Supporting Restoration Decisions through Integration of Tree-Ring and Modeling Data: Reconstructing Flow and Salinity in the San Francisco Estuary over the Past Millennium
Abstract
:1. Introduction
2. Background
2.1. Geographic Setting
2.2. Pre-Development Conditions
2.2.1. Estimates of Pre-Development Central Valley Runoff from Tree-Ring Data
2.2.2. Estimates of Pre-Development San Francisco Estuary Salinity from Tree-Ring Data
2.2.3. Models of Pre-Development Central Valley Hydrology and Delta Hydrodynamics
2.3. Early Development Conditions
2.4. Contemporary Conditions
3. Methods
3.1. Data
3.1.1. Hydrology Data
3.1.2. Salinity Data
3.1.3. Tree-Ring Data
3.2. Modeling Approach
3.2.1. Selection of Modeled Time Periods
3.2.2. Model 1: Annual Central Valley Runoff Reconstruction from Tree-Ring Data
3.2.3. Model 2: Pre-Development Outflow and Salinity Reconstruction
3.2.4. Model 3: Contemporary Outflow and Salinity Reconstruction
4. Results
4.1. Annual Central Valley Runoff Reconstructions
4.2. Delta Outflow: Model Calibration and Reconstructions
4.2.1. Model Calibration
4.2.2. Delta Outflow Reconstructions
4.3. X2: Model Calibration and Reconstructions
4.3.1. Model Calibration
4.3.2. X2 Reconstructions
5. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kennish, M.J. Environmental threats and environmental future of estuaries. Environ. Conserv. 2002, 29, 78–107. [Google Scholar] [CrossRef]
- Zedler, J.B. What’s new in adaptive management and restoration of coasts and estuaries? Estuaries Coasts 2017, 40, 1–21. [Google Scholar] [CrossRef]
- European Commission. Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 Establishing a Framework for Community Action in the Field of Water Policy; Cambridge University Press: Cambridge, UK, 2000. [Google Scholar]
- European Commission. Common Implementation Strategy for The Water Framework Directive (2000/60/Ec). 2003. Available online: https://ec.europa.eu/environment/water/water-framework/objectives/pdf/strategy2.pdf (accessed on 1 July 2019).
- Carvalho, L.; Mackay, E.B.; Cardoso, A.C.; Baattrup-Pedersen, A.; Birk, S.; Blackstock, K.L.; Borics, G.; Borja, A.; Feld, C.K.; Ferreira, M.T.; et al. Protecting and restoring Europe’s waters: An analysis of the future development needs of the Water Framework Directive. Sci. Total Environ. 2019, 658, 1228–1238. [Google Scholar] [CrossRef] [PubMed]
- U.S. Environmental Protection Agency (USEPA). San Francisco Bay Delta: About the Watershed. 2018. Available online: https://www.epa.gov/sfbay-delta/about-watershed (accessed on 1 May 2020).
- Lund, J.R.; Hanak, E.; Fleenor, W.E.; Bennett, W.A.; Howitt, R.E.; Mount, J.F.; Moyle, P.B. Comparing Futures for the Sacramento-San Joaquin Delta; University of California Press: Berkeley, CA, USA, 2010. [Google Scholar]
- Hundley, N., Jr. The Great Thirst: Californians and Water–A History; University of California Press: Berkeley, CA, USA, 2001. [Google Scholar]
- Kelley, R. Battling the Inland Sea: Floods, Public Policy, and the Sacramento Valley; University of California Press: Berkeley, CA, USA, 1989. [Google Scholar]
- Luoma, S.N.; Dahm, C.N.; Healey, M.; Moore, J.N. Challenges facing the Sacramento–San Joaquin Delta: Complex, chaotic, or simply cantankerous? San Franc. Estuary Watershed Sci. 2015, 13. [Google Scholar] [CrossRef] [Green Version]
- Delta Stewardship Council. The Delta plan: Ensuring a Reliable Water Supply for California, a Healthy Delta Ecosystem, and a Place of Enduring Value. 2013. Available online: http://deltacouncil.ca.gov/delta-plan-0 (accessed on 1 July 2019).
- Jassby, A.D.; Kimmerer, W.J.; Monismith, S.G.; Armor, C.; Cloern, J.E.; Powell, T.M.; Schubel, J.R.; Vendlinski, T.J. Isohaline Position as a Habitat Indicator for Estuarine Populations. Ecol. Appl. 1995, 5, 272–289. [Google Scholar] [CrossRef] [Green Version]
- California State Water Resources Control Board (CSWRCB). Water Quality Control Plan for the San Francisco Bay/Sacramento-San Joaquin Delta Estuary. Division of Water Rights, December 13. 2006. Available online: http://www.waterboards.ca.gov/waterrights/water_issues/programs/bay_delta/wq_control_plans/2006wqcp/docs/2006_plan_final.pdf (accessed on 1 July 2019).
- Hutton, P.H.; Rath, J.S.; Chen, L.; Ungs, M.L.; Roy, S.B. Nine decades of salinity observations in the San Francisco Bay and Delta: Modeling and trend evaluation. J. Water Res. Plan. Manag. 2015, 142, 04015069. [Google Scholar] [CrossRef] [Green Version]
- Feyrer, F.; Nobriga, M.L.; Sommer, T.R. Multidecadal trends for three declining fish species: Habitat patterns and mechanisms in the San Francisco Estuary, California, USA. Can. J. Fish. Aquat. Sci. 2007, 64, 723–734. [Google Scholar] [CrossRef]
- Moyle, P.B. The future of fish in response to large-scale change in the San Francisco Estuary, California. Am. Fish. Soc. Symp. 2008, 64, 357–374. [Google Scholar]
- Mahardja, B.; Farruggia, M.J.; Schreier, B.; Sommer, T. Evidence of a shift in the littoral fish community of the Sacramento-San Joaquin Delta. PLoS ONE 2017, 12, e0170683. [Google Scholar] [CrossRef]
- California State Water Resources Control Board (CSWRCB), San Francisco Bay/Sacramento–San Joaquin Delta Estuary (Bay-Delta) Program, Phase II Update of the Bay-Delta Plan: Delta Outflows, Sacramento River and Delta Tributary Inflows, Cold Water Habitat and Interior Delta Flows. 2018. Available online: https://www.waterboards.ca.gov/waterrights/water_issues/programs/bay_delta/comp_review.shtml (accessed on 16 May 2018).
- Meko, D.M.; Stahle, D.W.; Griffin, D.; Knight, T.A. Inferring precipitation anomaly gradients from tree-rings. Quat. Int. 2011, 235, 89–100. [Google Scholar] [CrossRef]
- Meko, D.M.; Woodhouse, C.A.; Touchan, R. Klamath/San Joaquin/Sacramento Hydroclimatic Reconstructions from Tree-rings, Final Report to California Department of Water Resources; Agreement 4600008850; California Department of Water Resources: Sacramento, CA, USA, 2014; Available online: https://cwoodhouse.faculty.arizona.edu/sites/ cwoodhouse.faculty.arizona.edu/files/FinalCAWDRreport.pdf (accessed on 1 July 2019).
- Griffin, D.; Anchukaitis, K.J. How unusual is the 2012–2014 California drought? Geophys. Res. Lett. 2014, 41, 9017–9023. [Google Scholar] [CrossRef] [Green Version]
- Gross, E.S.; Hutton, P.H.; Draper, A.J. A Comparison of Outflow and Salt Intrusion in the Pre-Development and Contemporary San Francisco Estuary. San Franc. Estuary Watershed Sci. 2018, 16. [Google Scholar] [CrossRef] [Green Version]
- Stahle, D.W.; Griffin, R.D.; Cleaveland, M.K.; Edmondson, J.R.; Fye, F.K.; Burnette, D.J.; Abatzoglou, J.T.; Redmond, K.T.; Meko, D.M.; Dettinger, M.D.; et al. A tree-ring reconstruction of the salinity gradient in the northern estuary of San Francisco Bay. San Franc. Estuary Watershed Sci. 2011, 9. [Google Scholar] [CrossRef] [Green Version]
- Fox, P.; Hutton, P.H.; Howes, D.J.; Draper, A.J.; Sears, L. Reconstructing the Natural Hydrology of the San Francisco Bay-Delta Watershed. Hydrol. Earth Syst. Sci. 2015, 19, 4257–4274. [Google Scholar] [CrossRef] [Green Version]
- California Department of Water Resources (CDWR), Estimates of Natural and Unimpaired Flows for the Central Valley of California: Water Years 1922–2014. 2016. Available online: https://msb.water.ca.gov/documents/86728/a702a57f-ae7a-41a3-8bff-722e144059d6 (accessed on 1 July 2019).
- Andrews, S.; Gross, E.; Hutton, P.H. Modeling salt intrusion in the San Francisco Estuary prior to anthropogenic influence. Cont. Shelf Res. 2017, 146, 58–81. [Google Scholar] [CrossRef]
- Hutton, P.H.; Roy, S.B. Characterizing Early 20th Century Delta Outflow and Salinity Intrusion in the San Francisco Estuary. San Franc. Estuary Watershed Sci. J. 2019, 17. [Google Scholar] [CrossRef]
- Cheng, R.T.; Casulli, V.; Gartner, J.W. Tidal, Residual, Intertidal Mudflat (TRIM) Model and its Application to San Francisco Bay, California. Estuar. Coast. Shelf Sci. 1993, 36, 235–280. [Google Scholar] [CrossRef]
- Atwater, B.F.; Hedel, C.W.; Helley, E.J. Late Quaternary depositional history, Holocene Sea-Level Changes, and Vertical Crustal Movement, Southern San Francisco Bay; United States Geological Survey: Reston, VA, USA, 1977; pp. 1014–1015. [Google Scholar]
- Byrne, R.; Ingram, B.; Starratt, S.; Malamud-Roam, F.; Collins, J.; Conrad, M. Carbon-Isotope, Diatom, and Pollen Evidence for Late Holocene Salinity Change in a Brackish Marsh in the San Francisco Estuary. Quat. Res. 2001, 55, 66–76. [Google Scholar] [CrossRef]
- Sweet, W.; Park, J.; Marra, J.; Zervas, C.; Gill, S.; Sea Level Rise and Nuisance Flood Frequency Changes around the United States. National Oceanic and Atmospheric Administration (NOAA); Technical Report NOS CO-OPS 073. 2014. Available online: NOAA_Technical_Report_NOS_COOPS_073.pdf (accessed on 1 July 2019).
- Hall, W.H. Report of the State Engineer to the Legislature of California; Session of 1880, Part 2; California State Printer: Sacramento, CA, USA, 1880. [Google Scholar]
- Grunsky, C.E. The relief outlets and by-passes of the Sacramento Valley flood-control project. Trans. ASCE 1929, 93, 791–811. [Google Scholar] [CrossRef]
- Alexander, B.S.; Mendell, G.H.; Davidson, G. Report of the Board of Commissioners on the Irrigation of the San Joaquin, Tulare, and Sacramento Valleys of the State of California; 43rd Congress, 1st Session, House of Representation. Ex. Doc. No. 290; Government Printing Office: Washington, DC, USA, 1874.
- Hall, W.H. Topographical and Irrigation Map of the Great Central Valley of California Embracing the Sacramento, San Joaquin, Tulare and Kern Valleys and the Bordering Foothills; California State Engineering Department: Sacramento, CA, USA, 1887. [Google Scholar]
- Garone, P. The Fall and Rise of the Wetlands of California’s Great Central Valley; University of California Press: Berkeley, CA, USA, 2011. [Google Scholar]
- Katibah, E.F. A brief history of riparian forests in the Central Valley of California. In California Riparian Forests; Warner, R.E., Hendrix, K.M., Eds.; University of California Press: Berkeley, CA, USA, 1984; pp. 23–29. [Google Scholar]
- Holland, R.F. The Geographic and Edaphic Distribution of Vernal Pools in the Great Central Valley, California; California Native Plant Society Special Publications No. 4; California Native Plant Society: Fair Oaks, CA, USA, 1978. [Google Scholar]
- Burcham, L.T. California Range Land: An Historical–Ecological Study of the Range Resource of California; Department of Natural Resources, Division of Forestry: Sacramento, CA, USA, 1957.
- Dutzi, E.J. Valley Oaks in the Sacramento Valley: Past and Present Distribution. Master’s Thesis, University of California, Los Angeles, CA, USA, 1978. [Google Scholar]
- Howes, D.J.; Fox, P.; Hutton, P.H. Evapotranspiration from Natural Vegetation in the Central Valley of California: Grass Reference-Based Vegetation Coefficients and the Dual Crop Coefficient Approach. J. Hydrol. Eng. 2015, 20, 04015004. [Google Scholar] [CrossRef]
- Schulman, E. Tree-Ring Hydrology of the Colorado River Basin, University of Arizona Bulletin XVI (4); University of Arizona: Tucson, AR, USA, 1945; p. 51. [Google Scholar]
- Fritts, H.C. Tree-Rings and Climate; Academic Press: London, UK, 1976; p. 567. [Google Scholar]
- Hughes, M.K.; Kelly, P.M.; Pilcher, J.R.; LaMarche, J.V.C. (Eds.) Clim. From Tree-Rings; Cambridge University Press: Cambridge, UK, 1982; p. 223. [Google Scholar]
- Cook, E.R.; Seager, R.; Cane, M.A.; Stahle, D.W. North American drought: Reconstructions, causes, and consequences. Earth Sci. Rev. 2007, 81, 93–134. [Google Scholar] [CrossRef]
- Cook, E.R.; Seager, R.; Heim, R.R., Jr.; Vose, R.S.; Herweijer, C.; Woodhouse, C. Megadroughts in North America: Placing IPCC projections of hydroclimatic change in a long-term paleoclimate context. J. Quat. Sci. 2010, 25, 48–61. [Google Scholar] [CrossRef] [Green Version]
- Stine, S. Extreme and persistent drought in California and Patagonia during mediaeval time. Nature 1994, 369, 546–549. [Google Scholar] [CrossRef]
- Graham, N.E.; Hughes, M.K. Reconstructing the mediaeval low stands of Mono Lake, Sierra Nevada, CA, USA. Holocene 2007, 17, 1197–1210. [Google Scholar] [CrossRef]
- Loaiciga, H.A.; Haston, L.; Michaelsen, J. Dendrohydrology and long-term hydrologic phenomena. Rev. Geophys. 1993, 31, 151–171. [Google Scholar] [CrossRef]
- Meko, D.M.; Woodhouse, C.A. Application of streamflow reconstruction to water resources management. In Dendroclimatology, Progress and Prospects, Developments in Paleoenvironmental Research; Hughes, M.K., Swetnam, T.W., Diaz, H.F., Eds.; Springer: Amsterdam, The Netherlands, 2011; Volume 11, pp. 231–261. [Google Scholar]
- Earle, C.J. Asynchronous droughts in California streamflow as reconstructed from tree-rings. Quat. Res. 1993, 39, 290–299. [Google Scholar] [CrossRef]
- Stahle, D.W.; Griffin, R.D.; Meko, D.M.; Therrell, M.D.; Edmondson, J.R.; Cleaveland, M.K.; Stahle, L.N.; Burnette, D.J.; Abatzoglou, J.T.; Redmond, K.T.; et al. The ancient blue oak woodlands of California: Longevity and hydroclimatic history. Earth Interact. 2013, 17, 1–23. [Google Scholar] [CrossRef] [Green Version]
- Meko, D.M.; Therrell, M.D.; Baisan, C.H.; Hughes, M.K. Sacramento River flow reconstructed to A.D. 869 from tree-rings. J. Am. Water Resour. Assoc. 2001, 37, 1029–1040. [Google Scholar] [CrossRef]
- Woodhouse, C.A.; Meko, D.M.; Bigio, E.R. A long view of Southern California water supply: Perfect droughts revisited. J. Am. Water Resour. Assoc. 2020, 56, 212–229. [Google Scholar] [CrossRef]
- Stahle, D.W.; Therrell, M.D.; Cleaveland, M.K.; Cayan, D.R.; Dettinger, M.D.; Knowles, N. Ancient blue oaks reveal human impact on San Francisco Bay salinity. Eos Trans. Am. Geophys. Union 2001, 82, 141–145. [Google Scholar]
- Fox, J.P.; Mongan, T.R.; Miller, W.J. Long-term annual and seasonal trends in surface salinity of San Francisco Bay. J. Hydrol. 1991, 122, 93–117. [Google Scholar] [CrossRef]
- Arnold, J.G.; Moriasi, D.N.; Gassman, P.W.; Abbaspour, K.C.; White, M.J.; Srinivasan, R.; Santhi, C.; Harmel, R.D.; Van Griensven, A.; Van Liew, M.W.; et al. SWAT: Model use, calibration, and validation. Trans. ASABE 2012, 55, 1491–1508. [Google Scholar] [CrossRef]
- Brush, C.F.; Dogrul, E.C.; Kadir, T.N. Development and Calibration of the California Central Valley Groundwater-Surface Water Simulation Model (C2VSim); Version 3.02-CG; Bay-Delta Office, California Department of Water Resources: Sacramento, CA, USA, 2013. [Google Scholar]
- Küchler, A.W. Natural vegetation of California, pocket map. In Terrestrial Vegetation of California; Barbour, M.G., Major, J., Eds.; John Wiley & Sons, Inc.: New York, NY, USA, 1977; pp. 909–938. [Google Scholar]
- Orang, M.N.; Snyder, R.L.; Geng, S.; Hart, Q.J.; Sarreshteh, S.; Falk, M.; Beaudette, D.; Hayes, S.; Eching, S. California simulation of evapotranspiration of applied water and agricultural energy use in California. J. Integr. Agric. 2013, 12, 1371–1388. [Google Scholar] [CrossRef]
- Casulli, V.; Walters, R.A. An unstructured grid, three-dimensional model based on the shallow water equations. Int. J. Numer. Methods Fluids 2000, 32, 331–348. [Google Scholar] [CrossRef]
- Whipple, A.A.; Grossinger, R.M.; Rankin, D.; Stanford, B.; Askevold, R.A. Sacramento-San Joaquin Delta Historical Ecology Investigation: Exploring Pattern and Process. In Prepared for the California Department of Fish and Game and Ecosystem Restoration Program; A Report of SFEI-ASC’s Historical Ecology Program, Publication #672; San Francisco Estuary Institute-Aquatic Science Center: Richmond, CA, USA, 2012. [Google Scholar]
- Draper, A.J.; Munevar, A.; Arora, S.K.; Reyes, E.; Parker, N.L.; Chung, F.I.; Peterson, L.E. CalSim: Generalized model for reservoir system analysis. J. Water Resour. Plan. Manag. 2004, 130, 480–489. [Google Scholar] [CrossRef]
- Kahrl, W.L. The California Water Atlas, State of California; Governor’s Office of Planning and Research; CA DWR: Sacramento, CA, USA, 1979.
- California Department of Public Works (CDPW). Flow in California Streams–Report to the Legislature of 1923 on the Water Resources of California, Bulletin 5, Appendix A, Division of Engineering and Irrigation. 1923. Available online: http://wdl.water.ca.gov/waterdatalibrary/docs/historic/bulletins.cfm (accessed on 1 July 2019).
- Moftakhari, H.R.; Jay, D.A.; Talke, S.A.; Kukulka, T.; Bromirski, P.D. A novel approach to flow estimation in tidal rivers. Water Resour. Res. 2013, 49, 4817–4832. [Google Scholar] [CrossRef] [Green Version]
- Moftakhari, H.; Jay, D.; Talke, S.; Schoellhamer, D. Estimation of historic flows and sediment loads to San Francisco Bay, 1849–2011. J. Hydrol. 2015, 529, 1247–1261. [Google Scholar] [CrossRef] [Green Version]
- MacVean, L.; Thompson, S.; Hutton, P.; Sivapalan, M. Reconstructing Early Hydrologic Change in the California Delta and its Watersheds. Water Resour. Res. 2018, 54, 7767–7790. [Google Scholar] [CrossRef]
- California State Water Resources Control Board (CSWRCB), Water Right Decision 1485, August. 1978. Available online: http://www.waterboards.ca.gov/waterrights/board_decisions/adopted_orders/decisions/d1450_d1499/wrd1485.pdf (accessed on 1 July 2019).
- California State Water Resources Control Board (CSWRCB), Revised Water Right Decision 1641, March 15. 2000. Available online: https://www.waterboards.ca.gov/waterrights/board_decisions/adopted_orders/decisions/d1600_d1649/wrd1641_1999dec29.pdf (accessed on 1 July 2019).
- U.S. Fish and Wildlife Service (USFWS). Formal Endangered Species Act Consultation on the Proposed Coordinated Operations of the Central Valley Project (CVP) and State Water Project (SWP). Technical Memorandum from USFWS to US Bureau of Reclamation.; 2008. Available online: http://www.fws.gov/sfbaydelta/documents/swp-cvp_ops_BO_12-15_final_OCR.pdf (accessed on 1 July 2019).
- National Marine Fisheries Service (NMFS). Biological Opinion and Conference Opinion on the Long-Term Operations of the Central Valley Project and State Water Project. In Technical memorandum from NMFS to U.S. Bureau of Reclamation; 2009. Available online: https://nrm.dfg.ca.gov/FileHandler.ashx?DocumentID=21473 (accessed on 19 October 2017).
- U.S. Fish and Wildlife Service (USFWS). Biological Opinion on the Reinitiation of Consultation on the Coordinated Operations of the Central Valley Project and State Water Project. 2019. Available online: https://www.fws.gov/sfbaydelta/cvp-swp/documents/10182019_ROC_BO_final.pdf (accessed on 1 July 2019).
- National Marine Fisheries Service (NMFS). Biological Opinion on Long-Term Operation of the Central Valley Project and the State Water Project. 2019. Available online: https://www.fisheries.noaa.gov/resource/document/biological-opinion-reinitiation-consultation-long-term-operation-central-valley (accessed on 1 July 2019).
- Fleenor, W.; Goodwin, P.; Monsen, N.; Ruhl, C. An Independent Peer Review Report for the Delta Science Program on the DWR Report on Estimating Net Delta Outflow (NDO): Approaches to Estimating NDO in the Sacramento-San Joaquin Delta; Delta Stewardship Council: Sacramento, CA, USA, 2016. [Google Scholar]
- Rath, J.S.; Hutton, P.H.; Ateljevich, E.A.; Roy, S.B. A Survey of X2 Isohaline Empirical Models for the San Francisco Estuary. San Franc. Estuary Watershed Sci 2021. in review. [Google Scholar]
- California Department of Water Resources (CDWR), 2021. DSM2: Delta Simulation Model II. Available online: https://water.ca.gov/Library/Modeling-and-Analysis/Bay-Delta-Region-models-and-tools/Delta-Simulation-Model-II (accessed on 1 July 2019).
- Chao, Y.; Farrara, J.D.; Zhang, H.; Zhang, Y.J.; Ateljevich, E.; Chai, F.; Davis, C.O.; Dugdale, R.; Wilkerson, F. Development, implementation, and validation of a modeling system for the San Francisco Bay and Estuary. Estuar. Coast. Shelf Sci. 2017, 194, 40–56. [Google Scholar] [CrossRef]
- Casulli, V.; Zanolli, P. High resolution methods for multidimensional advection-diffusion problems in free-surface hydrodynamics. Ocean Model. 2005, 10, 137–151. [Google Scholar] [CrossRef]
- Martyr-Koller, R.C.; Kernkamp, H.W.J.; Van Dam, A.; van der Wegen, M.; Lucas, L.V.; Knowles, N.; Jaffe, B.; Fregoso, T.A. Application of an unstructured 3D finite volume numerical model to flows and salinity dynamics in the San Francisco Bay-Delta. Estuar. Coast. Shelf Sci. 2017, 192, 86–107. [Google Scholar] [CrossRef]
- California Data Exchange Center (CDEC). 2019. Available online: http://cdec.water.ca.gov/ (accessed on 1 July 2019).
- DAYFLOW Program. 2019. CDWR. Available online: http://www.water.ca.gov/dayflow/ (accessed on 1 July 2019).
- Robeson, S.M.; Maxwell, J.T.; Ficklin, D.L. Bias correction of paleoclimatic reconstructions: A new look at 1200+ years of Upper Colorado River flow. Geophys. Res. Lett. 2020, 47, e2019GL086689. [Google Scholar] [CrossRef]
- Denton, R.A. Accounting for antecedent conditions in seawater intrusion modeling—Applications for the San Francisco Bay–Delta. In Proceedings of the 1993 Hydraulic Division National Conference, San Francisco, CA, USA, 25–30 July 1993; Shen, H.W., Ed.; ASCE: Reston, VA, USA, 1993; pp. 821–826. [Google Scholar]
- Meko, D.M.; Woodhouse, C.A.; Bigio, E.R. Southern California Tree-ring Study, Final Report to California Department of Water Resources; Agreement 4600011071; California Department of Water Resources: Sacramento, CA, USA, 2018; Available online: https://cwoodhouse.faculty.arizona.edu/sites/cwoodhouse.%20faculty.arizona.edu/files/FinalReport2018NoAppendices.pdf. (accessed on 1 July 2019).
- Zhao, S.; Pederson, N.; D’Orangeville, L.; HilleRisLambers, J.; Boose, E.; Penone, C.; Bauer, B.; Jiang, Y.; Manzanedo, R.D. The International Tree–Ring Data Bank (ITRDB) revisited: Data availability and global ecological representativity. J. Biogeogr. 2018, 46, 355–368. [Google Scholar] [CrossRef]
- Cook, E.R.; Krusic, P.J.; Holmes, R.H.; Peters, K. Program ARSTAN, Version 41d. 2007. Available online: www.ldeo.columbia.edu/tree-ring-laboratory (accessed on 1 July 2019).
- Cook, E.R.; Peters, K. The smoothing spline: A new approach to standardizing forest interior tree-ring width series for dendroclimatic studies. Tree-Ring Bull. 1981, 41, 45–53. [Google Scholar]
- Osborn, T.J.; Briffa, K.R.; Jones, P.D. Adjusting variance for sample-size in tree-ring chronologies and other regional mean times series. Dendrochronologia 1997, 15, 89–99. [Google Scholar]
- Cook, E.R.; Kairiukstis, L.A. (Eds.) Methods of Dendrochronology: Applications in the Environmental Sciences; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1990. [Google Scholar]
- Hurvich, C.M.; Tsai, C.L. Regression and time series model selection in small samples. Biometrika 1989, 76, 297–307. [Google Scholar] [CrossRef]
- Wigley, T.M.L.; Briffa, K.R.; Jones, P.D. On the average value of correlated time series, with applications in dendroclimatology and hydrometeorology. J. Appl. Meteorol. Climatol. 1984, 23, 201–213. [Google Scholar] [CrossRef]
- Snedecor, G.W.; Cochran, W.G. Statistical Methods, 8th ed.; Iowa State University Press: Ames, IA, USA, 1989; p. 503. [Google Scholar]
- Meko, D.M. Dendroclimatic reconstruction with time varying predictor subsets of tree indices. J. Clim. 1997, 10, 687–696. [Google Scholar] [CrossRef]
- Meko, D.M.; Woodhouse, C.A.; Baisan, C.H.; Knight, T.; Lukas, J.J.; Hughes, M.K.; Salzer, M.W. Medieval drought in the Upper Colorado River Basin. Geophys. Res. Lett. 2007, 34. [Google Scholar] [CrossRef] [Green Version]
- Weisberg, S. Applied Linear Regression, 2nd ed.; John Wiley: New York, NY, USA, 1985; p. 324. [Google Scholar]
- Michaelsen, J. Cross-validation in statistical climate forecast models. J. Appl. Meteorol.. 1987, 26, 1589–1600. [Google Scholar] [CrossRef] [Green Version]
- Fritts, H.C.; Guiot, J.; Gordon, G.A. Verification. In Methods of Dendrochronology, Applications in the Environmental Sciences; Cook, E.R., Kairiukstis, L.A., Eds.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1990; pp. 178–185. [Google Scholar]
- Panofsky, H.A.; Brier, G.W. Some Applications of Statistics to Meteorology; The Pennsylvania State University: State College, PA, USA, 1968; p. 224. [Google Scholar]
- Meko, D.M.; Woodhouse, C.A.; Morino, K. Dendrochronology and links to streamflow. J. Hydrol. 2012, 412–413, 200–209. [Google Scholar] [CrossRef]
- Hutton, P.H.; Rath, J.S.; Roy, S.B. Freshwater flow to the San Francisco Bay-Delta Estuary over nine decades. Part 1: Trend evaluation, hydrological processes. Hydrol. Process. 2017, 31, 2500–2515. [Google Scholar] [CrossRef] [Green Version]
- Briffa, K.R.; Jones, P.D.; Bartholin, T.S. Fennoscandian summers from AD 500: Temperature changes on short and long timescales. Clim. Dyn. 1992, 7, 111–119. [Google Scholar] [CrossRef]
- Briffa, K.R.; Osborn, T.J.; Schweingruber, F.H.; Harris, I.C.; Jones, P.D.; Shiyatov, S.G.; Vaganov, E.A. Low-frequency temperature variations from a northern tree ring density network. J. Geophys. Res. 2001, 106, 2229–2941. [Google Scholar] [CrossRef]
Data | Time Period | Source and Description |
---|---|---|
Eight River Index (8RI) (1) | WYs 1872–2018 | [65,81] |
Tree-Ring Chronologies (long record) | 903–2008 | Supplemental Materials: A and B |
Tree-Ring Chronologies (short record) | 1640–2001 | Supplemental Materials: A and B |
Pre-Development Delta Outflow (simulated) | WYs 1922–2014 | [25] |
Contemporary Delta Outflow | WYs 1912–2018 | [82,27] |
Pre-Development X2 | WYs 1922–2014 | Generated as part of this work using simulated pre-development Delta outflow and an empirical relationship developed by Andrews et al. [26] |
Contemporary X2 | WYs 1920–2018 | Generated as part of this work using contemporary Delta outflow and an empirical relationship developed by Andrews et al. [26] |
Time Period | WYs | Central Valley Runoff (Eight River Index) | Delta Outflow | X2 Position (Salinity) |
---|---|---|---|---|
Predevelopment | Prior to 1850 | Predicted from tree-ring data using Model 1 | Predicted from Equation (2) using runoff estimates and parameters in Table 5 (Model 2) | Predicted from Delta outflow using Equation (3) and parameters in Table 7 (Model 2) |
Early development | 1851–1911 | Predicted from tree-ring data using Model 1 | Predicted from Equation (2) using runoff estimates and parameters in Table 5 for pre-development period (Model 2) | Predicted from Delta outflow using Equation (3) and parameters in Table 7 for pre-developmentperiod (Model 2) |
Contemporary | Post 1912 | Predicted from tree-ring data using Model 1 | Predicted from Equations (2) and (4) using runoff estimates and parameters in Tables 5 and 6 (Model 3) | Predicted from Delta outflow using Equation (3) and parameters in Table 7 (Model 3) |
Tree-Ring Record | Na | Calibration b | Cross-Validation c | ||||
---|---|---|---|---|---|---|---|
WYs | R2 adj | RMSE | RMSE | RE | r | ||
Long record 903–2008 | 13 | 1906–2008 | 0.66 | 0.697 | 0.712 | 0.65 | 0.82 |
Short record 1640–2001 | 60 | 1906–2001 | 0.77 | 0.585 | 0.592 | 0.77 | 0.88 |
8RI Record | WYs | Center Averaging Period (yr) | Min | Max | Range | 5% | 10% | 25% | 50% | 75% | 90% | 95% |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Long Record Reconstruction | 903–2008 | 5 | 16.6 | 41.4 | 24.7 | 23.0 | 24.3 | 26.5 | 28.8 | 31.0 | 32.7 | 33.9 |
Short Record Reconstruction | 1640–2001 | 5 | 18.7 | 39.9 | 21.2 | 22.1 | 23.3 | 26.0 | 28.7 | 31.3 | 34.0 | 35.4 |
Long Record Re- Construction | 1872–2001 | 5 | 19.5 | 41.4 | 21.8 | 22.0 | 24.4 | 26.7 | 29.7 | 32.3 | 34.6 | 36.3 |
Short Record Re- Construction | 1872–2001 | 5 | 19.7 | 39.9 | 20.1 | 22.3 | 23.4 | 26.3 | 29.5 | 31.9 | 35.3 | 37.0 |
Instrumented Flows | 1872–2018 | 5 | 16.0 | 44.5 | 28.5 | 19.1 | 22.3 | 25.4 | 31.2 | 34.5 | 39.0 | 41.4 |
Long Record Re- Construction | 903–2008 | 10 | 21.3 | 38.2 | 16.9 | 24.8 | 25.7 | 27.2 | 28.7 | 30.2 | 31.6 | 32.4 |
Short Record Re- Construction | 1640–2001 | 10 | 21.9 | 36.3 | 14.3 | 24.3 | 25.3 | 27.2 | 28.8 | 30.4 | 32.3 | 33.1 |
Long Record Re- Construction | 1872–2001 | 10 | 21.3 | 38.2 | 16.8 | 23.0 | 25.6 | 27.4 | 30.1 | 31.5 | 32.7 | 34.1 |
Short Record Re- Construction | 1872–2001 | 10 | 21.9 | 36.2 | 14.3 | 24.1 | 25.7 | 27.4 | 29.4 | 31.1 | 32.9 | 33.4 |
Instrumented Flows | 1872–2018 | 10 | 20.2 | 40.3 | 20.2 | 21.7 | 23.9 | 27.2 | 31.1 | 33.8 | 36.3 | 37.5 |
Long Record Re- Construction | 903–2008 | 20 | 23.7 | 33.9 | 10.2 | 25.9 | 26.6 | 27.6 | 28.7 | 29.8 | 30.7 | 31.3 |
Short Record Re- Construction | 1640–2001 | 20 | 24.1 | 32.6 | 8.55 | 25.9 | 26.6 | 27.7 | 29.0 | 30.0 | 30.7 | 31.2 |
Long Record Re- Construction | 1872–2001 | 20 | 23.9 | 33.9 | 9.94 | 25.0 | 25.7 | 27.4 | 30.2 | 31.4 | 32.3 | 32.7 |
Short Record Re- Construction | 1872–2001 | 20 | 24.1 | 32.6 | 8.55 | 25.3 | 26.3 | 27.9 | 29.5 | 30.6 | 31.3 | 31.8 |
Instrumented Flows | 1872–2018 | 20 | 22.4 | 38.4 | 16.0 | 24.7 | 25.8 | 28.1 | 29.9 | 33.8 | 35.4 | 36.2 |
Long Record Re- Construction | 903–2008 | 100 | 27.2 | 29.8 | 2.58 | 27.6 | 27.8 | 28.1 | 28.7 | 29.1 | 29.3 | 29.4 |
Short Record Re- Construction | 1640–2001 | 100 | 27.9 | 29.4 | 1.50 | 28.2 | 28.4 | 28.6 | 28.8 | 29.0 | 29.2 | 29.2 |
Long Record Re- Construction | 1872–2001 | 100 | 28.8 | 29.5 | 0.734 | 28.9 | 29.0 | 29.0 | 29.1 | 29.3 | 29.4 | 29.4 |
Short Record Re- Construction | 1872–2001 | 100 | 28.6 | 29.4 | 0.763 | 28.7 | 28.7 | 28.8 | 28.9 | 29.1 | 29.3 | 29.4 |
Instrumented Flows | 1872–2018 | 100 | 28.0 | 31.2 | 3.20 | 28.4 | 28.6 | 29.4 | 29.9 | 30.7 | 30.9 | 31.0 |
Model | α1 | α2 | r2 | Std. Error (BCM) |
---|---|---|---|---|
Pre-development (Model 2) | 0.380 | 1.23 | 0.956 | 2.7 |
Contemporary WYs 1912–1944 (Model 3) | 0.285 | 1.38 | 0.991 | 1.5 |
Contemporary WYs 1945–2018 (Model 3) | (1) | (1) | (1) | (1) |
Fitting Parameter/ Regression Statistic | Low Runoff Years 8RI < 24.6 BCM/yr | High Runoff Years 8RI > 24.6 BCM/yr |
---|---|---|
α1 | 0.285 | 0.285 |
α2 | 1.38 | 1.38 |
α8 | −0.000137 | 0 |
α9 | 0.0148 | 0.00426 |
α10 | 0 | 0.0863 |
R2 | 0.474 | 0.482 |
Model | Season | α3 | α4 | r2 | Std. Error (km) |
---|---|---|---|---|---|
Pre-development (Model 2) | February–June | 107 | −0.223 | 0.943 | 1.7 |
Pre-development (Model 2) | July–October | 130 | −0.128 | 0.763 | 3.7 |
Contemporary WYs 1912–1944 (Model 3) | February–June | 120 | −0.242 | 0.974 | 1.5 |
Contemporary WYs 1912–1944 (Model 3) | July–October | 142 | −0.137 | 0.760 | 4.8 |
Contemporary WYs 1945–2018 (Model 3) | February–June | 122 | −0.228 | 0.886 | 3.6 |
Contemporary WYs 1945–2018 (Model 3) | July–October | 113 | −0.106 | 0.709 | 4.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hutton, P.H.; Meko, D.M.; Roy, S.B. Supporting Restoration Decisions through Integration of Tree-Ring and Modeling Data: Reconstructing Flow and Salinity in the San Francisco Estuary over the Past Millennium. Water 2021, 13, 2139. https://doi.org/10.3390/w13152139
Hutton PH, Meko DM, Roy SB. Supporting Restoration Decisions through Integration of Tree-Ring and Modeling Data: Reconstructing Flow and Salinity in the San Francisco Estuary over the Past Millennium. Water. 2021; 13(15):2139. https://doi.org/10.3390/w13152139
Chicago/Turabian StyleHutton, Paul H., David M. Meko, and Sujoy B. Roy. 2021. "Supporting Restoration Decisions through Integration of Tree-Ring and Modeling Data: Reconstructing Flow and Salinity in the San Francisco Estuary over the Past Millennium" Water 13, no. 15: 2139. https://doi.org/10.3390/w13152139
APA StyleHutton, P. H., Meko, D. M., & Roy, S. B. (2021). Supporting Restoration Decisions through Integration of Tree-Ring and Modeling Data: Reconstructing Flow and Salinity in the San Francisco Estuary over the Past Millennium. Water, 13(15), 2139. https://doi.org/10.3390/w13152139