Assessment of Complex Terminal Groundwater Aquifer for Different Use of Oued Souf Valley (Algeria) Using Multivariate Statistical Methods, Geostatistical Modeling, and Water Quality Index
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description
2.2. Geology and Hydrogeology
2.3. Piezometry
2.4. Sampling and Analysis
2.5. Clustering Analysis
2.6. Hydro-Chemical Analysis
2.7. Geostatistical Modeling
2.8. Assessment for Drinking Purposes
2.9. Irrigation Suitability Assessment
2.10. Geochemical Modeling
3. Results and Discussion
3.1. Physicochemical Characterization of Groundwater
3.2. Cluster Analysis
3.3. Water Quality Index
3.4. Geostatistical Modeling
3.5. Origin of Mineralization
3.6. Controlling Mechanisms
3.7. Geochemical Modeling
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ravikumar, P.; Somashekar, R.K.; Angami, M. Hydrochemistry and evaluation of groundwater suitability for irrigation and drinking purposes in the Markandeya River basin, Belgaum District, Karnataka State, India. Environ. Monit. Assess. 2011, 173, 459–487. [Google Scholar] [CrossRef]
- OSS. Système Aquifère du Sahara Septentrional: Modèle Mathématique; Observatoire du Sahara et du Sahel—Sahara and Sahel Observatory: Tunis, Tunisia, 2003. [Google Scholar]
- Harrat, N.; Achour, S. Pollution physico-chimique des eaux de barrage de la region d’ el tarf. impact sur la chloration. Larhyss J. 2010, 8, 47–54. [Google Scholar]
- ANRH. Ressources en Eau et en Sols de l’Algérie; Rapport Technique; ANRH: Alger, Algeria, 1986. [Google Scholar]
- CDTN. Etude Hydrochimique et Isotopique des Eaux Souterraines de la Cuvette de Ouargla; Rapport Technique; CDTN: Alger, Algeria, 1992. [Google Scholar]
- Miloudi, A.M.; Remini, B. Water Potentiality of Sustainable Management Challenges in the Oued Souf Region, south east Algeria. Int. J. Energetica 2016, 1, 36–39. [Google Scholar] [CrossRef]
- Bel, F.; Demargne, F. Etude Géologique du Continental Terminal; Rapport Technique; ANRH: Alger, Algeria, 1966; Volume 24, p. 22. [Google Scholar]
- Busson, G. Principes, Methodes et Resultats d’une Etude Stratigraphique du Mesozoique Saha-Rien; BRGM: Paris, France, 1972; Volume 26, p. 441. [Google Scholar]
- Fabre, F. Introduction A la Géologie du Sahara d’Algérie et des Régions Voisines; SNED: Algiers, Algeria, 1976; p. 442. [Google Scholar]
- Cornet, A. Introduction à l’hydrogéologie Saharienne. Géorg. Phys. Géol. Dyn. 1964, 61, 5–72. [Google Scholar]
- Bel, F.; Cuche, D. Etude des Nappes du Complexe Terminal du Bas Sahara; Données Géologiques et Hydrogéologiques Pour la Construction du Modèle Mathématique; Rapport Technique; DHW: Ouargla, Algeria, 1970. [Google Scholar]
- Castany, G. Bassin Sédimentaire du Sahara Septentrional (Algérie Tunisie). Aquifères du Continental Intercalaire et du Complexe Terminal. Bull. Bur. Rec. Géol. Min. 1982, 3, 127–147. [Google Scholar]
- Halassa, Y.; Zeddouri, A.; Mouhamadou, O.B.; Kechiched, R.; Benhamida, A.S. Hydrogeological study of the aquifer system of the northern Sahara in the Algero-Tunisian border: A case study of Oued Souf region. AIP Conf. Proc. 2018, 1968, 030010. [Google Scholar] [CrossRef]
- Tabouche, N.; Achour, S. Etude de la Qualité des Eaux Souterraines de la Région Orientale du Sahara Septentrional Algérien. Larhyss J. 2010, 3, 99–113. [Google Scholar]
- Chebbah, M.; Allia, Z. Geochemistry and hydrogeochemical process of groundwater in the Souf valley of Low Septentrional Sahara, Algeria. Afr. J. Environ. Sci. Technol. 2015, 9, 261–273. [Google Scholar] [CrossRef]
- Habes, S.; Djabri, L.; Bettahar, A. Water quality in an arid weather area, case: Ground water of terminal complex and con-tinental intercalary, algerian southeast. Larhyss J. 2016, 28, 55–63. [Google Scholar]
- Megdoud, M.; (ANRH, Paris, France). Personal communication, 2003.
- Djellouli, H.; Taleb, M.; Harrache, S.C.D.D. Qualité Physico-Chimique des Eaux de Boisson du sud Algérien: Étude de l’excès En Sels Minéraux. Cah. Santé. 2005, 15, 109–112. [Google Scholar]
- Zaiz, I.; Zine, B.; Boutoutaou, D.; Khechana, S. Contribution to the study of the quality physicochemical of the waters of the water of the complex terminal in the valley of Oued Souf (South-East Algerian). J. Fundam. Appl. Sci. 2017, 9, 1559. [Google Scholar] [CrossRef] [Green Version]
- Moulla, A.S.; Guendouz, A. Etude des Ressources en eau Souterraine en Zones Arides (Sahara Algerien) par les Methodes Isotopiques; IAHS Publication: Wallingford, UK, 2003. [Google Scholar]
- Slimani, R.; Guendouz, A.; Trolard, F.; Moulla, A.S.; Hamdi-Aïssa, B.; Bourrié, G. Identification of dominant hydrogeochemical processes for groundwaters in the Algerian Sahara supported by inverse modeling of chemical and isotopic data. Hydrol. Earth Syst. Sci. 2017, 21, 1669–1691. [Google Scholar] [CrossRef] [Green Version]
- Khechana, S.; Derradji, E. Qualité Des Eaux Destinées à La Consommation Humaine et à l’ Utilisation Agricole (Cas Des Eaux Souterraines d’ Oued-Souf, SE Algérien), Maroc Tunisie. Synth. Rev. Sci. Technol. 2014, 28, 58–68. [Google Scholar]
- Khebizi, H.; Benlaoukli, B.; Bouaicha, F.; Adadzi, P.; Bouras, O. Salinization Origin of Souf Terminal Complex: Application of Statistical Modelling and WQI for Groundwater Management. Hydrol. Earth Syst. Sci. Discuss. 2020, 1–16. [Google Scholar] [CrossRef]
- Mameri, N.; Yeddou, A.R.; Lounici, H.; Belhocine, D.; Grib, H.; Bariou, B. Defluoridation of septentrional Sahara water of north Africa by electrocoagulation process using bipolar aluminium electrodes. Water Res. 1998, 32, 1604–1612. [Google Scholar] [CrossRef]
- Achour, S.; Youcef, L. Excès des Fluorures Dans les Eaux du Sahara Septentrional Oriental et Possibilité de Traitement. EIN Int. 2001, 6, 47–54. [Google Scholar]
- Ramdani, A.; Taleb, S.; Mebarka, D.H. Seasonal Changes Comparison of Physico-Chemical and Bacteriological Characteris-tics of Water in Some Regions of Southern Algeria. Phytochem. BioSub J. 2016, 10, 21–32. [Google Scholar]
- Abdaoui, G.R.; Tabet, A.A.; Bouaicha, F.; Bousmaha, A.; Bouchemal, S. Sprawl, Specificity and Dynamics of Inter-Municipal Urban Agglomerations of the Souf Valley (South East Algeria): Using GIS Techniques. Int. J. Innov. Appl. Stud. 2020, 29, 991–1014. [Google Scholar]
- Remini, B.; Souaci, B.E. Le Souf: Quand le forage et le pivot menacent le Ghout. Larhyss J. 2019, 37, 23–38. [Google Scholar]
- Bataillon, C. Le Souf. Etude de Géographie Humaine. Mémoire No 2, Universite d’Alger; Institut de Recherches Sahariennes: Algiers, Algeria, 1955. [Google Scholar]
- Kadri, S.R.; Chaouche, S. La remontée des eaux dans la région du Souf: Une menace sur un écosystème oasien. Les Cah. d’EMAM 2018, 30. [Google Scholar] [CrossRef]
- Remini, B.; Kechad, R. Impact of the Water Table Razing on the Degradation of el Oued Palm Plantation (Algeria) Mechanisms and Solutions. Int. J. Geogr. Tech. 2011, 1, 48–56. [Google Scholar]
- Dubief, J. Persée-Portail des Revues Scientifiques en SHS. Ann. Geogr. 1959, 74, 360–361. [Google Scholar]
- Giraud, R. Le Continental Terminal en Algérie. Giraud R. le Cont. Termin. en Algérie. Ann. Fac. Sci. Dakkar 1978, 31, 85–87. [Google Scholar]
- Nesson, C. L’Evolution des Ressources Hydrauliques Dans les Oasis du Bas Sahara Algérien. Recherche sur l’Algérie; Mémoire et Documents; CNRS: Paris, France, 1975; pp. 7–99. [Google Scholar]
- Dervierux, F. La Nappe Phréatique du Souf (Région d’El Oued, Algérie)-Etude du Renouvellement de La Nappe. Terres et eaux OCRS 3trim 1957, 56, 12–39. [Google Scholar]
- Rodier, J.; Legube, B.M. Analysis of Water, Natural Water, Waste Water, Sea Water; Chemistry, Physical Chemistry; Bacteriology and Biology: Paris, France, 1984. [Google Scholar]
- Bhuiyan, M.A.H.; Suruvi, N.I.; Dampare, S.B.; Islam, M.A.; Quraishi, S.B.; Ganyaglo, S.; Suzuki, S. Investigation of the possible sources of heavy metal contamination in lagoon and canal water in the tannery industrial area in Dhaka, Bangladesh. Environ. Monit. Assess. 2010, 175, 633–649. [Google Scholar] [CrossRef]
- Foued, B.; Hénia, D.; Lazhar, B.; Nabil, M.; Nabil, C. Hydrogeochemistry and geothermometry of thermal springs from the Guelma region, Algeria. J. Geol. Soc. India 2017, 90, 226–232. [Google Scholar] [CrossRef]
- Güler, C.; Kurt, M.A.; Alpaslan, M.; Akbulut, C. Assessment of the impact of anthropogenic activities on the groundwater hydrology and chemistry in Tarsus coastal plain (Mersin, SE Turkey) using fuzzy clustering, multivariate statistics and GIS techniques. J. Hydrol. 2012, 414–415, 435–451. [Google Scholar] [CrossRef]
- Environ, J. A Multivariate Statistical Analysis of Groundwater Chemistry Data. Int. J. Environ. Res. (IJER) 2011, 5, 537–544. [Google Scholar]
- Belkhiri, L.; Boudoukha, A.; Mouni, L.; Baouz, T. Multivariate Statistical Characterization of Groundwater Quality in Ain Azel Plain, Algeria. Afr. J. Environ. Sci. Technol. 2010, 4, 526–534. [Google Scholar]
- Bouteraa, O.; Mebarki, A.; Bouaicha, F.; Nouaceur, Z.; Laignel, B. Groundwater quality assessment using multivariate analysis, geostatistical modeling, and water quality index (WQI): A case of study in the Boumerzoug-El Khroub valley of Northeast Algeria. Acta Geochim. 2019, 38, 796–814. [Google Scholar] [CrossRef]
- Bouaicha, F.; Dib, H.; Bouteraa, O.; Manchar, N.; Boufaa, K.; Chabour, N.; Demdoum, A. Geochemical assessment, mixing behavior and environmental impact of thermal waters in the Guelma geothermal system, Algeria. Acta Geochim. 2019, 38, 683–702. [Google Scholar] [CrossRef]
- Piper, A.M. A graphic procedure in the geochemical interpretation of water-analyses. Trans. Am. Geophys. Union 1944, 25, 914–928. [Google Scholar] [CrossRef]
- Chadha, D.K. A proposed new diagram for geochemical classification of natural waters and interpretation of chemical data. Hydrogeol. J. 1999, 7, 431–439. [Google Scholar] [CrossRef]
- Gibbs, R.J. Mechanisms Controlling World Water Chemistry. Science 1970, 170, 1088–1090. [Google Scholar] [CrossRef]
- Chen, L.; Feng, Q. Geostatistical analysis of temporal and spatial variations in groundwater levels and quality in the Minqin oasis, Northwest China. Environ. Earth Sci. 2013, 70, 1367–1378. [Google Scholar] [CrossRef]
- Montero, J.; Fernández-Avilés, G.; Mateu, J. Spatial and Spatio-Temporal Geostatistical Modeling and Kriging; Wiley: New York, NY, USA, 2015. [Google Scholar]
- Kumar, A.; Maroju, S.; Bhat, A. Application of ArcGIS geostatistical analyst for interpolating environmental data from observations. Environ. Prog. 2007, 26, 220–225. [Google Scholar] [CrossRef]
- Webster, R.; Oliver, M.A. Geostatistics for Environmental Scientists, 2nd ed.; John Wiley & Sons Ltd.: Chichester, UK, 2007; ISBN 9780470028582. [Google Scholar]
- Seo, Y.; Kim, S.; Singh, V.P. Estimating Spatial Precipitation Using Regression Kriging and Artificial Neural Network Residual Kriging (RKNNRK) Hybrid Approach. Water Resour. Manag. 2015, 29, 2189–2204. [Google Scholar] [CrossRef]
- Seyedmohammadi, J.; Esmaeelnejad, L.; Shabanpour, M. Spatial variation modelling of groundwater electrical conductivity using geostatistics and GIS. Model. Earth Syst. Environ. 2016, 2, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Mei, K.; Liao, L.; Zhu, Y.; Lu, P.; Wang, Z.; Dahlgren, R.A.; Zhang, M. Evaluation of spatial-temporal variations and trends in surface water quality across a rural-suburban-urban interface. Environ. Sci. Pollut. Res. 2014, 21, 8036–8051. [Google Scholar] [CrossRef] [Green Version]
- Venkatramanan, S.; Chung, S.Y.; Kim, T.H.; Kim, B.-W.; Selvam, S. Geostatistical techniques to evaluate groundwater contamination and its sources in Miryang City, Korea. Environ. Earth Sci. 2016, 75, 994. [Google Scholar] [CrossRef]
- Adhikary, P.P.; Chandrasekharan, H.; Chakraborty, D.; Kamble, K. Assessment of groundwater pollution in West Delhi, India using geostatistical approach. Environ. Monit. Assess. 2009, 167, 599–615. [Google Scholar] [CrossRef]
- Delhomme, J. Kriging in the hydrosciences. Adv. Water Resour. 1978, 1, 251–266. [Google Scholar] [CrossRef]
- Jena, V.; Dixit, S.; Shrivastava, R.; Gupta, S. Study of pond water quality by the assessment of physicochemical parameters and water quality index. Int. J. Appl. Biol. Pharm. Technol. 2013, 4, 47–52. [Google Scholar]
- Vaiphei, S.P.; Kurakalva, R.M.; Sahadevan, D.K. Water quality index and GIS-based technique for assessment of groundwater quality in Wanaparthy watershed, Telangana, India. Environ. Sci. Pollut. Res. 2020, 27, 45041–45062. [Google Scholar] [CrossRef] [PubMed]
- Rokbani, M.K.; Gueddari, N.; Bouhlila, R. Use of geographical information system and water quality index to assess groundwater quality in El Khairat Deep Aquifer (Enfidha, Tunisian Sahel). Iran. J. Energy Environ. 2011, 2, 133–144. [Google Scholar]
- Brown, R.M.; McClelland, N.I.; Deininger, R.A.; O’Connor, M.F. A Water Quality Index—Crashing the Psychological Barrier. Indic. Environ. Qual. 1972, 173–182. [Google Scholar] [CrossRef]
- Richards, L.A. Diagnosis and Improvement of Saline and Alkaline Soils. Soil Sci. 1947, 64, 432. [Google Scholar] [CrossRef]
- Todd, D.K. Groundwater Hydrology, 2nd ed.; Wiley: New York, NY, USA, 1980. [Google Scholar]
- Wilcox, L.V. Classification and Use of Irrigation Water (Circular 969); US Department of Agriculture: Washington, DC, USA, 1955. [Google Scholar]
- Ragunath, H.M. Groundwater, 2nd ed.; Wiley Eastern Ltd.: New Delhi, India, 1987. [Google Scholar]
- Subramani, T.; Elango, L.; Damodarasamy, S.R. Groundwater quality and its suitability for drinking and agricultural use in Chithar River Basin, Tamil Nadu, India. Environ. Earth Sci. 2005, 47, 1099–1110. [Google Scholar] [CrossRef]
- Doneen, L.D. Notes on Water Quality in Agriculture. Water Science and Engineering Paper 4001; University of California: Oakland, CA, USA, 1964. [Google Scholar]
- Kelly, W.P. Alkali Soils-Their Formation, Properties and Reclamation; Reinhold Publishing: New York, NY, USA, 1951. [Google Scholar]
- Parkhurst, D.L.; Apelo, C.A.J. User’s Guide to PHREEQC (Version 2)-A Computer Program for Speciation, Batch-Reaction, One-Dimensional Transport, and Inverse Geochemical Calculations. United States Geological Survey. In Water Resources Investigations; Report 99-4259; USGS Publications: Washington, DC, USA, 1999. [Google Scholar]
- Schoeller, H. La Classification Géochimique des Eaux. 1964. Available online: http://hydrologie.org/redbooks/a064/064002.pdf (accessed on 5 June 2021).
- Shout, H.; Bouaicha, F.; Merrad, Z. The Geothermal Resources of Northeast Constantine Comparative Study, Case of the Region of Guelma and Telaghma (Socio-Economic and Legal Impact); Université Mentouri Constantine: Constantine, Algeria, 2021; pp. 30–37. [Google Scholar]
- Chabour, N.; Dib, H.; Bouaicha, F.; Bechkit, M.A.; Nacer, N.M. A conceptual framework of groundwater flowpath and recharge in Ziban aquifer: South of Algeria. Sustain. Water Resour. Manag. 2021, 7, 1–15. [Google Scholar] [CrossRef]
- Meybeck, M. Global chemical weathering of surficial rocks estimated from river dissolved loads. Am. J. Sci. 1987, 287, 401–428. [Google Scholar] [CrossRef]
- Mayo, A.L.; Loucks, M.D. Solute and isotopic geochemistry and ground water flow in the central Wasatch Range, Utah. J. Hydrol. 1995, 172, 31–59. [Google Scholar] [CrossRef]
- Cerling, T.E.; Pederson, B.L.; Von Damm, K.L. Sodium-calcium ion exchange in the weathering of shales: Implications for Global Weathering Budgets. J. Geol. 1989, 17, 552–554. [Google Scholar] [CrossRef]
- Fisher, R.S.; Mullican, W.F., III. Hydrochemical evolution of sodium-sulfate and sodium-chloride groundwater beneath the northern Chihuahuan Desert, Trans-Pecos, Texas, USA. Hydrogeol. J. 1997, 5, 4–16. [Google Scholar] [CrossRef]
- McLean, W.; Jankowski, J.; Lavitt, N. Groundwater quality and sustainability in an alluvial aquifer, Australia. In Ground-Water: Past Achievements and Future Challenges; Balkema: Rotterdam, The Netherlands, 2000; pp. 567–573. ISBN 90-5809-159-7. [Google Scholar]
- Gaillardet, J.; Dupré, B.; Louvat, P.; Allègre, C. Global silicate weathering and CO2 consumption rates deduced from the chemistry of large rivers. Chem. Geol. 1999, 159, 3–30. [Google Scholar] [CrossRef]
- Stuyfzand, P.J. Base exchange indices as indicators of salinization or freshening of (coastal) aquifers. In Proceedings of the 20th Salt Water Intrusion Meeting, Naples, FL, USA, 23–27 June 2008. [Google Scholar]
- Appelo, C.A.; Postma, D. Geochemistry, Groundwater and Pollution; Balkema: Rotterdam, The Netherlands, 1993. [Google Scholar]
Variables | Mean | S.D. | Minimum | Maximum | WHO Standards |
---|---|---|---|---|---|
T °C | 23.11939 | 5.04642 | 11.8 | 35.1 | - |
pH | 7.49 | 0.15241 | 7.23 | 7.84 | 6.5–8.5 |
EC (µs/cm) | 4131.48 | 382.9674 | 2760 | 4730 | 1000 |
Salinity (%) | 2.64082 | 0.25753 | 1.8 | 3 | - |
TDS (mg/L) | 2650.918 | 246.3647 | 1766 | 3027 | 500 |
Turbidity (Ntu) | 0.42989 | 0.51532 | 0.074 | 3.23 | 5 |
Dry Residue (mg/L) | 3075.102 | 478.8925 | 1900 | 3980 | - |
Total Alkalinity (mg/L) | 138.8674 | 27.16899 | 83 | 189 | - |
TH (mg/L) | 1196.653 | 111.723 | 950 | 1430 | - |
Ca2+ (mg/L) | 274.9588 | 36.84752 | 200.4 | 360.72 | 75 |
Mg2+(mg/L) | 122.7436 | 30.19053 | 63.12 | 184.718 | 50 |
Na+ (mg/L) | 379.4082 | 57.92557 | 137 | 600 | 200 |
K+ (mg/L) | 33.34694 | 7.0113 | 15 | 50 | 12 |
Cl− (mg/L) | 888.5908 | 144.18 | 457.343 | 1240.855 | 250 |
SO42− (mg/L) | 729.0941 | 152.2067 | 193.061 | 997.411 | 250 |
HCO3− (mg/L) | 167.9814 | 33.50002 | 101.26 | 213.58 | 120 |
NO3− (mg/L) | 22.3878 | 6.62298 | 1.911 | 34.9 | 50 |
Group 1 (n = 3) | Group 2 (n = 17) | Group 3 (n = 10) | Group 4 (n = 19) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Min | Mean | Max | Min | Mean | Max | Min | Mean | Max | Min | Mean | Max | WHO (2011) | |
T °C | 24.6 | 28.9 | 33.1 | 15.2 | 22.0 | 35.1 | 11.8 | 21.3 | 27.4 | 20.6 | 24.2 | 34.0 | - |
pH | 7 | 8 | 8 | 7 | 8 | 8 | 7 | 7 | 8 | 7 | 7 | 8 | 6.5–8.5 |
EC (µs/cm) | 2760 | 3000 | 3220 | 3650 | 4005 | 4430 | 3620 | 4272 | 4730 | 4150 | 4349 | 4500 | 1000 |
Salinity % | 2 | 2 | 2 | 2 | 3 | 3 | 2 | 3 | 3 | 3 | 3 | 3 | - |
TDS (mg/L) | 1766 | 1919 | 2060 | 2336 | 2569 | 2830 | 2362 | 2737 | 3027 | 2660 | 2795 | 2957 | 500 |
Turbidity (NTU) | 0 | 1 | 1 | 0 | 1 | 3 | 0 | 0 | 0 | 0 | 0 | 1 | 5 |
Dry Residue (mg/L) | 2320 | 2440 | 2520 | 1900 | 2818 | 3420 | 3480 | 3728 | 3980 | 2560 | 3062 | 3480 | - |
Alkalinity (mg/L) | 92 | 123 | 150 | 83 | 116 | 168 | 125 | 152 | 170 | 110 | 155 | 189 | - |
TH (mg/L) | 950 | 1067 | 1200 | 1040 | 1184 | 1356 | 1140 | 1271 | 1430 | 960 | 1189 | 1330 | - |
Ca2+ (mg/L) | 240 | 261 | 281 | 204 | 263 | 341 | 200 | 283 | 361 | 216 | 284 | 325 | 75 |
Mg2+ (mg/L) | 85 | 101 | 122 | 63 | 124 | 185 | 63 | 137 | 165 | 66 | 117 | 165 | 50 |
Na+ (mg/L) | 322 | 431 | 600 | 281 | 357 | 410 | 137 | 374 | 460 | 340 | 394 | 420 | 200 |
K+ (mg/L) | 32 | 35 | 39 | 15 | 32 | 42 | 32 | 36 | 42 | 22 | 33 | 50 | 12 |
Cl− (mg/L) | 631 | 707 | 787 | 815 | 977 | 1241 | 457 | 801 | 986 | 730 | 884 | 1127 | 250 |
SO42− (mg/L) | 568 | 622 | 654 | 602 | 764 | 978 | 630 | 818 | 997 | 193 | 668 | 923 | 250 |
HCO3− (mg/L) | 112 | 150 | 183 | 101 | 140 | 205 | 153 | 185 | 207 | 134 | 187 | 214 | 120 |
NO3− (mg/L) | 2 | 14 | 20 | 3 | 21 | 30 | 17 | 23 | 29 | 15 | 25 | 35 | 50 |
Range | Classes | Number of Wells | % of Samples (49 Samples) | % of Samples (Mio-Pliocene Sample) | % of Samples (Pontian Sample) |
---|---|---|---|---|---|
<50 | Excellent water | - | - | - | - |
100.0–125.0 | Good water | W10, W4, W18, W24, W29. | 10.20% | 11.54% | 8.70% |
125.1–150.0 | Poor water | W13, W21, W11, W28, W44, W30, W47, W40, W26, W38, W39, W48. | 24.49% | 15.38% | 34.78% |
150.1–175.0 | Very poor water | W5, W22, W2, W20, W8, W17, W7, W16, W12, W14, W19, W15, W25, W27, W49, W41, W31, W6, W32, W33, W34, W42, W46, W23, W35, W36, W37. | 55.10% | 61.54% | 47.83% |
175.1–200.0 | Unfit for drinking | W9, W3. | 4.08% | 7.69% | - |
Range | Classes | Number of Wells |
---|---|---|
EC | ||
<250 | Excellent | |
250–750 | Good | |
750–2000 | Permissible | |
2000–3000 | Doubtful | W5 |
>3000 | Unsuitable | All the samples except W5 |
(Na%) | ||
<20 | Excellent | W41 |
20–40 | Good | W22, W20, W8, W17, W7, W18, W15, W41, W46. |
40–60 | Permissible | W5, W13, W2, W21, W10, W9, W4, W16, W11, W12, W14, W3, W28, W44, W1, W19, W25, W27, W49, W30, W47, W31, W6, W24, W32, W33, W34, W40, W42, W43, W23, W26, W29, W35, W36, W37, W38, W39, W45, W48. |
60–80 | Doubtful | |
>80 | Unsafe | |
SAR | ||
<10 | Excellent | All the samples |
10–18 | Good | |
18–26 | Doubtful | |
>26 | Unsuitable | |
TH | ||
<75 | Soft | W36, W13, W2, W10, W4, W16, W11, W12, W14, W3, W28, W19, W6, W36, W38, W39, W29, W35, W40, W24, W30, W5. |
75–150 | Moderately hard | W22, W20, W21, W8, W17, W9, W7, W18, W1, W15, W27, W23, W37, W44, W25, W49, W41, W47, W31, W33, W34, W42, W43, W46, W26, W45, W48. |
150–300 | Hard | |
>300 | Very hard | |
MH | ||
<50 | Suitable | W5, W44, W25, W49, W41, W30, W47, W31, W24, W32, W33, W34, W40, W46, W26, W29, W35, W38, W39, W45, W48, W13, W22, W2, W20, W21, W10, W17, W9, W4, W7, W16, W11, W12, W3, W28, W19, W15, W27, W6, W36, W37. |
>50 | Unsuitable | W1, W8, W14, W18, W42, W43, W23. |
PI | ||
<25 | Suitable | W41 |
25–75 | Moderate | All the samples except W41 |
>75 | Unsuitable | |
KR | ||
<1 | Suitable | All the samples except W5 |
1–2 | Moderate | W5 |
>2 | Unsuitable | |
RSC | ||
<1.25 | Acceptable | All the samples |
1.25–2.5 | Slightly adapted to irrigation | |
>2.5 | Not suitable |
Parameter | Transformation | Semi-Variogram Model Parameters | Prediction Errors | ||||||
---|---|---|---|---|---|---|---|---|---|
Model | Nugget (C0) | Partial Sill (C) | Sill (C0 + C) | Spatial Dependence | Mean | Root-Mean-Square Standardized | |||
EC | Original Data | Exponential | 0.0281 | 0.0976 | 0.1257 | 22.35 | Strong | 0.2280 | 1.0898 |
Ca2+ | Original Data | Exponential | 0.7443 | 0.6767 | 1.421 | 52.37 | Moderate | 0.8456 | 0.9513 |
Mg2+ | Logarithmic | Exponential | 0.0622 | 0.0112 | 0.0734 | 84.74 | Weak | 1.0347 | 0.9107 |
Na+ | Original Data | RationalQuadratic | 0.1121 | 0.1668 | 0.2789 | 40.19 | Moderate | −1.8648 | 1.2353 |
K+ | Original Data | Exponential | 0.1451 | 0.3571 | 0.5022 | 28.89 | Moderate | 0.2237 | 1.1311 |
HCO3− | Original Data | Exponential | 0.4181 | 0.5582 | 0.9763 | 42.82 | Moderate | −0.7022 | 0.9269 |
Cl− | Logarithmic | Exponential | 0.02691 | 0.0048 | 0.03171 | 84.864 | Weak | −0.5148 | 0.9050 |
SO42− | Logarithmic | Exponential | 0.0070 | 0.0910 | 0.098 | 7.142 | Strong | −0.4243 | 0.7315 |
NO3− | Logarithmic | RationalQuadratic | 0.0537 | 0.3156 | 0.3693 | 14.54 | Strong | 0.9932 | 1.1166 |
Groups | Minerals | Total (Wells) | Mean | SD | Min | Max |
---|---|---|---|---|---|---|
Group 1 | Anhydrite | 3 | −0.95667 | 0.03215 | −0.98 | −0.92 |
Aragonite | 3 | 0.40333 | 0.34675 | 0.12 | 0.79 | |
Calcite | 3 | 0.54333 | 0.34429 | 0.27 | 0.93 | |
Dolomite | 3 | 1.04333 | 0.74895 | 0.41 | 1.87 | |
Gypsum | 3 | −0.69 | 0.01732 | −0.7 | −0.67 | |
Halite | 3 | −5.19 | 0.17349 | −5.3 | −4.99 | |
Sylvite | 3 | −5.84667 | 0.05859 | −5.89 | −5.78 | |
Group 2 | Anhydrite | 17 | −0.95588 | 0.08718 | −1.08 | −0.8 |
Aragonite | 17 | 0.18471 | 0.17288 | −0.17 | 0.46 | |
Calcite | 17 | 0.33235 | 0.16995 | −0.02 | 0.59 | |
Dolomite | 17 | 0.62647 | 0.37959 | −0.05 | 1.28 | |
Gypsum | 17 | −0.62118 | 0.05243 | −0.72 | −0.53 | |
Halite | 17 | −5.12118 | 0.06855 | −5.23 | −5 | |
Sylvite | 16 | −5.75688 | 0.18062 | −6.08 | −5.51 | |
Group 3 | Anhydrite | 10 | −0.918 | 0.12541 | −1.17 | −0.72 |
Aragonite | 10 | 0.261 | 0.14798 | 0.05 | 0.49 | |
Calcite | 10 | 0.409 | 0.14617 | 0.19 | 0.64 | |
Dolomite | 10 | 0.779 | 0.36765 | 0.3 | 1.29 | |
Gypsum | 10 | −0.575 | 0.09192 | −0.77 | −0.45 | |
Halite | 10 | −5.208 | 0.1839 | −5.63 | −5 | |
Sylvite | 10 | −5.763 | 0.08957 | −5.91 | −5.57 | |
Group 4 | Anhydrite | 19 | −0.85263 | 0.54216 | −1.44 | 1.29 |
Aragonite | 19 | 0.47579 | 0.56655 | 0.2 | 2.78 | |
Calcite | 19 | 0.62 | 0.56805 | 0.34 | 2.93 | |
Dolomite | 19 | 1.15684 | 1.04431 | 0.47 | 5.37 | |
Gypsum | 19 | −0.54368 | 0.52915 | −1.11 | 1.56 | |
Halite | 19 | −4.98105 | 0.63605 | −5.24 | −2.37 | |
Sylvite | 19 | −5.62211 | 0.6585 | −5.91 | −2.93 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barkat, A.; Bouaicha, F.; Bouteraa, O.; Mester, T.; Ata, B.; Balla, D.; Rahal, Z.; Szabó, G. Assessment of Complex Terminal Groundwater Aquifer for Different Use of Oued Souf Valley (Algeria) Using Multivariate Statistical Methods, Geostatistical Modeling, and Water Quality Index. Water 2021, 13, 1609. https://doi.org/10.3390/w13111609
Barkat A, Bouaicha F, Bouteraa O, Mester T, Ata B, Balla D, Rahal Z, Szabó G. Assessment of Complex Terminal Groundwater Aquifer for Different Use of Oued Souf Valley (Algeria) Using Multivariate Statistical Methods, Geostatistical Modeling, and Water Quality Index. Water. 2021; 13(11):1609. https://doi.org/10.3390/w13111609
Chicago/Turabian StyleBarkat, Ayoub, Foued Bouaicha, Oualid Bouteraa, Tamás Mester, Behnam Ata, Dániel Balla, Zakaria Rahal, and György Szabó. 2021. "Assessment of Complex Terminal Groundwater Aquifer for Different Use of Oued Souf Valley (Algeria) Using Multivariate Statistical Methods, Geostatistical Modeling, and Water Quality Index" Water 13, no. 11: 1609. https://doi.org/10.3390/w13111609
APA StyleBarkat, A., Bouaicha, F., Bouteraa, O., Mester, T., Ata, B., Balla, D., Rahal, Z., & Szabó, G. (2021). Assessment of Complex Terminal Groundwater Aquifer for Different Use of Oued Souf Valley (Algeria) Using Multivariate Statistical Methods, Geostatistical Modeling, and Water Quality Index. Water, 13(11), 1609. https://doi.org/10.3390/w13111609