Velocity Structure of Density Currents Propagating over Rough Beds
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Setup
2.2. Experimental Measurements
2.3. Experimental Parameters
3. Results and Discussion
3.1. Distribution of Velocity
3.2. Influence of Roughness on Velocity Profiles
3.3. Shear Stress
3.4. Dimensional Analysis for Velocity Estimation
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Nogueira, H.I.; Adduce, C.; Alves, E.; Franca, M.J. Dynamics of the head of gravity currents. Environ. Fluid Mech. 2014, 14, 519–540. [Google Scholar] [CrossRef] [Green Version]
- Tien, N.N.; Uu, D.V.; Cuong, D.H.; Mau, L.D.; Tung, N.X.; Hung, P.D. Mechanism of Formation and Estuarine Turbidity Maxima in the Hau River Mouth. Water 2020, 12, 2547. [Google Scholar] [CrossRef]
- Wilson, R.I.; Friedrich, H. Coupling of Ultrasonic and Photometric Techniques for Synchronous Measurements of Unconfined Turbidity Currents. Water 2018, 10, 1246. [Google Scholar] [CrossRef] [Green Version]
- Chamoun, S.; De Cesare, G.; Schleiss, A.J. Venting of turbidity currents approaching a rectangular opening on a horizontal bed. J. Hydraul. Res. 2017, 56, 44–58. [Google Scholar] [CrossRef]
- Kostic, S.; Parker, G. Progradational sand-mud deltas in lakes and reservoirs. Part 1. Theory and numerical modeling. J. Hydraul. Res. 2003, 41, 127–140. [Google Scholar] [CrossRef]
- Guo, Y.; Wu, X.; Pan, C.; Zhang, J. Numerical simulation of the tidal flow and suspended sediment transport in the Qiantang Estuary. J. Waterw. Port Coast. Ocean Eng. 2011, 138, 192–202. [Google Scholar] [CrossRef]
- Xiao, Y.; Yang, F.; Zhou, Y.; Chen, W. 1-D numerical modeling of the mechanics of gravity-driven transport of fine sediments in the Three Gorges Reservoir. Lake Reserv. Manag. 2015, 31, 83–91. [Google Scholar] [CrossRef]
- Wildt, D.; Hauer, C.; Habersack, H.; Tritthart, M. CFD Modelling of Particle-Driven Gravity Currents in Reservoirs. Water 2020, 12, 1403. [Google Scholar] [CrossRef]
- Yoon, J.-I.; Sung, J.; Ho Lee, M. Velocity profiles and friction coefficients in circular open channels. J. Hydraul. Res. 2012, 50, 304–311. [Google Scholar] [CrossRef]
- Cantero-Chinchilla, F.N.; Dey, S.; Castro-Orgaz, O.; Ali, S.Z. Hydrodynamic analysis of fully developed turbidity currents over plane beds based on self-preserving velocity and concentration distributions. J. Geophys. Res. Earth Surf. 2015, 120, 2176–2199. [Google Scholar] [CrossRef]
- Firoozabadi, B.; Afshin, H.; Aram, E. Three-dimensional modeling of density current in a straight channel. J. Hydraul. Eng. 2009, 135, 393–402. [Google Scholar] [CrossRef]
- Islam, M.A.; Imran, J. Vertical structure of continuous release saline and turbidity currents. J. Geophys. Res. Ocean. 2010, 115. [Google Scholar] [CrossRef] [Green Version]
- Nourmohammadi, Z.; Afshin, H.; Firoozabadi, B. Experimental observation of the flow structure of turbidity currents. J. Hydraul. Res. 2011, 49, 168–177. [Google Scholar] [CrossRef]
- Cossu, R.; Wells, M.G. A comparison of the shear stress distribution in the bottom boundary layer of experimental density and turbidity currents. Eur. J. Mech. B/Fluids 2012, 32, 70–79. [Google Scholar] [CrossRef]
- Cortés, A.; Rueda, F.; Wells, M. Experimental observations of the splitting of a gravity current at a density step in a stratified water body. J. Geophys. Res. Ocean. 2014, 119, 1038–1053. [Google Scholar] [CrossRef]
- Chamoun, S.; De Cesare, G.; Schleiss, A.J. Influence of operational timing on the efficiency of venting turbidity currents. J. Hydraul. Eng. 2018, 144, 04018062. [Google Scholar] [CrossRef]
- Oehy, C.D.; Schleiss, A.J. Control of turbidity currents in reservoirs by solid and permeable obstacles. J. Hydraul. Eng. 2007, 133, 637–648. [Google Scholar] [CrossRef]
- Oshaghi, M.R.; Afshin, H.; Firoozabadi, B. Experimental investigation of the effect of obstacles on the behavior of turbidity currents. Can. J. Civ. Eng. 2013, 40, 343–352. [Google Scholar] [CrossRef]
- Yaghoubi, S.; Afshin, H.; Firoozabadi, B.; Farizan, A. Experimental Investigation of the Effect of Inlet Concentration on the Behavior of Turbidity Currents in the Presence of Two Consecutive Obstacles. J. Waterw. Port Coast. Ocean Eng. 2017, 143, 04016018. [Google Scholar] [CrossRef]
- Goodarzi, D.; Lari, K.S.; Khavasi, E.; Abolfathi, S. Large eddy simulation of turbidity currents in a narrow channel with different obstacle configurations. Sci. Rep. 2020, 10, 1–16. [Google Scholar] [CrossRef]
- Negretti, M.E.; Zhu, D.Z.; Jirka, G.H. The effect of bottom roughness in two-layer flows down a slope. Dyn. Atmos. Ocean. 2008, 45, 46–68. [Google Scholar] [CrossRef] [Green Version]
- Peters, W.D. Rough-Surface Gravity Current Flows. Ph.D. Thesis, Department of Mechanical Engineering, University of New Brunswick, Saint John, NB, Canada, 1999. [Google Scholar]
- Tanino, Y.; Nepf, H.; Kulis, P. Gravity currents in aquatic canopies. Water Resour. Res. 2005, 41. [Google Scholar] [CrossRef] [Green Version]
- Tokyay, T.E. A Les Study on Gravity Currents Propagating over Roughness Elements; University of Lowa: Iowa City, IA, USA, 2010. [Google Scholar]
- Chowdhury, R.A. Effect of Roughness on Density Currents. Master’s Thesis, The University of Texas, San Antonio, TX, USA, 2013. [Google Scholar]
- Bhaganagar, K. Direct numerical simulation of lock-exchange density currents over the rough wall in slumping phase. J. Hydraul. Res. 2014, 52, 386–398. [Google Scholar] [CrossRef]
- Howlett, D.M.; Ge, Z.; Nemec, W.; Gawthorpe, R.L.; Rotevatn, A.; Jackson, C.A.L. Response of unconfined turbidity current to deep-water fold and thrust belt topography: Orthogonal incidence on solitary and segmented folds. Sedimentology 2019, 66, 2425–2454. [Google Scholar] [CrossRef]
- Nasrollahpour, R.; Jamal, M.H.; Ismail, Z.; Rusli, N.M. Experiments on the dynamics of density currents. J. Teknol. 2016, 78, 71–76. [Google Scholar] [CrossRef] [Green Version]
- Köllner, T.; Meredith, A.; Nokes, R.; Meiburg, E. Gravity currents over fixed beds of monodisperse spheres. J. Fluid Mech. 2020, 901. [Google Scholar] [CrossRef]
- Blanchette, F.; Strauss, M.; Meiburg, E.; Kneller, B.; Glinsky, M.E. High-resolution numerical simulations of resuspending gravity currents: Conditions for self-sustainment. J. Geophys. Res. Ocean. 2005, 110. [Google Scholar] [CrossRef] [Green Version]
- Perez-Gruszkiewicz, S.E. Reducing underwater-slide impact forces on pipelines by streamlining. J. Waterw. Port Coast. Ocean Eng. 2011, 138, 142–148. [Google Scholar] [CrossRef]
- Lintern, D.G.; Hill, P.R.; Stacey, C. Powerful unconfined turbidity current captured by cabled observatory on the Fraser River delta slope, British Columbia, Canada. Sedimentology 2016, 63, 1041–1064. [Google Scholar] [CrossRef] [Green Version]
- Nortek. Comprehensive Manual; Nortek: Providence, RI, USA, 2013. [Google Scholar]
- Batt, R.L. The Influence of Bed Roughness on the Dynamics of Gravity Currents; University of Leeds: Leeds, UK, 2008. [Google Scholar]
- Perry, A.E.; Schofield, W.H.; Joubert, P.N. Rough wall turbulent boundary layers. J. Fluid Mech. 1969, 37, 383–413. [Google Scholar] [CrossRef]
- Khavasi, E.; Afshin, H.; Firoozabadi, B. Effect of selected parameters on the depositional behaviour of turbidity currents. J. Hydraul. Res. 2012, 50, 60–69. [Google Scholar] [CrossRef]
- Ellison, T.; Turner, J. Turbulent entrainment in stratified flows. J. Fluid Mech. 1959, 6, 423–448. [Google Scholar] [CrossRef]
- Altinakar, M.; Graf, W.; Hopfinger, E. Flow structure in turbidity currents. J. Hydraul. Res. 1996, 34, 713–718. [Google Scholar] [CrossRef]
- He, Z.; Zhao, L.; Lin, T.; Hu, P.; Lv, Y.; Ho, H.-C.; Lin, Y.-T. Hydrodynamics of Gravity Currents Down a Ramp in Linearly Stratified Environments. J. Hydraul. Eng. 2017, 143, 04016085. [Google Scholar] [CrossRef]
- Peters, W.D.; Venart, J. Visualization of rough-surface gravity current flows using laser-induced fluorescence. In Proceedings of the 9th International Symposium of Flow Visualization, Edinburgh, UK, 22–25 August 2000. [Google Scholar]
- Leonardi, S.; Orlandi, P.; Smalley, R.; Djenidi, L.; Antonia, R. Direct numerical simulations of turbulent channel flow with transverse square bars on one wall. J. Fluid Mech. 2003, 491, 229–238. [Google Scholar] [CrossRef] [Green Version]
- Leonardi, S.; Orlandi, P.; Djenidi, L.; Antonia, R. Structure of turbulent channel flow with square bars on one wall. Int. J. Heat Fluid Flow 2004, 25, 384–392. [Google Scholar] [CrossRef]
- Dallimore, C.J.; Imberger, J.; Ishikawa, T. Entrainment and turbulence in saline underflow in Lake Ogawara. J. Hydraul. Eng. 2001, 127, 937–948. [Google Scholar] [CrossRef]
- Hsu, S.M.; Tseng, C.M.; Lin, C.C. Antecedent Bottom Conditions of Reservoirs as Key Factors for High Turbidity in Muddy Water Caused by Storm Rainfall. J. Hydraul. Eng. 2017, 143, 05016006. [Google Scholar] [CrossRef]
Number of Experiments | Roughness Conditions | hin (cm) | S (%) | Cin (g/L) | Qin (L/s) |
---|---|---|---|---|---|
8 | Smooth | 7 | 0.25, 1.75 | 5, 15 | 0.5, 1 |
8 | λ/Kr = 1 | 7 | 0.25, 1.75 | 5, 15 | 0.5, 1 |
8 | λ/Kr = 4 | 7 | 0.25, 1.75 | 5, 15 | 0.5, 1 |
8 | λ/Kr = 8 | 7 | 0.25, 1.75 | 5, 15 | 0.5, 1 |
8 | λ/Kr = 16 | 7 | 0.25, 1.75 | 5, 15 | 0.5, 1 |
8 | λ/Kr = 32 | 7 | 0.25, 1.75 | 5, 15 | 0.5, 1 |
8 | λ/Kr = 64 | 7 | 0.25, 1.75 | 5, 15 | 0.5, 1 |
8 | λ/Kr = 128 | 7 | 0.25, 1.75 | 5, 15 | 0.5, 1 |
Reference | Bed Type | n | R2 | α | m | R2 |
---|---|---|---|---|---|---|
[19] | Smooth | 6.2 | 0.95 | 0.85 | 2 | 0.92 |
[39] | Smooth | 5.9 | 0.97 | 1.42 | 2.34 | 0.97 |
[13] | Smooth | 5.8 | ---- | 0.6 | 2.7 | ---- |
[38] | Smooth | 6 | ---- | 1.4 | 2 | 0.96 |
Present Study | Smooth | 5.61 | 0.92 | 1.86 | 2.38 | 0.91 |
λ/Kr = 1 | 4.28 | 0.98 | 1.91 | 2.63 | 0.92 | |
λ/Kr = 4 | 2.89 | 0.98 | 1.33 | 2.44 | 0.89 | |
λ/Kr = 8 | 1.78 | 0.97 | 1.18 | 2.72 | 0.90 | |
λ/Kr = 16 | 1.87 | 0.98 | 1.28 | 2.54 | 0.93 | |
λ/Kr = 32 | 3.32 | 0.98 | 1.68 | 2.44 | 0.91 | |
λ/Kr = 64 | 3.96 | 0.96 | 1.86 | 2.35 | 0.89 | |
λ/Kr = 128 | 5.45 | 0.96 | 1.96 | 2.39 | 0.94 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nasrollahpour, R.; Jamal, M.H.; Ismail, Z.; Ibrahim, Z.; Jumain, M.; Mohd Haniffah, M.R.; Ishak, D.S.M. Velocity Structure of Density Currents Propagating over Rough Beds. Water 2021, 13, 1460. https://doi.org/10.3390/w13111460
Nasrollahpour R, Jamal MH, Ismail Z, Ibrahim Z, Jumain M, Mohd Haniffah MR, Ishak DSM. Velocity Structure of Density Currents Propagating over Rough Beds. Water. 2021; 13(11):1460. https://doi.org/10.3390/w13111460
Chicago/Turabian StyleNasrollahpour, Reza, Mohamad Hidayat Jamal, Zulhilmi Ismail, Zulkiflee Ibrahim, Mazlin Jumain, Mohd Ridza Mohd Haniffah, and Daeng Siti Maimunah Ishak. 2021. "Velocity Structure of Density Currents Propagating over Rough Beds" Water 13, no. 11: 1460. https://doi.org/10.3390/w13111460
APA StyleNasrollahpour, R., Jamal, M. H., Ismail, Z., Ibrahim, Z., Jumain, M., Mohd Haniffah, M. R., & Ishak, D. S. M. (2021). Velocity Structure of Density Currents Propagating over Rough Beds. Water, 13(11), 1460. https://doi.org/10.3390/w13111460