef]
- Delzeit, R.; Kellner, U. How Location Decisions Influence Transport Costs of Processed and Unprocessed Bioenergy Digestates: The Impact of Plant Size and Location on Profitability of Biogas Plants in Germany; Kiel Workingpapers: Kiel, Germany, 2011. [Google Scholar]
- Maucieri, C.; Mietto, A.; Barbera, A.C.; Borin, M. Treatment performance and greenhouse gas emission of a pilot hybrid constructed wetland system treating digestate liquid fraction. Ecol. Eng. 2016, 94, 406–417. [Google Scholar] [CrossRef]
- Macura, B.; Johannesdottir, S.L.; Piniewski, M.; Haddaway, N.R.; Kvarnström, E. Effectiveness of ecotechnologies for recovery of nitrogen and phosphorus from anaerobic digestate and effectiveness of the recovery products as fertilisers: A systematic review protocol. Environ. Evid. 2019, 8, 29. [Google Scholar] [CrossRef]
- Zheng, T.; Qiu, Z.; Dai, Q.; Chen, J. Study of biogas slurry concentrated by reverse osmosis system: Characteristics, optimization, and mechanism. Water Environ. Res. 2019, 91, 1447–1454. [Google Scholar] [CrossRef] [PubMed]
- Lukehurst, C.T.; Frost, P.; Al Seadi, T. Utilisation of digestate from biogas plants as biofertiliser. IEA Bioenergy 2010, Task 37, 1–22. [Google Scholar]
- Badagliacca, G.; Petrovičovà, B.; Pathan, S.I.; Roccotelli, A.; Romeo, M.; Monti, M.; Gelsomino, A. Use of solid anaerobic digestate and no-tillage practice for restoring the fertility status of two Mediterranean orchard soils with contrasting properties. Agric. Ecosyst. Environ. 2020, 300, 107010. [Google Scholar] [CrossRef]
- Maucieri, C.; Borin, M. CO2 emissions and maize biomass production using digestate liquid fraction in two soil texture types. Trans. ASABE 2017, 60, 1325–1336. [Google Scholar] [CrossRef]
- Comino, E.; Riggio, V.A.; Rosso, M. Constructed wetland treatment of agricultural effluent from an anaerobic digester. Ecol. Eng. 2013, 54, 165–172. [Google Scholar] [CrossRef]
- Zhou, S.; Wang, C.; Liu, C.; Sun, H.; Zhang, J.; Zhang, X.; Xin, L. Nutrient removal, methane and nitrous oxide emissions in a hybrid constructed wetland treating anaerobic digestate. Sci. Total Environ. 2020, 733, 138338. [Google Scholar] [CrossRef]
- Vymazal, J. Removal of phosphorous in constructed wetland with horizontal subsurface flow in the Czech Republic. WaterAir Soli Pollut. Focus 2004, 4, 657–670. [Google Scholar] [CrossRef]
- Szogi, A.A.; Rice, J.M.; Humenik, F.J.; Hunt, P.G.; Stem, G. Constructed wetlands for confined swine wastewater treatment. In Proceedings of the 1999 Animal Waste Management System Symposium, Cary, NC, USA; 1999; pp. 379–383. [Google Scholar]
- Knight, R.L.; Payne, V.W.E.; Borer, R.E.; Clarke, R.A.; Pries, J.H. Constructed wetlands for livestock wastewater management. Ecol. Eng. 2000, 15, 41–55. [Google Scholar] [CrossRef]
- Borin, M.; Politeo, M.; De Stefani, G. Performance of a hybrid constructed wetland treating piggery wastewater. Ecol. Eng. 2013, 51, 229–236. [Google Scholar] [CrossRef]
- Smith, K.A.; Charles, D.R.; Moorhouse, D. Nitrogen excretion by farm livestock with respect to land spreading requirements and controlling nitrogen losses to ground and surface waters. Part 2: Pigs and poultry. Bioresour. Technol. 2000, 71, 183–194. [Google Scholar] [CrossRef]
- Healy, M.G.; Rodgers, M.; Mulqueen, J. Treatment of dairy wastewater using constructed wetlands and intermittent sand filters. Bioresour. Technol. 2007, 98, 2268–2281. [Google Scholar] [CrossRef] [PubMed]
- Hunt, P.G.; Szögi, A.A.; Humenik, F.J.; Rice, J.M.; Matheny, T.A.; Stone, K.C. Constructed wetlands for treatment of swine wastewater from an anaerobic lagoon. Trans. Am. Soc. Agric. Eng. 2002, 45, 639–647. [Google Scholar]
- Hunt, P.G.; Matheny, T.A.; Stone, K.C. Denitrification in a coastal plain riparian zone contiguous to a heavily loaded swine wastewater spray field. J. Environ. Qual. 2004, 33, 2367–2374. [Google Scholar] [CrossRef] [PubMed]
- Harrington, C.; Scholz, M. Assessment of pre-digested piggery wastewater treatment operations with surface flow integrated constructed wetland systems. Bioresour. Technol. 2010, 101, 7713–7723. [Google Scholar] [CrossRef]
- Monfet, E.; Aubry, G.; Ramirez, A.A. Nutrient removal and recovery from digestate: A review of the technology. Biofuels 2018, 9, 247–262. [Google Scholar] [CrossRef]
- Wu, S.; Lei, M.; Lu, Q.; Guo, L.; Dong, R. Treatment of pig manure liquid digestate in horizontal flow constructed wetlands: Effect of aeration. Eng. Life Sci. 2016, 16, 263–271. [Google Scholar] [CrossRef] [Green Version]
- Fuchs, W.; Drosg, B. Assessment of the state of the art of technologies for the processing of digestate residue from anaerobic digesters. Water Sci. Technol. 2013, 67, 1984–1993. [Google Scholar] [CrossRef] [Green Version]
- Sánchez, L.D.; Marin, L.M.; Visscher, J.T.; Rietveld, L.C. Low-cost multi-stage filtration enhanced by coagulation-flocculation in upflow gravel filtration. Drink. Water Eng. Sci. 2012, 5, 73–85. [Google Scholar] [CrossRef] [Green Version]
- Wei, X.M.; Lin, C.; Duan, N.; Peng, Y.X.; Ye, Z.Y. Application of aerobic biological filter for treating swine farms wastewater. Procedia Environ. Sci. 2010, 2, 1569–1584. [Google Scholar] [CrossRef] [Green Version]
- Liu, Q.; Mancl, K.; Tuovinen, O.H. Biomass accumulation and carbon utilization in layered sand filter biofilm systems receiving milk fat and detergent mixtures. Bioresour. Technol. 2003, 89, 275–279. [Google Scholar] [CrossRef]
- Nakhla, G.; Farooq, S. Simultaneous nitrification-denitrification in slow sand filters. J. Hazard. Mater. 2003, 96, 291–303. [Google Scholar] [CrossRef]
- Roseth, R. Shell sand: A new filter medium for constructed wetlands and wastewater treatment. J. Environ. Sci. Heal. Part. A Toxic Hazard. Subst. Environ. Eng. 2000, 35, 1335–1355. [Google Scholar] [CrossRef]
- Tao, W.; Wang, J. Effects of vegetation, limestone and aeration on nitritation, anammox and denitrification in wetland treatment systems. Ecol. Eng. 2009, 35, 836–842. [Google Scholar] [CrossRef]
- Zheng, D.; Deng, L.W.; Fan, Z.H.; Liu, G.J.; Chen, C.; Yang, H.; Liu, Y. Influence of sand layer depth on partial nitritation as pretreatment of anaerobically digested swine wastewater prior to anammox. Bioresour. Technol. 2012, 104, 274–279. [Google Scholar] [CrossRef]
- Saliling, W.J.B.; Westerman, P.W.; Losordo, T.M. Wood chips and wheat straw as alternative biofilter media for denitrification reactors treating aquaculture and other wastewaters with high nitrate concentrations. Aquac. Eng. 2007, 37, 222–233. [Google Scholar] [CrossRef]
- Wang, Z.; Dong, J.; Liu, L.; Zhu, G.; Liu, C. Screening of phosphate-removing substrates for use in constructed wetlands treating swine wastewater. Ecol. Eng. 2013, 54, 57–65. [Google Scholar] [CrossRef]
- Yasuda, T.; Kuroda, K.; Fukumoto, Y.; Hanajima, D.; Suzuki, K. Evaluation of full-scale biofilter with rockwool mixture treating ammonia gas from livestock manure composting. Bioresour. Technol. 2009, 100, 1568–1572. [Google Scholar] [CrossRef]
- Kadam, A.M.; Nemade, P.D.; Oza, G.H.; Shankar, H.S. Treatment of municipal wastewater using laterite-based constructed soil filter. Ecol. Eng. 2009, 35, 1051–1061. [Google Scholar] [CrossRef]
- Wang, H.; Xu, J.; Sheng, L. Purification mechanism of sewage from constructed wetlands with zeolite substrates: A review. J. Clean. Prod. 2020, 120760. [Google Scholar] [CrossRef]
- Ferretti, G.; Galamini, G.; Medoro, V.; Coltorti, M.; Giuseppe, D.D.; Faccini, B. Impact of sequential treatments with natural and na-exchanged chabazite zeolite-rich tuff on pig-slurry chemical composition. Water 2020, 12, 310. [Google Scholar] [CrossRef] [Green Version]
- Mateus, D.M.R.; Pinho, H.J.O. Evaluation of solid waste stratified mixtures as constructed wetland fillers under different operation modes. J. Clean. Prod. 2020, 253, 119986. [Google Scholar] [CrossRef]
- Kasprzyk, M.; Gajewska, M. Phosphorus removal by application of natural and semi-natural materials for possible recovery according to assumptions of circular economy and closed circuit of P. Sci. Total Environ. 2019, 650, 249–256. [Google Scholar] [CrossRef] [PubMed]
- APHA. Standard Methods for the Examination of Water and Wastewater, 20th ed.; American Public Health Association: Washington, DC, USA; American Water Works Association: Denver, CO, USA; Water Environment Federation: Alexandria, VA, USA, 1998. [Google Scholar]
- Hach-Lange, C. Water Analysis Handbook; Hach Company: Loveland, CO, USA, 1989. [Google Scholar]
- DIN (Deutsches Institut FürNormung). German Standard Methods for the Examination of Water, Wastewater and Sludge; Deutches Institut für Normung: Berlin, Germany, 1985. [Google Scholar]
- Dayton, E.A.; Basta, N.T. Characterization of drinking water treatment residuals for use as a soil substitute. Water Environ. Res. 2001, 73, 52–57. [Google Scholar] [CrossRef] [PubMed]
- Alburquerque, J.A.; de la Fuente, C.; Bernal, M.P. Chemical properties of anaerobic digestates affecting C and N dynamics in amended soils. Agric. Ecosyst. Environ. 2012, 160, 15–22. [Google Scholar] [CrossRef]
- Chadwick, D.R. Digestate as a fertiliser and environmental concerns. In Anaerobic Digestion Stakeholder Workshop. Session IV: Building the Market for Digestate; Exeter University: Exeter, UK, 2007. [Google Scholar]
- Smith, K.A.; Metcalfe, P.; Grylls, J.; Jeffrey, W.; Sinclair, A. Nutrient Value of Digestate from Farm-Based Biogas Plants in Scotland; Report for Scottish Executive Environment and Rural Affairs Department-ADA/009/06; Scottish Executive Environmental and Rural Affairs Department: Edinburgh, UK, 2007.
- Webb, A.R.; Hawkes, F.R. Laboratory scale anaerobic digestion of poultry litter: Gas yield-loading rate relationship. Agric. Waste 1985, 13, 31–49. [Google Scholar] [CrossRef]
- Sommer, S.G.; Husted, S. A simple model of pH in slurry. J. Agric. Sci. Camb. 1995, 124, 447–453. [Google Scholar] [CrossRef]
- Platzer, C. Enhanced nitrogen elimination in subsurface flow artificial wetlands—A multi stage concept. In Proceedings of the Fifth International Conference on Wetland Systems for Water Pollution Control, Vienna, Austria; 1996. [Google Scholar]
- Paul, E.A.; Clark, F.E. Soil Microbiology and Biochemistry, 2nd ed.; Academic Press: San Diego, CA, USA, 1996; ISBN 0125468059. [Google Scholar]
- Kadlec, R.H.; Wallace, S.D. Treatment Wetlands, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2009; ISBN 9781566705264. [Google Scholar]
- Boyer, M.L.H.; Wheeler, B.D. Vegetation patterns in spring-fed calcareous fens: Calcite precipitation and constraints on fertility. J. Ecol. 1989, 77, 597. [Google Scholar] [CrossRef]
- Schot, P.P.; Wassen, M.J. Calcium concentrations in wetland groundwater in relation to water sources and soil conditions in the recharge area. J. Hydrol. 1993, 141, 197–217. [Google Scholar] [CrossRef] [Green Version]
- Bernet, N.; Dangcong, P.; Delgenès, J.-P.; Moletta, R. Nitrification at low Oxygen concentration in biofilm reactor. J. Environ. Eng. 2001, 127, 266–271. [Google Scholar] [CrossRef]
- Vymazal, J. Removal of nutrients in various types of constructed wetlands. Sci. Total Environ. 2007, 380, 48–65. [Google Scholar] [CrossRef] [PubMed]
- Shi, W.; Li, H.; Li, A. Mechanism and influencing factors of Nitrogen removal in subsurface flow constructed wetland. Appl. Chem. Eng. 2018, 1, 9–14. [Google Scholar]
- Zhuang, L.L.; Yang, T.; Zhang, J.; Li, X. The configuration, purification effect and mechanism of intensified constructed wetland for wastewater treatment from the aspect of nitrogen removal: A review. Bioresour. Technol. 2019, 293, 122086. [Google Scholar] [CrossRef] [PubMed]
- Reddy, K.R.; Patrick, W.H. Nitrogen transformations and loss in flooded soils and sediments. Crit. Rev. Environ. Control. 1984, 13, 273–309. [Google Scholar] [CrossRef]
- Parde, D.; Patwa, A.; Shukla, A.; Vijay, R.; Killedar, D.J.; Kumar, R. A review of constructed wetland on type, treatment and technology of wastewater. Environ. Technol. Innov. 2020, 101261. [Google Scholar] [CrossRef]
- Koskiaho, J.; Puustinen, M. Suspended solids and nutrient retention in two constructed wetlands as determined from continuous data recorded with sensors. Ecol. Eng. 2019, 137, 65–75. [Google Scholar] [CrossRef]
- Wallace, S.; Knight, R. Small-Scale Constructed Wetland Treatment Systems; IWA Publishing: London, UK, 2006. [Google Scholar]
- Jiang, W.; Tian, X.; Li, L.; Dong, S.; Zhao, K.; Li, H.; Cai, Y. Temporal bacterial community succession during the start-up process of biofilters in a cold-freshwater recirculating aquaculture system. Bioresour. Technol. 2019, 287, 121441. [Google Scholar] [CrossRef]
- Pramanik, B.K.; Fatihah, S.; Shahrom, Z.; Ahmed, E. Biological aerated filters (BAFs) for carbon and nitrogen removal: A review. J. Eng. Sci. Technol. 2012, 7, 428–446. [Google Scholar]
- Vohla, C.; Kõiv, M.; Bavor, H.J.; Chazarenc, F.; Mander, Ü. Filter materials for phosphorus removal from wastewater in treatment wetlands—A review. Ecol. Eng. 2011, 37, 70–89. [Google Scholar] [CrossRef]
- Guan, B.; Yao, X.; Jiang, J.; Tian, Z.; An, S.; Gu, B.; Cai, Y. Phosphorus removal ability of three inexpensive substrates: Physicochemical properties and application. Ecol. Eng. 2009, 35, 576–581. [Google Scholar] [CrossRef]
- Maucieri, C.; Salvato, M.; Borin, M. Vegetation contribution on phosphorus removal in constructed wetlands. Ecol. Eng. 2020, 152, 105853. [Google Scholar] [CrossRef]
- Henderson, C.; Greenway, M.; Phillips, I. Removal of dissolved nitrogen, phosphorous and carbon from stormwater by biofiltration mesocosms. Water Sci. Technol. 2007, 55, 183–191. [Google Scholar] [CrossRef] [PubMed]
- Shi, X.; Fan, J.; Zhang, J.; Shen, Y. Enhanced phosphorus removal in intermittently aerated constructed wetlands filled with various construction wastes. Environ. Sci. Pollut. Res. 2017, 24, 22524–22534. [Google Scholar] [CrossRef]
- Tambone, F.; Orzi, V.; Zilio, M.; Adani, F. Measuring the organic amendment properties of the liquid fraction of digestate. Waste Manag. 2019, 88, 21–27. [Google Scholar] [CrossRef]
- Zhu, H.; Yan, B.; Xu, Y.; Guan, J.; Liu, S. Removal of nitrogen and COD in horizontal subsurface flow constructed wetlands under different influent C/N ratios. Ecol. Eng. 2014, 63, 58–63. [Google Scholar] [CrossRef]
- Chen, X.; Zhu, H.; Yan, B.; Shutes, B.; Tian, L.; Wen, H. Optimal influent COD/N ratio for obtaining low GHG emissions and high pollutant removal efficiency in constructed wetlands. J. Clean. Prod. 2020, 267, 122003. [Google Scholar] [CrossRef]
- Fan, J.; Wang, W.; Zhang, B.; Guo, Y.; Ngo, H.H.; Guo, W.; Zhang, J.; Wu, H. Nitrogen removal in intermittently aerated vertical flow constructed wetlands: Impact of influent COD/N ratios. Bioresour. Technol. 2013, 143, 461–466. [Google Scholar] [CrossRef]
- Wang, J.; Hou, J.; Xia, L.; Jia, Z.; He, X.; Li, D.; Zhou, Y. The combined effect of dissolved oxygen and COD/N on nitrogen removal and the corresponding mechanisms in intermittent aeration constructed wetlands. Biochem. Eng. J. 2020, 153, 107400. [Google Scholar] [CrossRef]
Filter Name | Size (mm) | Total Weight (kg) | Porosity (%) | Residence Time (min) |
---|---|---|---|---|
BRICK | 50–100 | 60 | 53 | 17 1 |
REFR 30–50 | 30–50 | 61 | 47 | 21 1 |
REFR 20–30 | 20–30 | 40 | 55 | 22 1 |
GRAVEL | 8–15 | 89 | 41 | 15 1 |
Property | Unit | IN | BRICK | REFR 30–50 | REFR 20–30 | GRAVEL |
---|---|---|---|---|---|---|
EC | mS cm−1 | 27.5 a | 20.8 b | 21.6 a | 18.7 b | 21.5 b |
pH | - | 7.7 a | 8.6 b | 8.5 b | 8.5 b | 8.3 a |
DO | mg L−1 | 0.18 a | 0.30 b | 0.21 b | 0.20 b | 0.26 b |
T | °C | 18.9 ns | 19.9 ns | 18.9 ns | 19.2 ns | 19.2 ns |
Turbidity | NTU | 38,265 a | 33,330 a | 32,040 a | 32,040 b | 31,190 b |
Parameter (mg L−1) | IN | BRICK | REFR 30–50 | REFR 20–30 | GRAVEL |
---|---|---|---|---|---|
TN | 4035 ns | 3290 ns | 3050 ns | 2870 ns | 2940 ns |
NH4-N | 2910 a | 1643 a | 2124 a | 960 b | 1398 a |
NO3-N | 276 ns | 305 ns | 302 ns | 280 ns | 304 ns |
Parameter (g filter−1) | |||||
TN | 80.7 a | 62.5 a | 57.0 a | 51.5 b | 52.8 a |
NH4-N | 58.2 a | 30.8 a | 38.2 a | 13.4 b | 22.6 a |
NO3-N | 5.5 ns | 5.7 ns | 5.7 ns | 5.3 ns | 5.6 ns |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Piccoli, I.; Virga, G.; Maucieri, C.; Borin, M. Digestate Liquid Fraction Treatment with Filters Filled with Recovery Materials. Water 2021, 13, 21. https://doi.org/10.3390/w13010021
Piccoli I, Virga G, Maucieri C, Borin M. Digestate Liquid Fraction Treatment with Filters Filled with Recovery Materials. Water. 2021; 13(1):21. https://doi.org/10.3390/w13010021
Chicago/Turabian StylePiccoli, Ilaria, Giuseppe Virga, Carmelo Maucieri, and Maurizio Borin. 2021. "Digestate Liquid Fraction Treatment with Filters Filled with Recovery Materials" Water 13, no. 1: 21. https://doi.org/10.3390/w13010021
APA StylePiccoli, I., Virga, G., Maucieri, C., & Borin, M. (2021). Digestate Liquid Fraction Treatment with Filters Filled with Recovery Materials. Water, 13(1), 21. https://doi.org/10.3390/w13010021