LCA-Based Environmental Performance of Olive Cultivation in Northwestern Greece: From Rainfed to Irrigated through Conventional and Smart Crop Management Practices
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Methodology
2.2.1. Goal and Scope Definition
2.2.2. Life Cycle Inventory
2.2.3. Life Cycle Impact Assessment
3. Results
3.1. Comparative Results at the Midpoint Level
3.2. Endpoint and Overall Environmental Impact
3.3. Sensitivity Analysis of Life Cycle Assessment Method
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Parameter | DQI | Geometric Standard Deviation |
---|---|---|
Electricity | 2;1;1;1;2 | 1.0714 |
N-fertilizer | 2;1;1;1;2 | 1.0714 |
P-fertilizer | 2;1;1;1;2 | 1.0714 |
K-fertilizer | 2;1;1;1;2 | 1.0714 |
Pesticides | 2;1;1;1;2 | 1.0714 |
Diesel | 2;1;1;1;2 | 1.0714 |
Tractors | 2;1;1;1;2 | 1.0714 |
Tractor oil | 3;1;1;1;2 | 1.0714 |
Land occupation | 3;1;1;1;2 | 1.1155 |
Ammonia | 3;2;1;2;2 | 1.1155 |
Dinitrogen monoxide | 3;2;1;2;2 | 1.1155 |
Nitrous oxide | 3;2;1;2;2 | 1.1155 |
Nitrates | 3;2;1;2;2 | 1.1155 |
Phosphorus | 3;2;1;2;2 | 1.1155 |
Phosphates | 3;2;1;2;2 | 1.1155 |
Pesticide emissions | 3;2;1;2;2 | 1.1155 |
Combustion emissions * | 3;2;1;2;2 | 1.1155 |
Impact Categories | Unit | Rainfed | Farmer Irrigation | DSS Irrigation |
---|---|---|---|---|
Climate change, long term | kg CO2 eq (long) | 3252.2 | 4747.09 | 4426.15 |
Climate change, short term | kg CO2 eq (short) | 3331.5 | 4851.33 | 4520.30 |
Fossil and nuclear energy | MJ deprived | 14,900.5 | 24,217.75 | 20,011.88 |
Freshwater acidification | kg SO2 eq | 3.85 × 10−5 | 4.89 × 10−5 | 4.43 × 10−5 |
Freshwater ecotoxicity | CTUe | 165,476.5 | 174,578.17 | 170,469.62 |
Freshwater eutrophication | kg PO4 P-lim eq | 0.301 | 0.304 | 0.302 |
Human toxicity, cancer | CTUh | 2.62 × 10−6 | 3.60 × 10−6 | 3.16 × 10−6 |
Human toxicity, non-cancer | CTUh | 1.42 × 10−4 | 1.96 × 10−4 | 1.72 × 10−4 |
Ionizing radiations | Bq C-14 eq | 18,324.502 | 22,723.270 | 20,737.646 |
Land occupation, biodiversity | m2 arable land eq .yr | 262.2 | 263.4 | 262.9 |
Land transformation, biodiversity | m2 arable land eq | 1.26 | 1.31 | 1.28 |
Marine eutrophication | kg N N-lim eq | 1.46 | 1.50 | 1.49 |
Mineral resources use | kg deprived | 18.21 | 18.79 | 18.53 |
Ozone layer depletion | kg CFC-11 eq | 6.44 × 10−4 | 7.08 × 10−4 | 6.79 × 10−4 |
Particulate matter formation | kg PM2.5 eq | 1.83 | 1.83 | 1.83 |
Photochemical oxidant formation | kg NMVOC eq | 11.38 | 13.17 | 12.58 |
Terrestrial acidification | kg SO2 eq | 0.093 | 0.101 | 0.098 |
Water scarcity | m3 world eq | 51,419.16 | 277,937.89 | 19,2942.53 |
Impact Categories | Unit | Rainfed | Farmer Irrigation | DSS Irrigation |
---|---|---|---|---|
Damage to human health per 1 ton | ||||
Mechanization | DALY | 4.18 × 10−4 | 2.00 × 10−4 | 2.11 × 10−4 |
Fertilizers | DALY | 1.47 × 10−3 | 8.13 × 10−4 | 8.58 × 10−4 |
Pesticides | DALY | 1.93 × 10−4 | 9.24 × 10−5 | 9.75 × 10−5 |
Land occupation | DALY | - | - | - |
Irrigation | DALY | 0.00 | 2.89 × 10−4 | 1.67 × 10−4 |
Damage to human health per 1 ha | ||||
Mechanization | DALY | 2.37 × 10−3 | 2.37 × 10−3 | 2.37 × 10−3 |
Fertilizers | DALY | 8.35 × 10−3 | 9.63 × 10−3 | 9.63 × 10−3 |
Pesticides | DALY | 1.09 × 10−3 | 1.09 × 10−3 | 1.09 × 10−3 |
Land occupation | DALY | - | - | - |
Irrigation | DALY | 0.00 | 3.42 × 10−3 | 1.88 × 10−3 |
Damage to ecosystem per 1 ton | ||||
Mechanization | PDF·m2·yr | 93.2 | 44.6 | 47.0 |
Fertilizers | PDF·m2·yr | 349.9 | 191.3 | 201.9 |
Pesticides | PDF·m2·yr | 46.7 | 22.3 | 23.6 |
Land occupation | PDF·m2·yr | 30.7 | 14.7 | 15.5 |
Irrigation | PDF·m2·yr | - | 118.2 | 73.9 |
Damage to ecosystem per 1 ha | ||||
Mechanization | PDF·m2·yr | 527.7 | 527.7 | 527.7 |
Fertilizers | PDF·m2·yr | 1980.7 | 2265.1 | 2265.1 |
Pesticides | PDF·m2·yr | 264.5 | 264.5 | 264.5 |
Land occupation | PDF·m2·yr | 173.7 | 173.7 | 173.7 |
Irrigation | PDF·m2·yr | - | 1399.7 | 829.5 |
Total environmental impact per 1 ton | ||||
Mechanization | EURO2003 | 44.0 | 21.03 | 22.19 |
Fertilizers | EURO2003 | 158.1 | 86.96 | 91.76 |
Pesticides | EURO2003 | 20.9 | 9.97 | 10.52 |
Land occupation | EURO2003 | 4.3 | 2.05 | 2.17 |
Irrigation | EURO2003 | - | 37.92 | 22.72 |
Total environmental impact per 1 ha | ||||
Mechanization | EURO2003 | 248.9 | 248.9 | 248.9 |
Fertilizers | EURO2003 | 894.8 | 1029.6 | 1029.6 |
Pesticides | EURO2003 | 118.0 | 118.0 | 118.0 |
Land occupation | EURO2003 | 24.3 | 24.3 | 24.3 |
Irrigation | EURO2003 | - | 449.0 | 255.0 |
Impact Categories | Unit/ton | Rainfed | Farmer-Led Irrigation | DSS Irrigation | |||
---|---|---|---|---|---|---|---|
5% | 95% | 5% | 95% | 5% | 95% | ||
Climate change, long term | kg CO2 eq (long) | 501.7 | 658.4 | 347.6 | 461.1 | 336.8 | 459.7 |
Climate change, short term | kg CO2 eq (short) | 514.1 | 674.2 | 355.4 | 471.0 | 344.2 | 469.2 |
Fossil and nuclear energy | MJ deprived | 2334.8 | 2967.1 | 1820.5 | 2301.4 | 1586.3 | 2011.6 |
Freshwater acidification | kg SO2 eq | 5.98 × 10−6 | 7.80 × 10−6 | 3.64 × 10−6 | 4.71 × 10−6 | 3.47 × 10−6 | 4.51 × 10−6 |
Freshwater ecotoxicity | CTUe | 25,817.3 | 33,174.8 | 13,029.8 | 16,721.5 | 13,422.8 | 17,238.2 |
Freshwater eutrophication | kg PO4 P-lim eq | 0.046 | 0.06159 | 0.022 | 0.02971 | 0.023 | 0.03123 |
Human toxicity, cancer | CTUh | 4.10 × 10−7 | 5.24 × 10−7 | 2.70 × 10−7 | 3.43 × 10−7 | 2.50 × 10−7 | 3.18 × 10−7 |
Human toxicity, non-cancer | CTUh | 2.22 × 10−5 | 2.85 × 10−5 | 1.47 × 10−5 | 1.87 × 10−5 | 1.36 × 10−5 | 1.74 × 10−5 |
Ionizing radiations | Bq C-14 eq | 2874.0 | 3650.7 | 1706.5 | 2162.1 | 1642.7 | 2084.7 |
Land occupation, biodiversity | m2 arable land eq .yr | 41.36 | 51.4 | 18.94 | 26.1 | 19.43 | 26.5 |
Land transformation, biodiversity | m2 arable land eq | 0.197 | 0.25 | 0.098 | 0.12 | 0.102 | 0.13 |
Marine eutrophication | kg N N-lim eq | 0.222 | 0.30 | 0.109 | 0.15 | 0.114 | 0.16 |
Mineral resources use | kg deprived | 2.855 | 3.6 | 1.409 | 1.8 | 1.466 | 1.9 |
Ozone layer depletion | kg CFC-11 eq | 1.02 × 10−4 | 1.27 × 10−4 | 5.35 × 10−5 | 0.0 | 5.41 × 10−5 | 6.77 × 10−5 |
Particulate matter formation | kg PM2.5 eq | 0.272 | 0.4 | 0.130 | 0.2 | 0.137 | 0.2 |
Photochemical oxidant formation | kg NMVOC eq | 1.849 | 2.4 | 0.983 | 1.3 | 0.988 | 1.3 |
Terrestrial acidification | kg SO2 eq | 1.41 × 10−2 | 1.94 × 10−2 | 7.34 × 10−3 | 1.00 × 10−2 | 7.45 × 10−3 | 1.02 × 10−2 |
Water scarcity | m3 world eq | 8064.491 | 10,261.2 | 20,897.163 | 26,349.0 | 13,980.649 | 17,576.5 |
Damage to human health | DALY | 1.82 × 10−3 | 2.39 × 10−3 | 1.22 × 10−3 | 1.60 × 10−3 | 1.15 × 10−3 | 1.54 × 10−3 |
Damage to ecosystem quality | PDF·m2·yr | 455.6 | 597.3 | 342.0 | 447.3 | 308.9 | 410.2 |
Total environmental impact | EURO2003 | 198.4 | 260.8 | 137.9 | 180.9 | 128.6 | 171.5 |
Unit | Unit/ha | Rainfed | Farmer Irrigation | DSS Irrigation |
---|---|---|---|---|
Fine particulate matter formation | kg PM2.5 eq | 1.24 | 0.74 | 0.72 |
Fossil resource scarcity | kg oil eq | 87.92 | 66.23 | 61.51 |
Freshwater eco-toxicity | kg 1,4-DCB eq | 27.94 | 18.32 | 17.32 |
Freshwater eutrophication | kg P eq | 0.19 | 0.24 | 0.18 |
Global warming | kg CO2 eq | 398.89 | 327.74 | 246.10 |
Human carcinogenic toxicity | kg 1,4-DCB eq | 8.20 | 10.64 | 8.27 |
Human non-carcinogenic toxicity | kg 1,4-DCB eq | 540.80 | 395.60 | 359.67 |
Ionizing radiation | kBq Co-60 eq | 22.56 | 14.56 | 14.05 |
Land use | m2a crop eq | 5.60 | 3.28 | 3.31 |
Marine eco-toxicity | kg 1,4-DCB eq | 20.13 | 16.53 | 14.48 |
Marine eutrophication | kg N eq | 2.20 | 1.12 | 1.17 |
Mineral resource scarcity | kg Cu eq | 4.00 | 1.97 | 2.09 |
Ozone formation, human health | kg NOx eq | 1.29 | 0.76 | 0.72 |
Ozone formation, terrestrial ecosystems | kg NOx eq | 1.31 | 0.77 | 0.73 |
Stratospheric ozone depletion | kg CFC11 eq | 5.73 × 10−3 | 5.23 × 10−3 | 2.80 × 10−3 |
Terrestrial acidification | kg SO2 eq | 6.16 | 3.30 | 3.38 |
Terrestrial eco-toxicity | kg 1,4-DCB | 989.15 | 589.35 | 580.90 |
Water consumption | m3 consumed | 7.09 | 214.18 | 127.96 |
Human health | DALY | 1.41 × 10−3 | 9.47 × 10−4 | 8.49 × 10−4 |
Ecosystems | species.yr | 3.54 × 10−6 | 2.86 × 10−6 | 2.39 × 10−6 |
Resources | USD2013 | 33.20 | 19.89 | 20.22 |
Single score | point (pt) | 25.93 | 17.69 | 15.78 |
Unit | Unit/ha | Rainfed | Farmer Irrigation | DSS Irrigation |
---|---|---|---|---|
Acidification | mol H+ eq | 12.2 | 6.0 | 6.3 |
Climate change | kg CO2 eq | 584.2 | 315.7 | 316.2 |
Ecotoxicity, freshwater | CTUe | 24,803.8 | 12,084.6 | 12,665.4 |
Eutrophication, freshwater | kg P eq | 0.68 | 0.33 | 0.35 |
Eutrophication, marine | kg N eq | 52.70 | 25.44 | 26.78 |
Eutrophication, terrestrial | mol N eq | 9.47 | 4.77 | 4.92 |
Human toxicity, cancer | CTUh | 1.03 × 10−6 | 5.04 × 10−7 | 5.28 × 10−7 |
Human toxicity, non-cancer | CTUh | 7.79 × 10−6 | 3.85 × 10−6 | 4.01 × 10−6 |
Ionizing radiation | kBq U-235 eq | 30.548 | 20.75 | 18.99 |
Land use | Pt | 3798.629 | 2146.09 | 1957.21 |
Ozone depletion | kg CFC11 eq | 1.10 × 10−4 | 5.79 × 10−5 | 5.86 × 10−5 |
Particulate matter | disease inc. | 0.000 | 0.00 | 0.00 |
Photochemical ozone formation | kg NMVOC eq | 1.984 | 1.03 | 1.05 |
Resource use, fossils | MJ | 4172.067 | 2516.58 | 2408.72 |
Resource use, minerals and metals | kg Sb eq | 2.46 × 10−3 | 1.19 × 10−3 | 1.25 × 10−3 |
Water use | m3 depriv. | 22,909.296 | 31,260.28 | 23,352.64 |
Single score | Point | 0.32 | 0.308 | 0.252 |
References
- Rodríguez Sousa, A.A.; Barandica, J.M.; Aguilera, P.A.; Rescia, A.J. Examining Potential Environmental Consequences of Climate Change and Other Driving Forces on the Sustainability of Spanish Olive Groves under a Socio-Ecological Approach. Agriculture 2020, 10, 509. [Google Scholar] [CrossRef]
- Michalopoulos, G.; Kasapi, K.A.; Koubouris, G.; Psarras, G.; Arampatzis, G.; Hatzigiannakis, E.; Kavvadias, V.; Xiloyannis, C.; Montanaro, G.; Malliaraki, S.; et al. Adaptation of Mediterranean Olive Groves to Climate Change through Sustainable Cultivation Practices. Climate 2020, 8, 54. [Google Scholar] [CrossRef] [Green Version]
- IOOC International Olive Council: EU Table Olive Figures. Available online: https://www.internationaloliveoil.org/wp-content/uploads/2020/12/OT-CE-901-23-11-2020-P.pdf (accessed on 20 October 2020).
- Tsirogiannis, I.L.; Karras, G.; Tsolis, D.; Barelos, D. Irrigation and Drainage Scheme of the Plain of Arta–Effects on the Rural Landscape and the Wetlands of Amvrakikos’ Natura Area. Agric. Agric. Sci. Procedia 2015, 4, 20–28. [Google Scholar] [CrossRef] [Green Version]
- Fraga, H.; Moriondo, M.; Leolini, L.; Santos, J.A. Mediterranean Olive Orchards under Climate Change: A Review of Future Impacts and Adaptation Strategies. Agronomy 2020, 11, 56. [Google Scholar] [CrossRef]
- Tanasijevic, L.; Todorovic, M.; Pereira, L.S.; Pizzigalli, C.; Lionello, P. Impacts of climate change on olive crop evapotranspiration and irrigation requirements in the Mediterranean region. Agric. Water Manag. 2014, 144, 54–68. [Google Scholar] [CrossRef]
- Nanos, G.D.; Pliakoni, E.; Daenas, D.; Amodio, M.L.; Colelli, G. Effect of deficit irrigation on olive and olive oil quality during fruit storage. Irrig. Mediterr. Agric. Chall. Innov. Decad. 2008, 84, 77–83. [Google Scholar]
- Mancuso, G.; Lavrnić, S.; Toscano, A. Reclaimed water to face agricultural water scarcity in the Mediterranean area: An overview using Sustainable Development Goals preliminary data. Adv. Chem. Pollut. Environ. Manag. Prot. 2020, 5, 113–143. [Google Scholar]
- Berbel, J.; Martínez-Dalmau, J. A Simple Agro-Economic Model for Optimal Farm Nitrogen Application under Yield Uncertainty. Agronomy 2021, 11, 1107. [Google Scholar] [CrossRef]
- Belaud, G.; Mateos, L.; Aliod, R.; Buisson, M.-C.; Faci, E.; Gendre, S.; Ghinassi, G.; Gonzales Perea, R.; Lejars, C.; Maruejols, F.; et al. Irrigation and energy: Issues and challenges. Irrig. Drain. 2020, 69, 177–185. [Google Scholar] [CrossRef]
- Amenumey, S.E.; Capel, P.D. Fertilizer Consumption and Energy Input for 16 Crops in the United States. Nat. Resour. Res. 2014, 23, 299–309. [Google Scholar] [CrossRef]
- Pradeleix, L.; Roux, P.; Bouarfa, S.; Jaouani, B.; Lili-Chabaane, Z.; Bellon-Maurel, V. Environmental Impacts of Contrasted Groundwater Pumping Systems Assessed by Life Cycle Assessment Methodology: Contribution to the Water-Energy Nexus Study. Irrig. Drain. 2015, 64, 124–138. [Google Scholar] [CrossRef]
- Xu, Z.; Chen, X.; Liu, J.; Zhang, Y.; Chau, S.; Bhattarai, N.; Wang, Y.; Li, Y.; Connor, T.; Li, Y. Impacts of irrigated agriculture on food–energy–water–CO2 nexus across metacoupled systems. Nat. Commun. 2020, 11, 5837. [Google Scholar] [CrossRef]
- Lieder, S.; Schröter-Schlaack, C. Smart Farming Technologies in Arable Farming: Towards a Holistic Assessment of Opportunities and Risks. Sustainability 2021, 13, 6783. [Google Scholar] [CrossRef]
- Majsztrik, J.C.; Price, E.W.; King, D.M. Environmental Benefits of Wireless Sensor-based Irrigation Networks: Case-study Projections and Potential Adoption Rates. Horttechnology 2013, 23, 783–793. [Google Scholar] [CrossRef]
- Montesano, F.F.; van Iersel, M.W.; Boari, F.; Cantore, V.; D’Amato, G.; Parente, A. Sensor-based irrigation management of soilless basil using a new smart irrigation system: Effects of set-point on plant physiological responses and crop performance. Agric. Water Manag. 2018, 203, 20–29. [Google Scholar] [CrossRef]
- Mirabella, N.; Castellani, V.; Sala, S. LCA for assessing environmental benefit of eco-design strategies and forest wood short supply chain: A furniture case study. Int. J. Life Cycle Assess. 2014, 19, 1536–1550. [Google Scholar] [CrossRef]
- Espadas-Aldana, G.; Vialle, C.; Belaud, J.-P.; Vaca-Garcia, C.; Sablayrolles, C. Analysis and trends for Life Cycle Assessment of olive oil production. Sustain. Prod. Consum. 2019, 19, 216–230. [Google Scholar] [CrossRef] [Green Version]
- Fernández-Lobato, L.; López-Sánchez, Y.; Blejman, G.; Jurado, F.; Moyano-Fuentes, J.; Vera, D. Life cycle assessment of the Spanish virgin olive oil production: A case study for Andalusian region. J. Clean. Prod. 2021, 290, 125677. [Google Scholar] [CrossRef]
- Maffia, A.; Pergola, M.; Palese, A.M.; Celano, G. Environmental Impact Assessment of Organic vs. Integrated Olive-Oil Systems in Mediterranean Context. Agronomy 2020, 10, 416. [Google Scholar] [CrossRef] [Green Version]
- Ben Abdallah, S.; Elfkih, S.; Suárez-Rey, E.M.; Parra-López, C.; Romero-Gámez, M. Evaluation of the environmental sustainability in the olive growing systems in Tunisia. J. Clean. Prod. 2021, 282, 124526. [Google Scholar] [CrossRef]
- Mehmeti, A.; Todorovic, M.; Scardigno, A. Assessing the eco-efficiency improvements of Sinistra Ofanto irrigation scheme. J. Clean. Prod. 2016, 138, 208–216. [Google Scholar] [CrossRef]
- Balafoutis, A.; Koundouras, S.; Anastasiou, E.; Fountas, S.; Arvanitis, K. Life Cycle Assessment of Two Vineyards after the Application of Precision Viticulture Techniques: A Case Study. Sustainability 2017, 9, 1997. [Google Scholar] [CrossRef] [Green Version]
- Meza-Palacios, R.; Aguilar-Lasserre, A.A.; Morales-Mendoza, L.F.; Rico-Contreras, J.O.; Sánchez-Medel, L.H.; Fernández-Lambert, G. Decision support system for NPK fertilization: A solution method for minimizing the impact on human health, climate change, ecosystem quality and resources. J. Environ. Sci. Health Part A 2020, 55, 1267–1282. [Google Scholar] [CrossRef] [PubMed]
- Vatsanidou, A.; Fountas, S.; Liakos, V.; Nanos, G.; Katsoulas, N.; Gemtos, T. Life Cycle Assessment of Variable Rate Fertilizer Application in a Pear Orchard. Sustainability 2020, 12, 6893. [Google Scholar] [CrossRef]
- Bacenetti, J.; Paleari, L.; Tartarini, S.; Vesely, F.M.; Foi, M.; Movedi, E.; Ravasi, R.A.; Bellopede, V.; Durello, S.; Ceravolo, C.; et al. May smart technologies reduce the environmental impact of nitrogen fertilization? A case study for paddy rice. Sci. Total Environ. 2020, 715, 136956. [Google Scholar] [CrossRef]
- Russo, C.; Cappelletti, G.; Nicoletti, G.; Di Noia, A.; Michalopoulos, G. Comparison of European Olive Production Systems. Sustainability 2016, 8, 825. [Google Scholar] [CrossRef] [Green Version]
- Tsarouhas, P.; Achillas, C.; Aidonis, D.; Folinas, D.; Maslis, V. Life Cycle Assessment of olive oil production in Greece. J. Clean. Prod. 2015, 93, 75–83. [Google Scholar] [CrossRef]
- HNMS. Climatic Data for Selected Stations in Greece. Available online: http://www.hnms.gr/emy/en/climatology/climatology_city?perifereia=Epirus&poli=Arta (accessed on 20 October 2020).
- Baltas, E. Spatial distribution of climatic indices in northern Greece. Meteorol. Appl. 2007, 14, 69–78. [Google Scholar] [CrossRef]
- OPEKEPE Integrated Information System Concerning Single Application (OPSEAE). Available online: http://aggregate.opekepe.gr/ (accessed on 20 October 2020).
- Smith, M. CROPWAT: A Computer Program for Irrigation Planning and Management; FAO Irrigation and Drainage Paper No. 46; Food and Agriculture Organization (FAO): Rome, Italy, 1992; ISBN 9251031061. [Google Scholar]
- Quantis ALCIG–Agricultural Life Cycle Inventory Generator. Available online: https://alcig.quantis-software.com/#/tool (accessed on 16 November 2019).
- Grant, T.; Cruypenninck, H.; Eady, S.; Mata, G. AusAgLCI Methodology for Developing Life Cycle Inventory; Rural Industries Research and Development Corporation: Barton, Australia, 2014. [Google Scholar]
- Nemecek, T.; Bengoa, X.; Rossi, V.; Humbert, S.; Lansche, J.; Mouron, P. World Food LCA Database: Methodological Guidelines for the Life Cycle Inventory of Agricultural Products; Quantis and Agroscope, Lausanne and Zurich: Lausanne, Switzerland, 2020. [Google Scholar]
- Bulle, C.; Margni, M.; Patouillard, L.; Boulay, A.-M.; Bourgault, G.; De Bruille, V.; Cao, V.; Hauschild, M.; Henderson, A.; Humbert, S.; et al. IMPACT World+: A globally regionalized life cycle impact assessment method. Int. J. Life Cycle Assess. 2019, 24, 1653–1674. [Google Scholar] [CrossRef] [Green Version]
- Malamos, N.; Tsirogiannis, I.L.; Christofides, A. Modelling irrigation management services: The IRMA_SYS case. Int. J. Sustain. Agric. Manag. Inform. 2016, 2, 1. [Google Scholar] [CrossRef] [Green Version]
- Cerutti, A.K.; Beccaro, G.L.; Bruun, S.; Bosco, S.; Donno, D.; Notarnicola, B.; Bounous, G. Life cycle assessment application in the fruit sector: State of the art and recommendations for environmental declarations of fruit products. J. Clean. Prod. 2014, 73, 125–135. [Google Scholar] [CrossRef]
- Nemecek, T.; Kagi, T. Life cycle inventories of Agricultural Production Systems, Ecoinvent report No. 15. In Final. Rep. Ecoinvent V2.0; Agroscope Reckenholz-Taenikon Research Station ART, Swiss Centre for Life Cycle Inventories, Zurich and Dübendorf, CH: Zurich, Switzerland, 2007; pp. 1–360. [Google Scholar]
- Ecoinvent Database Version 3.1 Swiss Centre for Life Cycle Inventories, Switzerland. Available online: https://www.ecoinvent.org/database/ecoinvent-371/ecoinvent-371.html (accessed on 12 July 2021).
- Green Delta Open LCA Version 1.10., Green Delta GmbH, Germany. Available online: https://www.openlca.org/download/ (accessed on 12 July 2021).
- Huijbregts, M.A.J.; Steinmann, Z.J.N.; Elshout, P.M.F.; Stam, G.; Verones, F.; Vieira, M.; Zijp, M.; Hollander, A.; van Zelm, R. ReCiPe2016: A harmonised life cycle impact assessment method at midpoint and endpoint level. Int. J. Life Cycle Assess. 2017, 22, 138–147. [Google Scholar] [CrossRef]
- Sala, S.; Cerutti, A.K.; Pant, R. Development of a Weighting Approach for the Environmental Footprint; Publications Office of the European Union: Luxembourg, 2018; ISBN 97892796804127. [Google Scholar]
- Darré, E.; Cadenazzi, M.; Mazzilli, S.R.; Rosas, J.F.; Picasso, V.D. Environmental impacts on water resources from summer crops in rainfed and irrigated systems. J. Environ. Manag. 2019, 232, 514–522. [Google Scholar] [CrossRef]
- Figueiredo, F.; Castanheira, É.G.; Freire, F. Life-cycle assessment of irrigated and rainfed sunflower addressing uncertainty and land use change scenarios. J. Clean. Prod. 2017, 140, 436–444. [Google Scholar] [CrossRef]
- Todorović, M.; Mehmeti, A.; Cantore, V. Impact of different water and nitrogen inputs on the eco-efficiency of durum wheat cultivation in Mediterranean environments. J. Clean. Prod. 2018, 183, 1276–1288. [Google Scholar] [CrossRef]
- Pergola, M.; Favia, M.; Palese, A.M.; Perretti, B.; Xiloyannis, C.; Celano, G. Alternative management for olive orchards grown in semi-arid environments: An energy, economic and environmental analysis. Sci. Hortic. (Amsterdam) 2013, 162, 380–386. [Google Scholar] [CrossRef]
- Romero-Gámez, M.; Castro-Rodríguez, J.; Suárez-Rey, E.M. Optimization of olive growing practices in Spain from a life cycle assessment perspective. J. Clean. Prod. 2017, 149, 25–37. [Google Scholar] [CrossRef]
Month | Prc. | Wet Days. | Tmp. min. | Tmp. max. | Tmp. Mean | Rel. Hum. | Sun- shine | Wind (2 m) | ETo |
---|---|---|---|---|---|---|---|---|---|
mm/m | days | °C | °C | °C | % | % | m/s | mm/d | |
Jan | 131 | 12.7 | 3.5 | 11.9 | 7.7 | 73.2 | 48.4 | 1 | 0.9 |
Feb | 130 | 12.2 | 4.1 | 13.1 | 8.6 | 71.8 | 49.7 | 1.1 | 1.3 |
Mar | 92 | 11.1 | 5.9 | 15.8 | 10.8 | 69.3 | 53.4 | 1 | 2 |
Apr | 74 | 10.9 | 8.7 | 19.4 | 14 | 68.3 | 57.5 | 1 | 2.9 |
May | 50 | 8.8 | 12.6 | 24.1 | 18.3 | 65 | 66.1 | 0.9 | 3.9 |
Jun | 24 | 5.3 | 15.6 | 28.2 | 21.9 | 60.2 | 76.7 | 0.8 | 4.9 |
Jul | 14 | 3.5 | 18 | 31.1 | 24.5 | 56.9 | 86.8 | 0.8 | 5.4 |
Aug | 18 | 3.5 | 18.1 | 31.1 | 24.6 | 57.7 | 84.4 | 0.8 | 4.9 |
Sep | 44 | 5 | 15.6 | 28.3 | 21.9 | 62.9 | 75.8 | 0.8 | 3.6 |
Oct | 115 | 9.6 | 11.8 | 21.7 | 16.7 | 68.6 | 62.4 | 0.8 | 2.1 |
Nov | 169 | 12.6 | 8 | 17.2 | 12.6 | 75.4 | 51.2 | 0.7 | 1.1 |
Dec | 179 | 13.9 | 4.9 | 13.1 | 9 | 75.8 | 44.8 | 0.9 | 0.8 |
Parameter. | Unit | Average Rainfed [min;max] | Average Farmer-Led Irrigation [min;max] | Average DSS Based Irrigation [min;max] |
---|---|---|---|---|
Crop yield | ton/ha | 5.66 [3.4;7.9] | 11.84 [7;16.6] | 11.23 [6.6;15.8] |
Irrigation water | m3/ha | - | 3560 [2962.5;4155] | 1953 [1885;2020.4] |
Electricity for irrigation (Greek mix) | kWh/ha | - | 687 [802;571.7] | 377 [363.5;389] |
Nitrogen fertilizer, as N | kg/ha | 135 [96;172.8] | 135 [96;172.8] | 135 [96;172.8] |
Phosphorus fertilizer, as P2O5 | kg/ha | 84 [48;120] | 84 [48;120] | 84 [48;120] |
Potassium fertilizer, as K2O | kg/ha | 60 [54;60] | 60 [54;60] | 60 [54;60] |
Pesticides, unspecified | kg/ha | 21.6 | 21.6 | 21.6 |
Diesel | MJ/ha | 3913 | 3913 | 3913 |
Tractor, 4-wheel, agricultural | kg/ha | 10.56 | 10.56 | 10.56 |
Tractor lubricating oil | kg/ha | 2.1 | 2.1 | 2.1 |
Land Occupation, permanent crop | m2 ∗ a | 44.16 | 21.1 | 22.3 |
Category | Abbreviation | Damage to Human Health | Damage to Ecosystems |
---|---|---|---|
Climate change, long term | CC_lt | + | + |
Climate change, short term | CC_st | + | + |
Fossil and nuclear energy use | FEU | ||
Freshwater acidification | FA | + | |
Freshwater ecotoxicity | FET | + | |
Freshwater eutrophication | FE | + | |
Human toxicity cancer | HTc | + | |
Human toxicity non-cancer | HTnc | + | |
Ionizing radiations | IR | + | |
Land occupation, biodiversity | LO | + | |
Land transformation, biodiversity | LT | + | |
Marine eutrophication | ME | + | |
Mineral resources use | MRU | ||
Ozone layer depletion | OD | ||
Particulate matter formation | PM | + | |
Photochemical oxidant formation | POF | + | |
Terrestrial acidification | TA | + | |
Water scarcity | WS | + | + |
Normalization factor | - | 13.7 | 0.000101 |
Weighting factor | - | 5401.460 | 1386.139 |
Impact Categories | Unit/ton | Rainfed (Reference) | Farmer-Led Irrigation (Conventional) | DSS Based Irrigation (Smart) |
---|---|---|---|---|
Climate change, long term | kg CO2 eq (long) | 574.6 | 400.9 | 394.5 |
Climate change, short term | kg CO2 eq (short) | 588.6 | 409.7 | 402.9 |
Fossil and nuclear energy | MJ deprived | 2632.6 | 2045.4 | 1783.6 |
Freshwater acidification | kg SO2 eq | 6.80 × 10−6 | 4.13 × 10−6 | 3.95 × 10−6 |
Freshwater ecotoxicity | CTUe | 29,236.1 | 14,744.78 | 15,193.4 |
Freshwater eutrophication | kg PO4 P-lim eq | 5.31 × 10−2 | 2.56 × 10−2 | 2.69 × 10−2 |
Human toxicity, cancer | CTUh | 4.64 × 10−7 | 3.04 × 10−7 | 2.82 × 10−7 |
Human toxicity, non-cancer | CTUh | 2.52 × 10−5 | 1.66 × 10−5 | 1.53 × 10−5 |
Ionizing radiations | Bq C-14 eq | 3237.54 | 1919.20 | 1848.3 |
Land occupation, biodiversity | m2 arable land eq. yr | 46.3 | 22.25 | 23.43 |
Land transformation, biodiversity | m2 arable land eq | 0.22 | 0.11 | 0.114 |
Marine eutrophication | kg N N-lim eq | 0.258 | 0.127 | 0.132 |
Mineral resources use | kg deprived | 3.2 | 1.59 | 1.65 |
Ozone layer depletion | kg CFC-11 eq | 1.14 × 10−4 | 5.98 × 10−5 | 6.05 × 10−5 |
Particulate matter formation | kg PM2.5 eq | 0.323 | 0.155 | 0.163 |
Photochemical oxidant formation | kg NMVOC eq | 2.01 | 1.112 | 1.121 |
Terrestrial acidification | kg SO2 eq | 1.64 × 10−2 | 8.55 × 10−3 | 8.70 × 10−3 |
Water scarcity | m3 world eq | 9084.66 | 26,131.18 | 17,196.30 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fotia, K.; Mehmeti, A.; Tsirogiannis, I.; Nanos, G.; Mamolos, A.P.; Malamos, N.; Barouchas, P.; Todorovic, M. LCA-Based Environmental Performance of Olive Cultivation in Northwestern Greece: From Rainfed to Irrigated through Conventional and Smart Crop Management Practices. Water 2021, 13, 1954. https://doi.org/10.3390/w13141954
Fotia K, Mehmeti A, Tsirogiannis I, Nanos G, Mamolos AP, Malamos N, Barouchas P, Todorovic M. LCA-Based Environmental Performance of Olive Cultivation in Northwestern Greece: From Rainfed to Irrigated through Conventional and Smart Crop Management Practices. Water. 2021; 13(14):1954. https://doi.org/10.3390/w13141954
Chicago/Turabian StyleFotia, Konstantina, Andi Mehmeti, Ioannis Tsirogiannis, George Nanos, Andreas P. Mamolos, Nikolaos Malamos, Pantelis Barouchas, and Mladen Todorovic. 2021. "LCA-Based Environmental Performance of Olive Cultivation in Northwestern Greece: From Rainfed to Irrigated through Conventional and Smart Crop Management Practices" Water 13, no. 14: 1954. https://doi.org/10.3390/w13141954
APA StyleFotia, K., Mehmeti, A., Tsirogiannis, I., Nanos, G., Mamolos, A. P., Malamos, N., Barouchas, P., & Todorovic, M. (2021). LCA-Based Environmental Performance of Olive Cultivation in Northwestern Greece: From Rainfed to Irrigated through Conventional and Smart Crop Management Practices. Water, 13(14), 1954. https://doi.org/10.3390/w13141954