The Integration of Multivariate Statistical Approaches, Hyperspectral Reflectance, and Data-Driven Modeling for Assessing the Quality and Suitability of Groundwater for Irrigation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sample Collection, Ionic Analysis, and Irrigation Groundwater Quality Evaluation
2.3. Evaluation of the Quality of Groundwater for Irrigation Purposes
2.4. Measurements of Spectral Reflectance
2.5. Data Analysis
2.5.1. Multivariate Statistical Analysis
2.5.2. ANFIS and SVMR Models
ANFIS Model
SVMR Model
Performance Evaluation of the Developed Models
3. Results and Discussion
3.1. Interpretation of Groundwater Quality through Physiochemical Parameters Using a Multivariate Analysis
3.2. Validity of Groundwater for Irrigation Purposes
3.3. Hyperspectral Characteristics of the Groundwater
3.4. Data-Driven Spectral Modeling for Predicting the Numerical Values of IWQIs
Performance of the Developed Models for Predicting the IWQIs
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bora, M.; Goswami, D.C. Water quality assessment in terms of water quality index (DWQI): Case study of the Kolong River, Assam, India. Appl. Water Sci. 2017, 7, 3125–3135. [Google Scholar] [CrossRef] [Green Version]
- Sawyer, G.N.; McCarthy, D.L. Chemistry of Sanitary Engineers, 2nd ed.; McGraw Hill: New York, NY, USA, 1967; p. 518. [Google Scholar]
- Sundaray, S.K.; Nayak, B.B.; Bhatta, D. Environmental studies on river water quality with reference to suitability for agricultural purposes: Mahanadi river estuarine system, India-A case study. Environ. Monit. Assess. 2008, 155, 227–243. [Google Scholar] [CrossRef] [PubMed]
- Meireles, A.C.M.; De Andrade, E.M.; Chaves, L.C.G.; Frischkorn, H.; Crisostomo, L.A. A new proposal of the classification of irrigation water. Rev. Ciência Agronômica 2010, 41, 349–357. [Google Scholar] [CrossRef] [Green Version]
- Ravikumar, P.; Somashekar, R.K.; Angami, M. Hydrochemistry and evaluation of groundwater suitability for irrigation and drinking purposes in the Markandeya River basin, Belgaum District, Karnataka State, India. Environ. Monit. Assess. 2010, 173, 459–487. [Google Scholar] [CrossRef]
- Li, P.; Tian, R.; Liu, R. Solute Geochemistry and Multivariate Analysis of Water Quality in the Guohua Phosphorite Mine, Guizhou Province, China. Expo. Health 2018, 11, 81–94. [Google Scholar] [CrossRef]
- Şener, Ş.; Şener, E.; Davraz, A. Evaluation of water quality using water quality index (WQI) method and GIS in Aksu River (SW-Turkey). Sci. Total Environ. 2017, 584, 131–144. [Google Scholar] [CrossRef]
- Kachroud, M.; Trolard, F.; Kefi, M.; Jebari, S.; Bourrié, G. Water Quality Indices: Challenges and Application Limits in the Literature. Water 2019, 11, 361. [Google Scholar] [CrossRef] [Green Version]
- Xu, P.; Feng, W.; Qian, H.; Zhang, Q. Hydrogeochemical Characterization and Irrigation Quality Assessment of Shallow Groundwater in the Central-Western Guanzhong Basin, China. Int. J. Environ. Res. Public Health 2019, 16, 1492. [Google Scholar] [CrossRef] [Green Version]
- Selvakumar, S.; Ramkumar, K.R.; Chandrasekar, N.; Magesh, N.S.; Seenipandi, K. Groundwater quality and its suitability for drinking and irrigational use in the Southern Tiruchirappalli district, Tamil Nadu, India. Appl. Water Sci. 2017, 7, 411–420. [Google Scholar] [CrossRef] [Green Version]
- Joshi, D.M.; Kumar, A.; Agrawal, N. Assessment of the irrigation water quality of River Ganga in Haridwar District India. J. Chem. 2009, 2, 285–292. [Google Scholar]
- Li, P.; Wu, J.; Qian, H.; Zhang, Y.; Yang, N.; Jing, L.; Yu, P. Hydrogeochemical Characterization of Groundwater in and Around a Wastewater Irrigated Forest in the Southeastern Edge of the Tengger Desert, Northwest China. Expo. Health 2016, 8, 331–348. [Google Scholar] [CrossRef]
- Doneen, L.D. Notes on Water Quality in Agriculture; Published as A Water Science and Engineering; Paper 4001; Department of Water Science and Engineering, University of California: Oakland, CA, USA, 1964. [Google Scholar]
- Wang, Y.; Wang, P.; Bai, Y.; Tian, Z.; Li, J.; Shao, X.; Mustavich, L.F.; Li, B.-L. Assessment of surface water quality via multivariate statistical techniques: A case study of the Songhua River Harbin region, China. HydroResearch 2013, 7, 30–40. [Google Scholar] [CrossRef]
- Chen, R.; Ju, M.; Chu, C.; Jing, W.; Wang, Y. Identification and Quantification of Physicochemical Parameters Influencing Chlorophyll-a Concentrations through Combined Principal Component Analysis and Factor Analysis: A Case Study of the Yuqiao Reservoir in China. Sustainability 2018, 10, 936. [Google Scholar] [CrossRef] [Green Version]
- Prieto-Amparan, J.A.; Rocha-Gutiérrez, B.A.; Ballinas-Casarrubias, L.; Aragón, M.C.V.; Peralta-Pérez, M.D.R.; Pinedo-Alvarez, A. Multivariate and Spatial Analysis of Physicochemical Parameters in an Irrigation District, Chihuahua, Mexico. Water 2018, 10, 1037. [Google Scholar] [CrossRef] [Green Version]
- Abdel-Fattah, M.K.; Abd-Elmabod, S.K.; Aldosari, A.A.; Elrys, A.S.; Mohamed, E.S. Multivariate Analysis for Assessing Irrigation Water Quality: A Case Study of the Bahr Mouise Canal, Eastern Nile Delta. Water 2020, 12, 2537. [Google Scholar] [CrossRef]
- Singh, K.P.; Malik, A.; Mohan, D.; Sinha, S. Multivariate statistical techniques for the evaluation of spatial and temporal variations in water quality of Gomti River (India)-a case study. Water Res. 2004, 38, 3980–3992. [Google Scholar] [CrossRef]
- Kazi, T.G.; Arain, M.; Jamali, M.; Jalbani, N.; Afridi, H.; Sarfraz, R.; Baig, J.; Shah, A.Q. Assessment of water quality of polluted lake using multivariate statistical techniques: A case study. Ecotoxicol. Environ. Saf. 2009, 72, 301–309. [Google Scholar] [CrossRef]
- Hamzah, F.; Jaafar, O.; Jani, W.; Abdullah, S. Multivariate Analysis of Physical and Chemical Parameters of Marine Water Quality in the Straits of Johor, Malaysia. J. Environ. Sci. Technol. 2016, 9, 427–436. [Google Scholar] [CrossRef] [Green Version]
- Duan, W.; He, B.; Takara, K.; Luo, P.; Nover, D.; Sahu, N.; Yamashiki, Y. Spatiotemporal evaluation of water quality incidents in Japan between 1996 and 2007. Chemosphere 2013, 93, 946–953. [Google Scholar] [CrossRef]
- Song, K.; Li, L.; Li, S.; Tedesco, L.; Hall, B.; Li, L. Hyperspectral Remote Sensing of Total Phosphorus (TP) in Three Central Indiana Water Supply Reservoirs. Water Air Soil Pollut. 2011, 223, 1481–1502. [Google Scholar] [CrossRef]
- Vinciková, H.; Hanus, J.; Pechar, L. Spectral reflectance is a reliable water-quality estimator for small, highly turbid wetlands. Wetlands Ecol. Manag. 2015, 23, 933–946. [Google Scholar] [CrossRef]
- Gholizadeh, M.H.; Melesse, A.M.; Reddi, L. A Comprehensive Review on Water Quality Parameters Estimation Using Remote Sensing Techniques. Sensors 2016, 16, 1298. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, Y.; Gao, B.; Hao, H.; Zhou, H.; Lu, J. Nitrogen and phosphorus in sediments in China: A national-scale assessment and review. Sci. Total Environ. 2017, 576, 840–849. [Google Scholar] [CrossRef] [PubMed]
- Bansod, B.; Singh, R.; Thakur, R. Analysis of water quality parameters by hyperspectral imaging in Ganges River. Spat. Inf. Res. 2018, 26, 203–211. [Google Scholar] [CrossRef]
- Elhag, M.; Gitas, I.Z.; Othman, A.; Bahrawi, J.; Gikas, P. Assessment of Water Quality Parameters Using Temporal Remote Sensing Spectral Reflectance in Arid Environments, Saudi Arabia. Water 2019, 11, 556. [Google Scholar] [CrossRef] [Green Version]
- Xing, Z.; Chen, J.; Zhao, X.; Li, Y.; Li, X.; Zhang, Z.; Lao, C.; Wang, H. Quantitative estimation of wastewater quality parameters by hyperspectral band screening using GC, VIP and SPA. PeerJ 2019, 7, e8255. [Google Scholar] [CrossRef] [Green Version]
- Gad, M.; El-Hendawy, S.; Al-Suhaibani, N.; Tahir, M.U.; Mubushar, M.; Elsayed, S. Combining Hydrogeochemical Characterization and a Hyperspectral Reflectance Tool for Assessing Quality and Suitability of Two Groundwater Resources for Irrigation in Egypt. Water 2020, 12, 2169. [Google Scholar] [CrossRef]
- Zhang, Q.; Yang, L.; Song, D. Environmental effect of decentralization on water quality near the border of cities: Evidence from China’s Province-managing-county reform. Sci. Total Environ. 2020, 708, 135154. [Google Scholar] [CrossRef]
- Wu, C.; Wu, J.; Qi, J.; Zhang, L.; Huang, H.; Lou, L.; Chen, Y. Empirical estimation of total phosphorus concentration in the mainstream of the Qiantang River in China using Landsat TM data. Int. J. Remote Sens. 2010, 31, 2309–2324. [Google Scholar] [CrossRef]
- Gitelson, A.; Garbuzov, G.; Szilagyi, F.; Mittenzwey, K.-H.; Karnieli, A.; Kaiser, A. Quantitative remote sensing methods for real-time monitoring of inland waters quality. Int. J. Remote Sens. 1993, 14, 1269–1295. [Google Scholar] [CrossRef]
- Liu, H.; Li, Q.; Shi, T.; Hu, S.; Wu, G.; Zhou, Q. Application of Sentinel 2 MSI Images to Retrieve Suspended Particulate Matter Concentrations in Poyang Lake. Remote Sens. 2017, 9, 761. [Google Scholar] [CrossRef] [Green Version]
- Daniel, E.B.; Camp, J.V.; LeBoeuf, E.J.; Penrod, J.R.; Dobbins, J.P.; Abkowitz, M.D. Watershed modeling and its applications: A state-of-the-art review. J. Hydrol. 2011, 5, 26–50. [Google Scholar] [CrossRef] [Green Version]
- Orouji, H.; Bozorg-Haddad, O.; Fallah-Mehdipour, E.; Mariño, M. Modeling of Water Quality Parameters Using Data-Driven Models. J. Environ. Eng. 2013, 139, 947–957. [Google Scholar] [CrossRef] [Green Version]
- Liu, Z.-J.; Weller, D. A Stream Network Model for Integrated Watershed Modeling. Environ. Model. Assess. 2007, 13, 291–303. [Google Scholar] [CrossRef]
- Solomatine, D.P.; See, L.; Abrahart, R. Data-Driven Modelling: Concepts, Approaches and Experiences. Hydrol. Model. 2008, 17–30. [Google Scholar] [CrossRef]
- Khadr, M.; Elshemy, M. Data-driven modeling for water quality prediction case study: The drains system associated with Manzala Lake, Egypt. Ain Shams Eng. J. 2017, 8, 549–557. [Google Scholar] [CrossRef] [Green Version]
- Rossel, R.A.V.; Behrens, T. Using data mining to model and interpret soil diffuse reflectance spectra. Geoderma 2010, 158, 46–54. [Google Scholar] [CrossRef]
- Walczak, B.; Massart, D. The Radial Basis Functions-Partial Least Squares approach as a flexible non-linear regression technique. Anal. Chim. Acta 1996, 331, 177–185. [Google Scholar] [CrossRef]
- Broomhead, D.; Lowe, D. Multivariable functional interpolation and adaptive networks. Complex Syst. 1988, 2, 321–355. [Google Scholar]
- Dogan, E.; Sengorur, B.; Koklu, R. Modeling biological oxygen demand of the Melen River in Turkey using an artificial neural network technique. J. Environ. Manag. 2009, 90, 1229–1235. [Google Scholar] [CrossRef]
- Ranković, V.; Radulović, J.; Radojević, I.; Ostojić, A.; Čomić, L. Neural network modeling of dissolved oxygen in the Gruža reservoir, Serbia. Ecol. Model. 2010, 221, 1239–1244. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, F.; Ding, J. Evaluation of water quality based on a machine learning algorithm and water quality index for the Ebinur Lake Watershed, China. Sci. Rep. 2017, 7, 12858. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- APHA (American Public Health Association). Standard Methods for the Examination of Water and Wastewater, 17th ed.; American Public Health Association: Washington, DC, USA, 2012. [Google Scholar]
- Eaton, F.M. Significance of Carbonates in Irrigation Waters. Soil Sci. 1950, 69, 123–134. [Google Scholar] [CrossRef]
- Horton, R.K. An index number system for rating water quality. J. Water Pollut. Control Fed. 1965, 37, 300–306. [Google Scholar]
- Ayers, R.; Westcot, D. Water Quality for Agriculture; Food and Agriculture Organization of the United Nations: Rome, Italy, 1985; p. 97. [Google Scholar]
- Gautam, S.K.; Maharana, C.; Sharma, D.; Singh, A.K.; Tripathi, J.K.; Singh, S.K. Evaluation of groundwater quality in the Chotanagpur plateau region of the Subarnarekha river basin, Jharkhand State, India. Sustain. Water Qual. Ecol. 2015, 6, 57–74. [Google Scholar] [CrossRef]
- Jolliffe, I.T. Principal Component Analysis, 2nd ed.; John Wiley & Sons Inc.: Charlottesville, VA, USA, 2002; pp. 150–166. [Google Scholar]
- Alberto, W.D.; Del Pilar, D.M.; Valeria, A.M.; Fabiana, P.S.; Cecilia, H.A.; Ángeles, B.M. de los Pattern Recognition Techniques for the Evaluation of Spatial and Temporal Variations in Water Quality. A Case Study. Water Res. 2001, 35, 2881–2894. [Google Scholar] [CrossRef]
- Abdullah, P.; Haque, M.Z.; Rahim, S.A.; Embi, A.F.; Elfithri, R.; Lihan, T.; Khali, W.W.M.; Khan, F.; Mokhtar, M. Multivariate Chemometric Approach on the Surface Water Quality in Langat Upstream Tributaries, Peninsular Malaysia. J. Environ. Sci. Technol. 2016, 9, 277–284. [Google Scholar] [CrossRef]
- Lawley, D.N.; Maxwell, A. Factor Analysis as a Statistical Method. J. R. Stat. Soc. 1962, 3, 209–229. [Google Scholar] [CrossRef]
- Morrison, D.F. Multivariate Statistical Methods; McGraw-Hill Book Company: New York, NY, USA, 1967; pp. 299–309. [Google Scholar]
- Hutcheson, G.D.; Nick, S. The Multivariate Social Scientist: Introductory Statistics Using Generalized Linear Models; SAGE: Thousand Oaks, CA, USA, 1999. [Google Scholar]
- Ted, A. Baumgartner. Reading Statistics and Research (5th ed.). Meas. Phys. Educ. Exerc. Sci. 2008, 12, 52–54. [Google Scholar]
- Zadeh, L.A. Outline of a New Approach to the Analysis of Complex Systems and Decision Processes. IEEE Trans. Syst. Man Cybern. 1973, Smc3, 28–44. [Google Scholar] [CrossRef] [Green Version]
- Aifaoui, N.; Deneux, D.; Soenen, R. Feature-based Interoperability between Design and Analysis Processes. J. Intell. Manuf. 2006, 17, 13–27. [Google Scholar] [CrossRef]
- Kuo, R.J.; Tseng, Y.S.; Chen, Z.-Y. Integration of fuzzy neural network and artificial immune system-based back-propagation neural network for sales forecasting using qualitative and quantitative data. J. Intell. Manuf. 2014, 27, 1191–1207. [Google Scholar] [CrossRef]
- Labani, M.M.; Kadkhodaie-Ilkhchi, A.; Salahshoor, K. Estimation of NMR log parameters from conventional well log data using a committee machine with intelligent systems: A case study from the Iranian part of the South Pars gas field, Persian Gulf Basin. J. Petrol. Sci. Eng. 2010, 72, 175–185. [Google Scholar] [CrossRef]
- Lehner, B.; Henrichs, T.; Döll, P.; Alcamo, J. EuroWasser: Model-based assessment of European water resources and hydrology in the face of global change. In Kassel World Water Series 5; Center for Environmental Systems Research, University of Kassel: Kassel, Germany, 2001. [Google Scholar]
- Hao, R.X.; Li, S.M.; Li, J.B.; Zhang, Q.K.; Liu, F. Water Quality Assessment for Wastewater Reclamation Using Principal Component Analysis. J. Environ. Inform. 2013, 21, 45–54. [Google Scholar] [CrossRef]
- Mirza, A.T.M.; Saadat, A.H.M.; Islam, M.S.; Al-Mansur, M.A.; Ahmed, S. Groundwater characterization and selection of suitable water type for irrigation in the western region of Bangladesh. Appl. Water Sci. 2017, 7, 233–243. [Google Scholar]
- Wang, J.; Zhou, W.; Pickett, S.T.; Yu, W.; Li, W. A multiscale analysis of urbanization effects on ecosystem services supply in an urban megaregion. Sci. Total Environ. 2019, 662, 824–833. [Google Scholar] [CrossRef]
- Ravikumar, P.; Somashekar, R.K. Principal component analysis and hydrochemical facies characterization to evaluate groundwater quality in Varahi river basin, Karnataka state, India. Appl. Water Sci. 2015, 7, 745–755. [Google Scholar] [CrossRef] [Green Version]
- Zeng, X.; Rasmussen, T.C. Application of multivariate statistical techniques in the assessment of water quality in the Southwest New Territories and Kowloon, Hong Kong. Environ. Monit. Assess. 2010, 137, 17–27. [Google Scholar]
- Liu, C.W.; Lin, K.H.; Kuo, Y.M. Application of factor analysis in the assessment of groundwater quality in a Blackfoot disease area in Taiwan. Sci. Total Environ. 2003, 13, 7789. [Google Scholar] [CrossRef]
- Unmesh, C.P.; Sanjay, K.S.; Prasant, R.; Binod, B.N.; Dinabandhu, B. Application of factor and cluster analysis for characterization of river and estuarine water systems—A case study: Mahanadi River (India). J. Hydrol. 2006, 331, 434–445. [Google Scholar]
- El Sheikh, A.E. Water Budget Analysis of the Quaternary Deposits for the Assessment of the Water Logging Problem of El Fayoum Depression. Ph.D. Thesis, Faculty of Science, Al-Azhr University, Cairo, Egypt, 2004; p. 233. [Google Scholar]
- Gad, M.; El-Hattab, M. Integration of water pollution indices and DRASTIC model for assessment of groundwater quality in El Fayoum depression, western desert, Egypt. J. Afr. Earth Sci. 2019, 158, 103554. [Google Scholar] [CrossRef]
- Gad, M.; El Osta, M. Geochemical controlling mechanisms and quality of the groundwater resources in El Fayoum Depression, Egypt. Arab. J. Geosci. 2020, 13, 1–23. [Google Scholar] [CrossRef]
- Ahmed, M.A. Assessment of intrinsic vulnerability to contamination for the Alluvial aquifer in El-Fayoum Depression using the DRASTIC method. J. Radiat. Res. Appl. Sci. 2012, 5, 743–768. [Google Scholar]
- Negm, A.M.; Sakr, S.; Abd-Elaty, I.; Abd-Elhamid, H.F. The Handbook of Environmental Chemistry; Springer Science and Business Media LLC: Cham, Switzerland, 2018; pp. 3–44. [Google Scholar]
- Lumb, A.; Sharma, T.C.; Bibeault, J.-F. A Review of Genesis and Evolution of Water Quality Index (WQI) and Some Future Directions. Water Qual. Expo. Health 2011, 3, 11–24. [Google Scholar] [CrossRef]
- Rocha, F.C.; De Andrade, E.M.; Lopes, F.B. Water quality index calculated from biological, physical and chemical attributes. Environ. Monit. Assess. 2014, 187, 4163. [Google Scholar] [CrossRef] [PubMed]
- Rawat, K.S.; Singh, S.K.; Gautam, S.K. Assessment of groundwater quality for irrigation use: A peninsular case study. Appl. Water Sci. 2018, 8, 233. [Google Scholar] [CrossRef] [Green Version]
- Khodapanah, L.; Sulaiman, W.N.A.; Khodapanah, D.N. Groundwater quality assessment for diferent purposes in Eshtehard District, Tehran, Iran. Eur. J. Sci. Res. 2009, 36, 543–553. [Google Scholar]
- Schroeder, H.A. Relations between hardness of water and death rates from certain chronic and degenerative diseases in the United States. J. Chronic Dis. 2004, 12, 586–591. [Google Scholar] [CrossRef]
- Sawyer, C.N.; McCarthy, P.L.; Parkin, G.F. Chemistry for Environmental Engineering and Science, 5th ed.; McGraw-Hill: New York, NY, USA, 2003. [Google Scholar]
- Nagaraju, A.; Kumar, K.S.; Thejaswi, A. Assessment of groundwater quality for irrigation: A case study from Bandalamottu lead mining area, Guntur District, Andhra Pradesh, South India. Appl. Water Sci. 2014, 4, 385–396. [Google Scholar] [CrossRef] [Green Version]
- Ma, R.; Dai, J. Investigation of chlorophyll-a and total suspended matter concentrations using Landsat ETM and field spectral measurement in Taihu Lake, China. Int. J. Remote Sens. 2005, 26, 2779–2795. [Google Scholar] [CrossRef]
- Wu, J.-L.; Ho, C.-R.; Huang, C.-C.; Srivastav, A.L.; Tzeng, J.-H.; Lin, Y.-T. Hyperspectral Sensing for Turbid Water Quality Monitoring in Freshwater Rivers: Empirical Relationship between Reflectance and Turbidity and Total Solids. Sensors 2014, 14, 22670–22688. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jouanneau, S.; Recoules, L.; Durand, M.; Boukabache, A.; Picot, V.; Primault, Y.; Lakel, A.; Sengelin, M.; Barillon, B.; Thouand, G. Methods for assessing biochemical oxygen demand (BOD): A review. Water Res. 2014, 49, 62–82. [Google Scholar] [CrossRef] [PubMed]
Irrigation Water Quality Indices | Formula | References |
---|---|---|
Water quality index | [4] | |
Residual sodium bicarbonate | RSBC = (HCO3−) − (Ca2+) | [5] |
Total hardness | TH = 2.497 (Ca2+) + 4.11 (Mg2+) | [2] |
Potential salinity | PS = Cl− + (SO42−/2) | [5] |
Residual sodium carbonate | RSC = [(HCO3− + CO32−)] − [(Ca2++ Mg2+)] | [46] |
Magnesium hazard | MH = [Mg+/(Ca2++ Mg+2)] × 100 | [3] |
Physicochemical Parameters | Western Desert (WD, n = 15) | Central Nile Delta (CND, n = 25) | ||
---|---|---|---|---|
Factor 1 | Factor 2 | Factor 1 | Factor 2 | |
Tempreature | −0.128 | −0.617 | −0.339 | −0.068 |
pH | −0.301 | −0.478 | 0.002 | 0.303 |
TDS | 0.948 | 0.318 | 0.785 | 0.432 |
K+ | 0.830 | 0.066 | 0.436 | 0.403 |
Na+ | 0.944 | 0.196 | 0.454 | 0.227 |
Mg2+ | 0.696 | 0.507 | 0.720 | 0.291 |
Ca2+ | 0.692 | 0.562 | 0.928 | 0.216 |
Cl− | 0.844 | 0.415 | 0.624 | 0.781 |
SO42− | 0.966 | 0.225 | 0.876 | 0.080 |
HCO3− | 0.253 | 0.821 | 0.899 | −0.138 |
NO3− | 0.095 | 0.776 | 0.098 | 0.772 |
Eigen values | 6.71 | 1.39 | 5.23 | 1.14 |
Variability (%) | 47.87 | 25.68 | 40.75 | 16.91 |
Cumulative (%) | 47.87 | 73.56 | 40.75 | 57.65 |
Irrigation Water Quality Variables | ||||||
---|---|---|---|---|---|---|
WQI | RSBC | TH | PS | RSC | MH | |
El Fayoum depression, Western Desert (WD, n = 15) | ||||||
Minimum | 28.00 | −17.42 | 299.58 | 1.80 | −35.54 | 28.47 |
Maximum | 81.41 | 3.76 | 2213.8 | 28.22 | 0.74 | 61.36 |
Mean | 52.01 | −4.95 | 932.30 | 13.87 | −12.84 | 46.03 |
standard deviation | 15.37 | 7.00 | 560.32 | 8.81 | 10.47 | 8.89 |
Central Nile Delta (CND, n = 25) | ||||||
Minimum | 80.47 | −3.7 | 99.63 | 0.995 | −6.34 | 12.38 |
Maximum | 99.27 | 1.28 | 556.60 | 5.92 | 0.29 | 44.18 |
Mean | 90.46 | −0.57 | 304.46 | 2.21 | −2.19 | 30.80 |
Standard deviation | 6.61 | 1.49 | 133.90 | 1.00 | 1.82 | 8.53 |
IWQIs | Ranges | Water Quality Class | Number of Samples (Percent) | |
---|---|---|---|---|
WD Region | CND Region | |||
WQI | 85–100 | No restriction | - | 18 (72%) |
70–85 | Low restriction | 1 (7%) | 7 (28%) | |
55–70 | Moderate restriction | 7 (47%) | - | |
40–55 | High restriction | 2 (13%) | - | |
0–40 | Severe restriction | 5 (33%) | - | |
RSBC | <5 | Satisfactory | 15 (100%) | 25 (100%) |
>5 | Unsatisfactory | - | - | |
TH | <75 | Soft | - | - |
75–150 | Moderately hard | - | 3 (12%) | |
150–300 | Hard | 1(7%) | 9 (36%) | |
>300 | Very hard | 14 (93%) | 13 (52%) | |
PS | <3 | Excellent to Good | 2 (13 %) | 21 (84%) |
3–5 | Good to Injurious | 1 (7 %) | 3 (12%) | |
>5 | Injurious to Unsatisfactory | 12 (80%) | 1 (4%) | |
RSC | <1.25 | Good | 15 (100%) | 25 (100%) |
1.25–2.50 | Doubtful | - | - | |
>2.50 | Unsuitable | - | - | |
MH | <50% | Suitable | 9 (60%) | 25 (100%) |
>50% | Unsuitable | 6 (40%) | - |
Parameters | Statistical Parameters | ||||||||
---|---|---|---|---|---|---|---|---|---|
R2 | RMSE | MAD | E | ||||||
ANFIS | SVMR | ANFIS | SVMR | ANFIS | SVMR | ANFIS | SVMR | ||
Training Series | WQI | 1.00 | 0.88 | 4.10 × 10−5 | 7.46 | 2.89 × 10−5 | 5.16 | 1.00 | 0.85 |
RSBC | 1.00 | 0.29 | 1.24 × 10−5 | 4.26 | 4.76 × 10−6 | 2.52 | 1.00 | 0.21 | |
TH | 1.00 | 0.78 | 0.00097 | 175.04 | 0.00056 | 114.88 | 1.00 | 0.78 | |
PS | 1.00 | 0.69 | 5.24 × 10−6 | 4.31 | 4.08 × 10−6 | 2.13 | 1.00 | 0.59 | |
RSC | 1.00 | 0.72 | 5.11 × 10−6 | 7.25 | 3.00 × 10−6 | 3.74 | 1.00 | 0.16 | |
MH | 1.00 | 0.25 | 5.18 × 10−55 | 6.22 | 3.71 × 10−5 | 4.42 | 1.00 | 0.43 | |
Testing Series | WQI | 0.91 | 0.70 | 9.28 | 11.51 | 3.85 | 9.66 | 0.86 | 0.68 |
RSBC | 0.98 | 0.01 | 8.81 × 10−5 | 5.55 | 5.14 × 10−5 | 3.54 | 0.97 | −0.09 | |
TH | 0.97 | 0.63 | 165.04 | 310.96 | 90.39 | 254.42 | 0.88 | 0.59 | |
PS | 0.90 | 0.55 | 1.73 | 3.68 | 0.78 | 3.18 | 0.90 | 0.52 | |
RSC | 0.98 | 0.45 | 1.64 | 8.75 | 1.23 | 6.02 | 0.97 | 0.11 | |
MH | 0.74 | 0.10 | 5.18 | 10.60 | 2.32 | 8.79 | 0.70 | −0.10 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khadr, M.; Gad, M.; El-Hendawy, S.; Al-Suhaibani, N.; Dewir, Y.H.; Tahir, M.U.; Mubushar, M.; Elsayed, S. The Integration of Multivariate Statistical Approaches, Hyperspectral Reflectance, and Data-Driven Modeling for Assessing the Quality and Suitability of Groundwater for Irrigation. Water 2021, 13, 35. https://doi.org/10.3390/w13010035
Khadr M, Gad M, El-Hendawy S, Al-Suhaibani N, Dewir YH, Tahir MU, Mubushar M, Elsayed S. The Integration of Multivariate Statistical Approaches, Hyperspectral Reflectance, and Data-Driven Modeling for Assessing the Quality and Suitability of Groundwater for Irrigation. Water. 2021; 13(1):35. https://doi.org/10.3390/w13010035
Chicago/Turabian StyleKhadr, Mosaad, Mohamed Gad, Salah El-Hendawy, Nasser Al-Suhaibani, Yaser Hassan Dewir, Muhammad Usman Tahir, Muhammad Mubushar, and Salah Elsayed. 2021. "The Integration of Multivariate Statistical Approaches, Hyperspectral Reflectance, and Data-Driven Modeling for Assessing the Quality and Suitability of Groundwater for Irrigation" Water 13, no. 1: 35. https://doi.org/10.3390/w13010035
APA StyleKhadr, M., Gad, M., El-Hendawy, S., Al-Suhaibani, N., Dewir, Y. H., Tahir, M. U., Mubushar, M., & Elsayed, S. (2021). The Integration of Multivariate Statistical Approaches, Hyperspectral Reflectance, and Data-Driven Modeling for Assessing the Quality and Suitability of Groundwater for Irrigation. Water, 13(1), 35. https://doi.org/10.3390/w13010035