Simulation of Extreme Precipitation in Four Climate Regions in China by General Circulation Models (GCMs): Performance and Projections
Abstract
:1. Introduction
2. Data and Methods
2.1. Datasets
2.2. Methods
2.2.1. Precipitation Indices
2.2.2. Bias Correction and Downscaling
2.2.3. Statistical Assessment Method
3. Results
3.1. Performance Assessment
3.2. Characteristics of Precipitation Indices in the Historical Period
3.3. Changing Trend of Precipitation Indices in the Future
4. Conclusions and Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kunkel, K.E.; Pielke, R.A.; Changnon, S.A. Temporal fluctuations in weather and climate extremes that cause economic and human health impacts: A review. Bull. Am. Meteorol. Soc. 1999, 80, 1077–1098. [Google Scholar] [CrossRef] [Green Version]
- Easterling, D.R.; Evans, J.L.; Groisman, P.Y.; Karl, T.R.; Kunkel, K.E.; Ambenje, P. Observed variability and trends in extreme climate events: A brief review. Bull. Am. Meteorol. Soc. 2000, 81, 417–426. [Google Scholar] [CrossRef] [Green Version]
- Meehl, G.A.; Karl, T.; Easterling, D.R.; Changnon, S.; Pielke, R.; Changnon, D.; Evans, J.; Groisman, P.Y.; Knutson, T.R.; Kunkel, K.E.; et al. An Introduction to Trends in Extreme Weather and Climate Events: Observations, Socioeconomic Impacts, Terrestrial Ecological Impacts, and Model Projections. Bull. Am. Meteorol. Soc. 2000, 108, 46–51. [Google Scholar] [CrossRef] [Green Version]
- IPCC. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; IPCC: Geneva, Switzerland, 2014; ISBN 9789291691432. [Google Scholar]
- Alexander, L.V. Global observed long-term changes in temperature and precipitation extremes: A review of progress and limitations in IPCC assessments and beyond. Weather Clim. Extrem. 2016, 11, 4–16. [Google Scholar] [CrossRef] [Green Version]
- Zhan, W.; He, X.; Sheffield, J.; Wood, E.F. Projected Seasonal Changes in Large-Scale Global Precipitation and Temperature Extremes Based on the CMIP5 Ensemble. J. Clim. 2020, 33. [Google Scholar] [CrossRef] [Green Version]
- Dong, X.; Zhang, S.; Zhou, J.; Cao, J.; Jiao, L.; Zhang, Z.; Liu, Y. Magnitude and frequency of temperature and precipitation extremes and the associated atmospheric circulation patterns in the Yellow River Basin (1960–2017), China. Water 2019, 11, 2334. [Google Scholar] [CrossRef] [Green Version]
- Tan, M.L.; Samat, N.; Chan, N.W.; Lee, A.J.; Li, C. Analysis of precipitation and temperature extremes over the Muda River Basin, Malaysia. Water 2019, 11, 283. [Google Scholar] [CrossRef] [Green Version]
- Allen, M.R.; Ingram, W.J. Constraints on future changes in climate and the hydrologic cycle. Nature 2002, 419, 224–232. [Google Scholar] [CrossRef] [PubMed]
- Zhai, P.; Eskridge, R.E. Atmospheric water vapor over China. J. Clim. 1997, 10, 2643–2652. [Google Scholar] [CrossRef]
- Pfahl, S.; O’Gorman, P.A.; Fischer, E.M. Understanding the regional pattern of projected future changes in extreme precipitation. Nat. Clim. Chang. 2017, 7. [Google Scholar] [CrossRef]
- Liu, C.; Allan, R.P. Observed and simulated precipitation responses in wet and dry regions 1850–2100. Environ. Res. Lett. 2013, 8. [Google Scholar] [CrossRef]
- Chou, C.; Chiang, J.C.H.; Lan, C.W.; Chung, C.H.; Liao, Y.C.; Lee, C.J. Increase in the range between wet and dry season precipitation. Nat. Geosci. 2013, 6, 263–267. [Google Scholar] [CrossRef]
- Hawcroft, M.; Walsh, E.; Hodges, K.; Zappa, G. Significantly increased extreme precipitation expected in Europe and North America from extratropical cyclones. Environ. Res. Lett. 2018, 13. [Google Scholar] [CrossRef]
- Bao, J.; Sherwood, S.C.; Alexander, L.V.; Evans, J.P. Future increases in extreme precipitation exceed observed scaling rates. Nat. Clim. Chang. 2017, 7, 128–132. [Google Scholar] [CrossRef]
- Hatsuzuka, D.; Sato, T. Future changes in monthly extreme precipitation in Japan using large-ensemble regional climate simulations. J. Hydrometeorol. 2019, 20, 563–574. [Google Scholar] [CrossRef]
- Wu, X.; Guo, S.; Yin, J.; Yang, G.; Zhong, Y.; Liu, D. On the event-based extreme precipitation across China: Time distribution patterns, trends, and return levels. J. Hydrol. 2018, 562, 305–317. [Google Scholar] [CrossRef]
- Sun, Q.; Miao, C.; Duan, Q. Changes in the spatial heterogeneity and annual distribution of observed precipitation across China. J. Clim. 2017. [Google Scholar] [CrossRef]
- Tong, S.; Berry, H.L.; Ebi, K.; Bambrick, H.; Hu, W.; Green, D.; Hanna, E.; Wang, Z.; Butler, C.D. Climate change, food, water and population health in China. Bull. World Health Organ. 2016, 94, 759–765. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Hu, Q. Spatiotemporal Changes in Extreme Precipitation and Its Dependence on Topography over the Poyang Lake Basin, China. Adv. Meteorol. 2019, 2019, 1–15. [Google Scholar] [CrossRef] [Green Version]
- She, D.; Shao, Q.; Xia, J.; Taylor, J.A.; Zhang, Y.; Zhang, L.; Zhang, X.; Zou, L. Investigating the variation and non-stationarity in precipitation extremes based on the concept of event-based extreme precipitation. J. Hydrol. 2015, 530, 785–798. [Google Scholar] [CrossRef]
- Guo, X.; Wu, Z.; He, H.; Du, H.; Wang, L.; Yang, Y.; Zhao, W. Variations in the start, end, and length of extreme precipitation period across China. Int. J. Climatol. 2018. [Google Scholar] [CrossRef]
- Jiang, P.; Yu, Z.; Yuan, F.; Acharya, K. The multi-scale temporal variability of extreme precipitation in the source region of the Yellow River. Water 2019, 11, 92. [Google Scholar] [CrossRef] [Green Version]
- Shi, J.; Cui, L.; Wen, K.; Tian, Z.; Wei, P.; Zhang, B. Trends in the consecutive days of temperature and precipitation extremes in China during 1961–2015. Environ. Res. 2018, 161, 381–391. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Wood, E.F.; Sheffield, J.; Ren, L.; Zhang, M.; Wang, Y. Bias correction of historical and future simulations of precipitation and temperature for China from CMIP5 models. J. Hydrometeorol. 2018, 19. [Google Scholar] [CrossRef]
- Kirkland, E.J. Advanced Computing in Electron Microscopy, 2nd ed.; Springer: New York, NY, USA, 2010; ISBN 978-1-4419-6532-5. [Google Scholar]
- Yang, X.; Zhang, L.; Wang, Y.; Singh, V.P.; Xu, C.Y.; Ren, L.; Zhang, M.; Liu, Y.; Jiang, S.; Yuan, F. Spatial and temporal characterization of drought events in China using the severity-area-duration method. Water 2020, 12, 230. [Google Scholar] [CrossRef] [Green Version]
- Gao, Y.; Xiao, L.; Chen, D.; Xu, J.; Zhang, H. Comparison between past and future extreme precipitations simulated by global and regional climate models over the tibetan plateau. Int. J. Climatol. 2018, 38. [Google Scholar] [CrossRef]
- Li, H.; Sheffield, J.; Wood, E.F. Bias correction of monthly precipitation and temperature fields from Intergovernmental Panel on Climate Change AR4 models using equidistant quantile matching. J. Geophys. Res. Atmos. 2010, 115. [Google Scholar] [CrossRef]
- Aloysius, N.R.; Sheffield, J.; Saiers, J.E.; Li, H.; Wood, E.F. Journal of Geophysical Research: Atmospheres Africa from CMIP5 climate models. J. Geophys. Res. Atmos. 2016, 121, 130–152. [Google Scholar] [CrossRef] [Green Version]
- Yang, X.; Yu, X.; Wang, Y.; Liu, Y.; Zhang, M.; Ren, L.; Yuan, F.; Jiang, S. Estimating the response of hydrological regimes to future projections of precipitation and temperature over the upper Yangtze River. Atmos. Res. 2019, 230, 104627. [Google Scholar] [CrossRef]
- Gupta, H.V.; Kling, H.; Yilmaz, K.K.; Martinez, G.F. Decomposition of the mean squared error and NSE performance criteria: Implications for improving hydrological modelling. J. Hydrol. 2009, 377, 80–91. [Google Scholar] [CrossRef] [Green Version]
- Kling, H.; Fuchs, M.; Paulin, M. Runoff conditions in the upper Danube basin under an ensemble of climate change scenarios. J. Hydrol. 2012, 424, 264–277. [Google Scholar] [CrossRef]
- Jiang, Z.; Li, W.; Xu, J.; Li, L. Extreme precipitation indices over China in CMIP5 models. Part I: Model evaluation. J. Clim. 2015. [Google Scholar] [CrossRef]
- Jiang, Z.; Song, J.; Li, L.; Chen, W.; Wang, Z.; Wang, J. Extreme climate events in China: IPCC-AR4 model evaluation and projection. Clim. Chang. 2012, 110, 385–401. [Google Scholar] [CrossRef]
- Jones, P.D.; Hulme, M. Calculating regional climatic time series for temperature and precipitation: Methods and illustrations. Int. J. Climatol. 1996, 16, 361–377. [Google Scholar] [CrossRef]
- Allan, R.P.; Soden, B.J. Atmospheric warming and the amplification of precipitation extremes. Science 2008, 321, 1481–1484. [Google Scholar] [CrossRef] [Green Version]
- Nazari-Sharabian, M.; Taheriyoun, M.; Ahmad, S.; Karakouzian, M.; Ahmadi, A. Water Quality Modeling of Mahabad Dam Watershed–Reservoir System under Climate Change Conditions, using SWAT and System Dynamics. Water 2019, 11, 394. [Google Scholar] [CrossRef] [Green Version]
- Janssen, E.; Sriver, R.L.; Wuebbles, D.J.; Kunkel, K.E. Seasonal and regional variations in extreme precipitation event frequency using CMIP5. Geophys. Res. Lett. 2016, 43, 5385–5393. [Google Scholar] [CrossRef] [Green Version]
- Mukherjee, S.; Aadhar, S.; Stone, D.; Mishra, V. Increase in extreme precipitation events under anthropogenic warming in India. Weather Clim. Extrem. 2018. [Google Scholar] [CrossRef]
- Bador, M.; Donat, M.G.; Geoffroy, O.; Alexander, L.V. Assessing the robustness of future extreme precipitation intensification in the CMIP5 ensemble. J. Clim. 2018. [Google Scholar] [CrossRef]
- Li, J.; Zhang, Q.; Chen, Y.D.; Singh, V.P. Future joint probability behaviors of precipitation extremes across China: Spatiotemporal patterns and implications for flood and drought hazards. Glob. Planet. Chang. 2015, 124, 107–122. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Q.; Xiao, M.; Singh, V.P.; Chen, Y.D. Max-stable based evaluation of impacts of climate indices on extreme precipitation processes across the Poyang Lake basin, China. Glob. Planet. Chang. 2014, 122, 271–281. [Google Scholar] [CrossRef]
- Zhang, Q.; Zheng, Y.; Singh, V.P.; Luo, M.; Xie, Z. Summer extreme precipitation in eastern China: Mechanisms and impacts. J. Geophys. Res. 2017, 122. [Google Scholar] [CrossRef]
- Karl, T.R.; Easterling, D.R. Climate extremes: Selected review and future research directions. Clim. Chang. 1999, 42, 309–325. [Google Scholar] [CrossRef]
- Ding, Y.; Sun, Y.; Wang, Z.; Zhu, Y.; Song, Y. Inter-decadal variation of the summer precipitation in China and its association with decreasing Asian summer monsoon Part II: Possible causes. Int. J. Climatol. 2009, 29. [Google Scholar] [CrossRef]
Model Name | Institute | Country | Resolution (lon × lat) |
---|---|---|---|
BCC-CSM1–1 | Beijing Climate Center | China | 2.8° × 2.8° |
CanESM2 | Canadian Center for Climate Modelling and Analysis | Canada | 2.8° × 2.8° |
CCSM4 | National Center for Atmospheric Research | United States | 1.25° × 0.9° |
CSIRO-MK3–6-0 | Commonwealth Scientific and Industrial Research Organization | Australia | 1.8° × 1.8° |
GISS-E2-R | NASA Goddard Institute for Space Studies | United States | 2.5° × 2.0° |
MPI-ESM-LR | Max Planck Institute for Meteorology | Germany | 1.9° × 1.9° |
MRI-CGCM3 | Meteorological Research Institute | Japan | 1.1° × 1.1° |
NorESM1-M | Norwegian Climate Center | Norway | 2.5° × 1.9° |
Index | Descriptive Name | Units | Definition |
---|---|---|---|
CDD | Consecutive dry days | d/month | Count the largest number of consecutive days for Pij < 1 mm per month, where Pij is the daily precipitation amount on day i in period j. |
CWD | Consecutive wet days | d/month | Count the largest number of consecutive days for Pij > 1 mm per month, where Pij is the daily precipitation amount on day i in period j. |
R1 | Number of wet days | d/month | Count the number of days for Pij > 1 mm per month, where Pij is the daily precipitation amount on day i in period j. |
R10 | Heavy precipitation days | d/month | Count the number of days for Pij > 10 mm per month, where Pij is the daily precipitation amount on day i in period j. |
R20 | Very heavy precipitation days | d/month | Count the number of days for Pij > 20 mm per month, where Pij is the daily precipitation amount on day i in period j. |
Rx1 | Maximum 1-day precipitation | mm/month | The maximum daily precipitation amount of 1 day per month: Rx1j = max (Pij), where Pij is the daily precipitation amount on day i in period j. |
Rx5 | Maximum consecutive 5-day precipitation | mm/month | The maximum daily precipitation amount of 5 consecutive days per month: Rx5j = max (Pkj), where Pkj is the precipitation amount of 5 consecutive days ending with the day k in period j. |
R95p | Very wet days | mm/month | The sum of all daily precipitation over the 95th percentile of precipitation on wet days (Pij ≥ 1 mm) in period j. |
R99p | Extremely wet days | mm/month | The sum of all daily precipitation over the 99th percentile of precipitation on wet days (Pij ≥ 1 mm) in period j. |
PTOT | Total wet day precipitation | mm/month | The total precipitation amount of daily precipitation on wet days (Pij ≥ 1 mm) per month. |
SDII | Simple daily intensity | mm/d | SDIIj = ()/D, where Pwj is the daily precipitation amount on wet days, Pwj ≥ 1 mm, and D is the number of wet days in period j. |
RCP45 | RCP85 | ||||
---|---|---|---|---|---|
Increase | Decrease | Increase | Decrease | ||
R20 | arid | 0.17 | 0.34 | 0.17 | 0.17 |
semi-arid | 0.17 | 2.86 | 0.00 | 2.02 | |
semi-humid | 2.09 | 0.45 | 3.37 | 0.18 | |
humid | 0.21 | 0.00 | 0.73 | 0.00 | |
Rx5 | arid | 14.94 | 2.03 | 23.21 | 1.27 |
semi-arid | 1.01 | 8.74 | 12.10 | 4.54 | |
semi-humid | 7.19 | 2.37 | 18.29 | 1.00 | |
humid | 1.15 | 0.00 | 1.77 | 0.00 | |
R95p | arid | 3.12 | 1.35 | 4.73 | 1.01 |
semi-arid | 0.34 | 5.71 | 2.02 | 2.86 | |
semi-humid | 2.46 | 0.82 | 3.82 | 0.18 | |
humid | 0.31 | 0.00 | 0.21 | 0.00 | |
SDII | arid | 9.62 | 2.78 | 18.90 | 1.52 |
semi-arid | 1.51 | 9.41 | 17.48 | 5.04 | |
semi-humid | 10.56 | 2.09 | 31.30 | 0.82 | |
humid | 1.15 | 0.00 | 3.13 | 0.00 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, M.; Yang, X.; Ren, L.; Pan, M.; Jiang, S.; Liu, Y.; Yuan, F.; Fang, X. Simulation of Extreme Precipitation in Four Climate Regions in China by General Circulation Models (GCMs): Performance and Projections. Water 2021, 13, 1509. https://doi.org/10.3390/w13111509
Zhang M, Yang X, Ren L, Pan M, Jiang S, Liu Y, Yuan F, Fang X. Simulation of Extreme Precipitation in Four Climate Regions in China by General Circulation Models (GCMs): Performance and Projections. Water. 2021; 13(11):1509. https://doi.org/10.3390/w13111509
Chicago/Turabian StyleZhang, Mengru, Xiaoli Yang, Liliang Ren, Ming Pan, Shanhu Jiang, Yi Liu, Fei Yuan, and Xiuqin Fang. 2021. "Simulation of Extreme Precipitation in Four Climate Regions in China by General Circulation Models (GCMs): Performance and Projections" Water 13, no. 11: 1509. https://doi.org/10.3390/w13111509
APA StyleZhang, M., Yang, X., Ren, L., Pan, M., Jiang, S., Liu, Y., Yuan, F., & Fang, X. (2021). Simulation of Extreme Precipitation in Four Climate Regions in China by General Circulation Models (GCMs): Performance and Projections. Water, 13(11), 1509. https://doi.org/10.3390/w13111509