A Conflict between Traditional Flood Measures and Maintaining River Ecosystems? A Case Study Based upon the River Lærdal, Norway
Abstract
:1. Introduction
2. Study Site
3. Materials and Methods
3.1. Pre-Processing
3.2. Flow and Tide Data
3.3. Processing with HEC-RAS
3.4. Post-Processing
3.4.1. Effects on Habitat and River Use
3.4.2. Cost Calculation
3.4.3. Calibration and Sensitivity Analysis
4. Results
4.1. Flood Results
4.2. Habitat Analysis
4.3. Cost Calculations
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Terrain Pre-Dredging and Post-Dredging
References
- Pant, R.; Thacker, S.; Hall, J.W.; Alderson, D.; Barr, S. Critical infrastructure impact assessment due to flood exposure. J. Flood Risk Manag. 2018, 11, 22–33. [Google Scholar] [CrossRef]
- Hammond, M.J.; Chen, A.S.; Djordjević, S.; Butler, D.; Mark, O. Urban flood impact assessment: A state-of-the-art review. Urban Water J. 2015, 12, 14–29. [Google Scholar] [CrossRef] [Green Version]
- EFAS Dissemination Centre. Detailed Assessment Report “The Dicember 2019 Event in Northern Spain”; Copernicus, 2020; Available online: https://www.efas.eu/sites/default/files/2020-05/DETAILED%20ASSESSMENT%20REPORT%202020-%20FINAL-compressed_2.pdf (accessed on 6 July 2021).
- Davies, R. UK and Ireland Floods, February 2020. Available online: https://www.efas.eu/en/news/uk-and-ireland-floods-february-2020 (accessed on 26 May 2020).
- Palutikof, J. Climate Change and Water; Technical Paper of the Intergovernmental Panel on Climate Change; IPCC Secretariat: Geneva, Switzerland, 2008. [Google Scholar]
- CIWEM. Floods and Dredging—A Reality Check; CIWEM: London, UK, 2014. [Google Scholar]
- Solomon, S.; Manning, M.; Marquis, M.; Qin, D. Climate Change 2007—The Physical Science Basis: Working Group I Contribution to the Fourth Assessment Report of the IPCC; Cambridge University Press: Cambridge, UK, 2007; Volume 4. [Google Scholar]
- Arnell, N.W.; Gosling, S.N. The impacts of climate change on river flow regimes at the global scale. J. Hydrol. 2013, 486, 351–364. [Google Scholar] [CrossRef]
- Wetherald, R.T.; Manabe, S. Simulation of hydrologic changes associated with global warming. J. Geophys. Res. Atmos. 2002, 107, ACL 7-1–ACL 7-15. [Google Scholar] [CrossRef]
- Opperman, J.J.; Galloway, G.E.; Fargione, J.; Mount, J.F.; Richter, B.D.; Secchi, S. Sustainable floodplains through large-scale reconnection to rivers. Science 2009, 326, 1487–1488. [Google Scholar] [CrossRef]
- Newson, M.; Robinson, M. Effects of agricultural drainage on upland streamflow: Case studies in mid-Wales. J. Environ. Manag. 1983, 17, 333–348. [Google Scholar]
- Robinson, M.; Rycroft, D. The impact of drainage on streamflow. Agric. Drain. 1999, 38, 767–800. [Google Scholar]
- Sear, D.; Wilcock, D.; Robinson, M.; Fisher, K. River channel modification in the UK. In The Hydrology of the United Kingdom: A Study of Change; Routledge: London, UK, 2000; pp. 55–81. [Google Scholar]
- Bailey, A.; Bree, T. Effect of improved land drainage on river flood flows. In Flood Studies Report—Five Years on; Thomas Telford Publishing: London, UK, 1981; pp. 131–142. [Google Scholar]
- Tsangaris, C.; Strogyloudi, E.; Hatzianestis, I.; Catsiki, V.-A.; Panagiotopoulos, I.; Kapsimalis, V. Impact of dredged urban river sediment on a Saronikos Gulf dumping site (Eastern Mediterranean): Sediment toxicity, contaminant levels, and biomarkers in caged mussels. Environ. Sci. Pollut. Res. 2014, 21, 6146–6161. [Google Scholar] [CrossRef] [PubMed]
- Unintended Effects of Dredging. 2013. Available online: https://www.youtube.com/watch?v=OAZ_BuyM41s (accessed on 14 June 2021).
- Erwin, S.O.; Jacobson, R.B.; Elliott, C.M. Quantifying habitat benefits of channel reconfigurations on a highly regulated river system, Lower Missouri River, USA. Ecol. Eng. 2017, 103, 59–75. [Google Scholar] [CrossRef] [Green Version]
- Armstrong, J.; Kemp, P.; Kennedy, G.; Ladle, M.; Milner, N. Habitat requirements of Atlantic salmon and brown trout in rivers and streams. Fish. Res. 2003, 62, 143–170. [Google Scholar] [CrossRef]
- Forseth, T.; Harby, A.; Ugedal, O.; Pulg, U.; Fjeldstad, H.-P.; Robertsen, G.; Barlaup, B.T.; Alfredsen, K.; Sundt, H.; Saltveit, S.J. Handbook for Environmental Design in Regulated Salmon Rivers; Norwegian Institute for Nature Research (NINA): Trondheim, Norway, 2014. [Google Scholar]
- Casas-Mulet, R.; Saltveit, S.J.; Alfredsen, K. The survival of Atlantic salmon (Salmo salar) eggs during dewatering in a river subjected to hydropeaking. River Res. Appl. 2015, 31, 433–446. [Google Scholar] [CrossRef] [Green Version]
- Fabris, L.; Malcolm, I.A.; Buddendorf, W.B.; Millidine, K.J.; Tetzlaff, D.; Soulsby, C. Hydraulic modelling of the spatial and temporal variability in Atlantic salmon parr habitat availability in an upland stream. Sci. Total Environ. 2017, 601, 1046–1059. [Google Scholar] [CrossRef]
- Kovács-Hostyánszki, A.; Espíndola, A.; Vanbergen, A.J.; Settele, J.; Kremen, C.; Dicks, L.V. Ecological intensification to mitigate impacts of conventional intensive land use on pollinators and pollination. Ecol. Lett. 2017, 20, 673–689. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Costanza, R.; d’Arge, R.; de Groot, R.; Farber, S.; Grasso, M.; Hannon, B.; Limburg, K.; Naeem, S.; O’Neill, R.V.; Paruelo, J.; et al. The value of the world’s ecosystem services and natural capital. Nature 1997, 387, 253–260. [Google Scholar] [CrossRef]
- Tockner, K.; Stanford, J.A. Riverine flood plains: Present state and future trends. Environ. Conserv. 2002, 29, 308–330. [Google Scholar] [CrossRef] [Green Version]
- Besacier-Monbertrand, A.-L.; Paillex, A.; Castella, E. Short-term impacts of lateral hydrolofical connectivity restoration on aquatic macroinvertebrates. River Res. Appl. 2014, 30, 557–570. [Google Scholar] [CrossRef]
- Norge, F. Natur og Værskader. 2018. Available online: https://www.finansnorge.no/statistikk/skadeforsikring/klimarelaterte-skader/hovedoversikt-klima/ (accessed on 15 March 2021).
- Næss, L.O.; Bang, G.; Eriksen, S.; Vevatne, J. Institutional adaptation to climate change: Flood responses at the municipal level in Norway. Glob. Environ. Chang. 2005, 15, 125–138. [Google Scholar] [CrossRef]
- Nature Diversity Act. Act of 19 June 2009 No. 100 Relating to the Management of Biological, Geological and Landscape Diversity. 2009. Available online: https://www.regjeringen.no/en/dokumenter/nature-diversity-act/id570549/ (accessed on 15 June 2021).
- Palmer, M.A.; Bernhardt, E.S.; Allan, J.D.; Lake, P.S.; Alesander, G.; Brooks, S.; Carr, J.; Clayton, S.; Dahm, C.N.; Follstad Shah, J.; et al. Standards for ecologically successful river restoration. J. Appl. Ecol. 2005, 42, 208–217. [Google Scholar] [CrossRef]
- Amoros, C.; Bornette, G. Connectivity and biocomplexity in waterbodies of riverine floodplains. Freshw. Biol. 2002, 47, 761–776. [Google Scholar] [CrossRef]
- Hohensinner, S.; Habersack, H.; Jungwirth, M.; Zauner, G. Reconstruction of the characteristics of a natural alluvial river–floodplain system and hydromorphological changes following human modifications: The Danube River (1812–1991). River Res. Appl. 2004, 20, 25–41. [Google Scholar] [CrossRef]
- Directive, W.F. Water Framework Directive. J. Ref. OJL 2000, 327, 1–73. [Google Scholar]
- Langsholt, E.; Roald, L.A.; Holmqvist, E.; Fleig, A. Flommen på Vestlandet Oktober 2014; Rapport nr 11-2015, 70 Sider; Norges Vassdrags-og Energidirektorat: Oslo, Norway, 2015; Volume 3, ISBN 978-82-410-1058. [Google Scholar]
- Lawrence, D. Uncertainty introduced by flood frequency analysis in projections for changes in flood magnitudes under a future climate in Norway. J. Hydrol. Reg. Stud. 2020, 28, 100675. [Google Scholar] [CrossRef]
- US Army Corps of Engineers, HEC-RAS. 2019. Available online: http://www.hec.usace.army.mil/software/hec-ras/ (accessed on 15 March 2021).
- Mandlburger, G.; Hauer, C.; Wieser, M.; Pfeifer, N. Topo-bathymetric LiDAR for monitoring river morphodynamics and instream habitats—A case study at the Pielach River. Remote. Sens. 2015, 7, 6160–6195. [Google Scholar] [CrossRef] [Green Version]
- Seguin García, S. Hydraulic Modeling of the Lærdal River; NTNU: Trondheim, Norway, 2019. [Google Scholar]
- Chow, V.T. Open-Channel Hydraulics; Civil Engineering Series; McGraw-Hill: New York, NY, USA, 1959. [Google Scholar]
- Holmqvist, E. Flomberegning for Lærdalsvassdraget; NVE: Oslo, Norway, 2000. [Google Scholar]
- Shannon, C.E. A mathematical theory of communication. Bell Syst. Tech. J. 1948, 27, 379–423. [Google Scholar] [CrossRef] [Green Version]
- Hesselbarth, M.H.; Sciaini, M.; With, K.A.; Wiegand, K.; Nowosad, J. Landscapemetrics: An open-source R tool to calculate landscape metrics. Ecography 2019, 42, 1648–1657. [Google Scholar] [CrossRef] [Green Version]
- Skår, B.; Gabrielsen, S.E.; Stranzl, S. Habitatkartlegging av Lærdalselva fra Voll Bru til Sjø; Uni Research: Bergen, Norway, 2017. [Google Scholar]
- Barton, D.N.; Sundt, H.; Bustos, A.A.; Fjeldstad, H.-P.; Hedger, R.; Forseth, T.; Köhler, B.; Aas, Ø.; Alfredsen, K.; Madsen, A.L. Multi-criteria decision analysis in Bayesian networks-Diagnosing ecosystem service trade-offs in a hydropower regulated river. Environ. Model. Softw. 2020, 124, 104604. [Google Scholar] [CrossRef]
- Casas-Mulet, R.; Alfredsen, K.; García-Escudero Uribe, A. A cost-effective approach to predict dynamic variation of mesohabitats at the river scale in Norwegian systems. Int. J. River Basin Manag. 2014, 12, 145–159. [Google Scholar] [CrossRef] [Green Version]
- Guo, J. Hunter rouse and shields diagram. In Advances in Hydraulics and Water Engineering: Volumes I & II; World Scientific: Singapore, 2002; pp. 1096–1098. [Google Scholar]
- Nordconsult AS. Kostnadsgrunnlag for Små Vannkraftanlegg (<10 MW); NVE: Oslo, Norway, 2016. [Google Scholar]
- Team, Q.D. QGIS Geographic Information System. 2021. Available online: https://www.qgis.org/en/site/ (accessed on 21 June 2021).
- Liu, Y.; Freer, J.; Beven, K.; Matgen, P. Towards a limits of acceptability approach to the calibration of hydrological models: Extending observation error. J. Hydrol. 2009, 367, 93–103. [Google Scholar] [CrossRef]
- Borsányi, P.; Alfredsen, K.; Harby, A.; Ugedal, O.; Kraxner, C. A meso-scale habitat classification method for production modelling of Atlantic salmon in Norway. Hydroécologie Appliquée 2004, 14, 119–138. [Google Scholar] [CrossRef] [Green Version]
- Wenger, A.S.; Harvey, E.; Wilson, S.; Rawson, C.; Newman, S.J.; Clarke, D.; Saunders, B.J.; Browne, N.; Travers, M.J.; Mcilwain, J.L. A critical analysis of the direct effects of dredging on fish. Fish Fish. 2017, 18, 967–985. [Google Scholar] [CrossRef]
- Wenger, A.S.; Rawson, C.A.; Wilson, S.; Newman, S.J.; Travers, M.J.; Atkinson, S.; Browne, N.; Clarke, D.; Depczynski, M.; Erftemeijer, P.L. Management strategies to minimize the dredging impacts of coastal development on fish and fisheries. Conserv. Lett. 2018, 11, e12572. [Google Scholar] [CrossRef]
- 1D vs. 2D Hydraulic Modeling. 2020. Available online: https://www.hec.usace.army.mil/confluence/rasdocs/r2dum/latest/steady-vs-unsteady-flow-and-1d-vs-2d-modeling/1d-vs-2d-hydraulic-modeling (accessed on 14 June 2021).
- Bjornn, T.C.; Reiser, D.W. Habitat requirements of salmonids in streams. Am. Fish. Soc. Spec. Publ. 1991, 19, 138. [Google Scholar]
Q = 920 m3/s | Area (m2) | Relative Decrease |
---|---|---|
Present/no mitigation | 2,130,393 | 0% |
Only wall/pre-dredging | 1,539,782 | 28% |
Wall and dredging/post-dredging | 1,358,918 | 36% |
Number of Sectors to Be Dredged | Volume of Dredged Material (m3) | Unit Cost (NOK/m3) | Total Cost (NOK) | Total Cost (USD) |
---|---|---|---|---|
7 | 130,104 | 85.0 | 11,058,840 | 1,329,549 |
Wall Height Increase (m) | Length (m) | Cost (NOK) | Cost (USD) |
---|---|---|---|
0.00 | 458 | 0 | 0 |
0.30 | 1095 | 758,316 | 90,936 |
0.60 | 711 | 1,044,170 | 125,216 |
0.90 | 287 | 669,412 | 80,275 |
1.20 | 348 | 1,138,558 | 136,535 |
1.50 | 326 | 1,399,552 | 167,833 |
Total | 3225 | 5,010,008 | 600,797.25 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Juárez, A.; Alfredsen, K.; Stickler, M.; Adeva-Bustos, A.; Suárez, R.; Seguín-García, S.; Hansen, B. A Conflict between Traditional Flood Measures and Maintaining River Ecosystems? A Case Study Based upon the River Lærdal, Norway. Water 2021, 13, 1884. https://doi.org/10.3390/w13141884
Juárez A, Alfredsen K, Stickler M, Adeva-Bustos A, Suárez R, Seguín-García S, Hansen B. A Conflict between Traditional Flood Measures and Maintaining River Ecosystems? A Case Study Based upon the River Lærdal, Norway. Water. 2021; 13(14):1884. https://doi.org/10.3390/w13141884
Chicago/Turabian StyleJuárez, Ana, Knut Alfredsen, Morten Stickler, Ana Adeva-Bustos, Rodrigo Suárez, Sonia Seguín-García, and Bendik Hansen. 2021. "A Conflict between Traditional Flood Measures and Maintaining River Ecosystems? A Case Study Based upon the River Lærdal, Norway" Water 13, no. 14: 1884. https://doi.org/10.3390/w13141884
APA StyleJuárez, A., Alfredsen, K., Stickler, M., Adeva-Bustos, A., Suárez, R., Seguín-García, S., & Hansen, B. (2021). A Conflict between Traditional Flood Measures and Maintaining River Ecosystems? A Case Study Based upon the River Lærdal, Norway. Water, 13(14), 1884. https://doi.org/10.3390/w13141884