On the Way to the Fluvial Anthroposphere—Current Limitations and Perspectives of Multidisciplinary Research
Abstract
:1. Introduction—Floodplains as Hotspots of Socioenvironmental Changes
1.1. The Fluvial Anthroposphere in the Context of the Global Anthropocene
1.2. Current Limits from the Fluvial-Geomorphological and Palaeohydrological Perspective
1.3. Current Limitations from an Archaeological Perspective
1.4. Current Limitations from an Historical Perspective
1.5. Research Perspectives within a Multidisciplinary Framework
Joint Research Project | Project Aims |
---|---|
Hydrological EXtreme Events in Changing Climate | This INQUA-funded project aimed to reconstruct past and supraregional hydrological activity in the context of climatic variability using an approach based on a meta-analysis of data sets of chronological control (14C and luminescence dating) [27,28]. |
Changes in the Geo-Biosphere during the Last 15,000 Years | The DFG Priority Programme aimed to reconstruct environmental conditions and geomorphological processes in Central Europe by combining catchment-scale case studies [29]. |
RheinLUCIFS | The RheinLUCIFS project investigated the effects of land use and climatic forces on sediment fluxes at Rhine catchment and subcatchment scales [30,31]. |
Paleoecosystems and History | The Regensburg Graduate School on ‘Paleoecosystems and History’ aimed to reconstruct historical human–environmental interaction in Germany [32]. |
Harbours from the Roman Period to the Middle Ages | The DFG Priority Programme 1630 aimed to construct a complex understanding of Roman and Medieval harbour systems in Europe and their ecological, logistical, economic, social, legal, military and religious subsystems [44,45]. |
Mensch und Umwelt im Odergebiet in ur- und frühgeschichtlicher Zeit | This project of the Volkswagen Foundation investigated socio-natural interplay along the River Oder from the Neolithic to the early medieval period [55,56]. |
The Dark Ages in an interdisciplinary light: people, landscape and climate in the Netherlands between AD 300 and 1000 | This project, funded by the Netherlands Organization for ScientificResearch, aimed to reconstruct the Dutch riverine landscape and its human occupation in the first millennium AD [58]. |
ENVIEDAN. Environmental history of the Viennese Danube 1500–1890 | This project, supported by the Austrian Science Fund investigated the long-term dynamics, patterns and side effects of the colonisation of rivers, focusing on the Viennese Danube [25,51]. |
Historical disaster research with a view to comparative cultural study | This DFG project undertook an historical investigation of disasters such as flooding and droughts [84]. |
2. Specific Thematic Fields and Major Challenges
2.1. Construction, Maintenance and Socio-Natural Effects of Flood Control Measures
2.2. Long-Term Social Responses to Changing Flood Dynamics
2.3. Floodplain Land Use and Modification of Riparian Vegetation
2.4. Effects of Fishing and Hunting
2.5. Construction, Maintenance and Hydro-Sedimentary Effects of Mills and Hydropower Installations
2.6. Floodplain Pollution from Craft, Manufacturing and Mining
2.7. Construction, Maintenance and Socionatural Effects of River Crossings
2.8. Construction, Maintenance and Hydro-Sedimentary Effects of Land Reclamation
2.9. Environmental and Socioeconomic Effects of Channel Engineering and Inland Navigation
2.10. Legal Framework, Power Structures and Conflict Management in the Context of Floodplain Use
3. Methodological Challenges
3.1. Advances in Geophysical Prospection Techniques and Remote Sensing in Fluvial Geomorphology and Geoarchaeology
3.2. Advances in Multidisciplinary Big Data Sciences
3.3. Progression of DNA Technology
4. On the Way to the Fluvial Anthroposphere—Superimposed Emerging Fields
4.1. Recovery and Understanding of Early Anthropogenic Forcing towards a Fluvial Anthroposphere
4.2. Studying and Understanding of Socionatural Sites within a Multidisciplinary Framework
4.3. Chronological Focus on the Medieval and Preindustrial Modern Periods
4.4. Focus on Comparative and Diachronic Floodplain Studies
4.5. Quantifying and Modelling of Natural and Anthropogenic Processes
4.6. Socioecological Risk Assessments
5. Conclusions: Specific Thematic Objectives for Future Research
6. Outlook: The Establishment of New Avenues of Research and Potentials for Scientific Transfer
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Goudie, A.S. Encyclopedia of Geomorphology, 1st ed.; Routledge: New York, NY, USA, 2004. [Google Scholar]
- Hamilton, S.K. Flood Plains. In Encyclopedia of Inland Waters, 1st ed.; Likens, G.E., Ed.; Elsevier: Amsterdam, The Netherlands, 2009; pp. 378–386. [Google Scholar]
- Council of Europe. European Convention on the Protection of the Archaeological Heritage. La Valletta, Malta, 1992. Available online: https://www.coe.int/en/web/conventions/full-list/ (accessed on 18 July 2019).
- Knoll, M. Die Natur der Menschlichen Welt. Siedlung, Territorium und Umwelt in der Historisch-Topografischen Literatur der Frühen Neuzeit, 1st ed.; Transcript: Bielefeld, Germany, 2013. [Google Scholar]
- Hein, C. Adaptive Strategies for Water Heritage: Past, Present and Future, 1st ed.; Springer: Cham, Germany, 2020. [Google Scholar]
- Tockner, K.; Tonolla, D.; Uehlinger, U.; Siber, R.; Robinson, C.T.; Peter, F.D. Introduction to European Rivers. In Rivers of Europe, 1st ed.; Tockner, K., Zarfl, C., Robinson, C., Eds.; Elsevier: London, UK, 2009; pp. 1–21. [Google Scholar]
- Brown, A.G.; Lespez, L.; Sear, D.A.; Macaire, J.J.; Houben, P.; Klimek, K.; Brazier, R.E.; Van Oost, K.; Pears, B. Natural vs anthropogenic streams in Europe: History, ecology and implications for restoration, river-rewilding and riverine ecosystem services. Earth-Sci. Rev. 2018, 180, 185–205. [Google Scholar] [CrossRef]
- Hoffmann, T.; Thorndycraft, V.; Brown, A.G.; Coulthard, T.J.; Damnati, B.; Kale, V.; Middelkoop, H. Human impact on fluvial regimes and sediment flux during the Holocene: Review and future research agenda. Glob. Planet. Chang. 2010, 72, 87–98. [Google Scholar] [CrossRef]
- Macklin, M.G.; Lewin, J. River stresses in anthropogenic times: Large-scale global patterns and extended environmental timelines. Prog. Phys. Geogr. 2019, 43, 3–23. [Google Scholar] [CrossRef]
- Hoffmann, R.C. Elemental Resources and Aquatic Ecosystems: Medieval Europeans and their Rivers. In A History of Water: Rivers and Society. From Early Civilizations to Modern Times, 1st ed.; Tvedt, T., Coopey, R., Eds.; Tauris: London, UK, 2010; Volume 2, pp. 165–202. [Google Scholar]
- Macklin, M.G.; Lewin, J. The rivers of civilization. Quat. Sci. Rev. 2015, 114, 228–244. [Google Scholar] [CrossRef]
- Verstraeten, G.; Broothaerts, N.; Van Loo, M.; Notebaert, B.; D’Haen, K.; Dusar, B.; De Brue, H. Variability in fluvial geomorphic response to anthropogenic disturbance. Geomorphology 2017, 294, 20–39. [Google Scholar] [CrossRef]
- Waters, C.N.; Zalasiewicz, J.; Summerhayes, C.P.; Barnosky, A.D.; Poirier, C.; Gałuszka, A.; Cearreta, A.; Edgeworth, M.; Ellis, E.C.; Ellis, M.; et al. The Anthropocene is functionally and stratigraphically distinct from the Holocene. Science 2016, 351, aad2622. [Google Scholar] [CrossRef]
- Quenet, G. L’Anthropocène et le temps des historiens. Ann. Hist. Sci. Soc. 2017, 72, 165–197. [Google Scholar] [CrossRef]
- Lewis, S.L.; Maslin, M. The Human Planet. How We Created the Anthropocene, 1st ed.; Yale University Press: New Haven, CT, USA, 2018. [Google Scholar]
- Mauelshagen, F. Die große Stoffwechselanomalie. Jahrb. Okon. Ges. 2019, 30, 17–46. [Google Scholar]
- Zalasiewicz, J.; Waters, C.N.; Williams, M.; Summerhayes, C.P. (Eds.) The Anthropocene as a Geological Time Unit. A Guide to the Scientific Evidence and Current Debate, 1st ed.; Cambridge University Press: Cambridge, UK, 2019. [Google Scholar]
- Ellis, E.C. Anthropocene: A Very Short Introduction, 1st ed.; Oxford University Press: New York, NY, USA, 2018. [Google Scholar]
- Gleeson, T.; Wang-Erlandsson, L.; Zipper, S.C.; Porkka, M.; Jaramillo, F.; Gerten, D.; Fetzer, I.; Cornell, S.E.; Piemontese, L.; Gordon, L.J.; et al. The water planetary boundary. Interrogation and revision. One Earth 2020, 2, 223–234. [Google Scholar] [CrossRef]
- He, F.; Zarfl, C.; Bremerich, V.; David, J.N.W.; Hogan, Z.; Kalinkat, G.; Tockner, K.; Jähnig, S.C. The global decline of freshwater megafauna. Glob. Chang. Biol. 2019, 25, 3883–3892. [Google Scholar] [CrossRef]
- Meybeck, M. Global analysis of river systems: From Earth system controls to Anthropocene syndromes. Philos. Trans. R. Soc. B 2003, 358, 1935–1955. [Google Scholar] [CrossRef] [PubMed]
- Messerli, B.; Grosjean, M.; Hofer, T.; Núñez, L.; Pfister, C. From nature-dominated to human-dominated environmental changes. Quat. Sci. Rev. 2000, 19, 459–479. [Google Scholar] [CrossRef]
- van Dam, P. An Amphibious Culture: Coping with Floods in the Netherlands. In Local Places, Global Processes. Histories of Environmental Change in Britain and Beyond, 1st ed.; Coates, P., Moon, D., Warde, P., Eds.; Oxbow Books: Oxford, UK, 2016; pp. 78–93. [Google Scholar]
- Gerten, D.; Hoff, H.; Rockström, J.; Jägermeyr, J.; Kummu, M.; Pastor, A.V. Towards a revised planetary boundary for consumptive freshwater use: Role of environmental flow requirements. Curr. Opin. Environ. Sustain. 2013, 5, 551–558. [Google Scholar] [CrossRef]
- Winiwarter, V.; Schmid, M.; Dressel, G. Looking at half a millennium of co-existence. The Danube in Vienna as a socio-natural site. Water Hist. 2013, 5, 101–119. [Google Scholar] [CrossRef] [Green Version]
- Tarolli, P.; Cao, W.; Sofia, G.; Evans, D.; Ellis, E. From features to fingerprints: A general diagnostic framework for Anthropogenic geomorphology. Prog. Phys. Geogr. 2019, 43, 95–128. [Google Scholar] [CrossRef] [Green Version]
- Benito, G.; Macklin, M.G.; Panin, A.; Rossato, S.; Fontana, A.; Jones, A.F.; Machado, M.J.; Matlakhova, E.; Mozzi, P.; Zielhofer, C. Recurring flood distribution patterns related to short-term Holocene climatic variability. Sci. Rep. 2015, 5, 16398. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Macklin, M.G.; Benito, G.; Gregory, K.J.; Johnstone, E.; Lewin, J.; Michczyńska, D.J.; Soja, R.; Starkel, L.; Thorndycraft, V.R. Past hydrological events reflected in the Holocene fluvial record of Europe. Catena 2006, 66, 145–154. [Google Scholar] [CrossRef]
- Zolitschka, B.; Behre, K.E.; Schneider, J. Human and climatic impact on the environment as derived from colluvial, fluvial and lacustrine archives—examples from the Bronze Age to the Migration period, Germany. Quat. Sci. Rev. 2003, 22, 81–100. [Google Scholar] [CrossRef]
- Houben, P.; Hoffmann, T.; Zimmermann, A.; Dikau, R. Land use and climatic impacts on the Rhine system (RheinLUCIFS): Quantifying sediment fluxes and human impact with available data. Catena 2006, 66, 42–52. [Google Scholar] [CrossRef]
- Hoffmann, T.; Lang, A.; Dikau, R. Holocene river activity: Analysing 14C-dated fluvial and colluvial sediments from Germany. Quat. Sci. Rev. 2008, 27, 2031–2040. [Google Scholar] [CrossRef]
- Völkel., J. (Ed.) Colluvial sediments, flood loams and peat bogs. In Zeitschrift für Geomorphologie; Schweizerbart: Stuttgart, Germany, 2005; Volume 139. [Google Scholar]
- Abrantes, F.; Lebreiro, S.; Rodrigues, T.; Gil, I.; Bartels-Jónsdóttir, H.; Oliveira, P.; Kissel, C.; Grimalt, J.O. Shallow-marine sediment cores record climate variability and earthquake activity off Lisbon (Portugal) for the last 2000 years. Quat. Sci. Rev. 2005, 24, 2477–2494. [Google Scholar] [CrossRef]
- Hepp, D.A.; Romero, O.E.; Mörz, T.; Pol-Holz, R.; de, Hebbeln, D. How a river submerges into the sea: A geological record of changing a fluvial to a marine paleoenvironment during early Holocene sea level rise. J. Quat. Sci. 2019, 34, 581–592. [Google Scholar] [CrossRef] [Green Version]
- Hoffmann, T.; Erkens, G.; Gerlach, R.; Klostermann, J.; Lang, A. Trends and controls of Holocene floodplain sedimentation in the Rhine catchment. Catena 2009, 77, 96–106. [Google Scholar] [CrossRef]
- Brown, A.G.; Toms, P.; Carey, C.; Rhodes, E. Geomorphology of the Anthropocene: Time-trangressive discontinuities of human-induced alluviation. Anthropocene 2013, 1, 3–13. [Google Scholar] [CrossRef]
- Collins, A.L.; Walling, D.E. Fine-grained bed sediment storage within the main channel systems of the Frome and Piddle catchments, Dorset, UK. Hydrol. Process. 2007, 21, 1449–1459. [Google Scholar] [CrossRef]
- Notebaert, B.; Broothaerts, N.; Verstraeten, G. Evidence of anthropogenic tipping points in fluvial dynamics in Europe. Glob. Planet. Change 2018, 164, 27–38. [Google Scholar] [CrossRef]
- Dotterweich, M. The history of soil erosion and fluvial deposits in small catchments of central Europe: A review. Geomorphology 2008, 101, 192–208. [Google Scholar] [CrossRef]
- Broothaerts, N.; Notebaert, B.; Verstraeten, G.; Kasse, C.; Bohncke, S.; Vandenberghe, J. Non-uniform and diachronous Holocene floodplain evolution. A case study from the Dijle catchment, Belgium. J. Quat. Sci. 2014, 29, 351–360. [Google Scholar] [CrossRef]
- Fuchs, M.; Will, M.; Kunert, E.; Kreutzer, S.; Fischer, M.; Reverman, R. The temporal and spatial quantification of Holocene sediment dynamics in a meso-scale catchment in northern Bavaria, Germany. Holocene 2011, 21, 1093–1104. [Google Scholar] [CrossRef]
- Gerlach, R. Flußdynamik des Mains unter dem Einfluß des Menschen seit dem Spätmittelalter, 1st ed.; Zentralausschuß für Deutsche Landeskunde: Trier, Germany, 1990. [Google Scholar]
- Houben, P.; Schmidt, M.; Mauz, B.; Stobbe, A.; Lang, A. Asynchronous Holocene colluvial and alluvial aggradation: A matter of hydrosedimentary connectivity. Holocene 2013, 23, 544–555. [Google Scholar] [CrossRef]
- Zielhofer, C.; Leitholdt, E.; Werther, L.; Stele, A.; Bussmann, J.; Linzen, S.; Schneider, M.; Meyer, C.; Berg-Hobohm, S.; Ettel, P. Charlemagne’s Summit Canal: An early medieval hydro-engineering project for passing the Central European watershed. PLoS ONE 2014, 9, e108194. [Google Scholar] [CrossRef]
- Werther, L.; Kröger, L.; Kirchner, A.; Zielhofer, C.; Leitholdt, E.; Schneider, M.; Linzen, S.; Berg-Hobohm, S.; Ettel, P. Fossata Magna—A Canal Contribution to Harbour Construction in the 1st Millennium AD; RGZM Tagungen; RGZM: Mainz, Germany, 2018; Volume 34, pp. 355–372. [Google Scholar]
- Vayssière, A.; Castanet, C.; Gautier, E.; Virmoux, C.; Dépret, T.; Gandouin, E.; Develle, A.L.; Mokadem, F.; Saulnier-Copard, S.; Sabatiere, P.; et al. Readjustments of a sinuous river during the last 6000 years in northwestern Europe (Cher River, France): From an active meandering river to a stable river course under human forcing. Geomorphology 2020, 370, 107395. [Google Scholar] [CrossRef]
- Jones, R.; Gregory, R.; Kilby, S.; Pears, B. Living with a trespasser: Riparian names and medieval settlement on the River Trent floodplain. PCA 2017, 7, 33–64. [Google Scholar]
- Walter, R.C.; Merritts, D.J. Natural streams and the legacy of water-powered mills. Science 2008, 319, 299–304. [Google Scholar] [CrossRef] [Green Version]
- Beauchamp, A.; Lespez, L.; Delahaye, D. Impact des aménagements hydrauliques sur les systèmes fluviaux bas-normand depuis 2000 ans. Quaternaire 2017, 28, 253–258. [Google Scholar] [CrossRef] [Green Version]
- Petts, G.E.; Möller, H.; Roux, A.L. (Eds.) Historical Changes of Large Alluvial Rivers: Western Europe, 1st ed.; John Wiley: Chichester, UK, 1989. [Google Scholar]
- Hohensinner, S.; Sonnlechner, C.; Schmid, M.; Winiwarter, V. Two steps back, one step forward: Reconstructing the dynamic Danube riverscape under human influence in Vienna. Water Hist. 2013, 5, 121–143. [Google Scholar] [CrossRef] [Green Version]
- Longoni, R.; Wetter, O. Urban stream works in Central Europe 1200–1700. Municipal administration, hydraulic engineering and flood reconstruction. Water Hist. 2019, 11, 31–57. [Google Scholar] [CrossRef]
- Peng, F.; Prins, M.A.; Kasse, C.; Cohen, K.M.; Van der Putten, N.; van der Lubbe, J.; Toonen, W.H.J.; van Balen, R.T. An improved method for paleoflood reconstruction and flooding phase identification, applied to the Meuse River in the Netherlands. Glob. Planet. Chang. 2019, 177, 213–224. [Google Scholar] [CrossRef]
- von Carnap-Bornheim, C.; Knieps, E. Denkmalschutz und die Umsetzung der Wasserrahmenrichtlinie. Mitt. DGAMN 2009, 21, 9–16. [Google Scholar]
- Bork, H.R.; Brose, F.; Herking, C.; Heussner, K.-U.; Jahns, S. Das Wechselverhältnis zwischen der menschlichen Tätigkeit und den naturräumlichen Verhältnissen. In Forschungen zu Mensch und Umwelt im Odergebiet in ur- und Frühgeschichtlicher Zeit, 1st ed.; Gringmuth-Dallmer, E., Leciejewicz, L., Eds.; Phillip von Zabern: Mainz, Germany, 2003; pp. 373–391. [Google Scholar]
- Gringmuth-Dallmer, E.; Leciejewicz, L. Forschungen zu Mensch und Umwelt im Odergebiet in ur- und Frühgeschichtlicher Zeit, 1st ed.; Phillip von Zabern: Mainz, Germany, 2002. [Google Scholar]
- van Dinter, M.; Cohen, K.M.; Hoek, W.Z.; Stouthamer, E.; Jansma, E.; Middelkoop, H. Late Holocene lowland fluvial archives and geoarchaeology: Utrecht´s case study of Rhine river abandonment under Roman and Medieval settlement. Quat. Sci. Rev. 2017, 166, 227–265. [Google Scholar] [CrossRef]
- Jansma, E.; van Lanen, R.J.; Pierik, H.J. Travelling through a river delta: A landscape-archaeological reconstruction of river development and long-distance connections in the Netherlands during the first millennium AD. Mediev. Settl. Res. 2017, 32, 35–39. [Google Scholar]
- Poláček, L. River Archaeology and the Search for a Harbour in Mikulčice; RGZM Tagungen; RGZM: Mainz, Germany, 2019; Volume 38, pp. 179–190. [Google Scholar]
- Plumettaz, N.; Pillonel, D.; Thew, N. Aménagements Fluviaux de La Thielle au Moyen Âge Pêcherie et Moulin de Pré de la Mottaz. Office et musée cantonal d’archéologie de Neuchâtel: Hautrive, Switzerland, 2011; Volume 48. [Google Scholar]
- Monteil, M.; Arthuis, R. Archéologie de la Basse-Loire, 1st ed.; PU Rennes: Rennes, France, 2015. [Google Scholar]
- Berthold, J. Das Elsbachtal im Mittelalter und Früher Neuzeit; Archäologie einer Kulturlandschaft; Rheinische Ausgrabungen; Philipp von Zabern: Bonn, Germany, 2016; Volume 74. [Google Scholar]
- Foucher, M.; Dumont, A.; Werther, L.; Wollenberg, D. Inland Harbours in Central Europe: Nodes between Northern Europe and the Mediterranean Sea; RGZM Tagungen; Schnell & Steiner: Mainz, Germany, 2019; Volume 38. [Google Scholar]
- Rippon, S. The Transformation of Coastal Wetlands. Exploitation and Management of Marshland Landscapes in North West Europe during the Roman and Medieval Periods, 1st ed.; Oxford University Press: Oxford, UK, 2000. [Google Scholar]
- Campbell, J.B. Rivers and the Power of Ancient Rome, 1st ed.; University of North Carolina Press: Chapel Hill, NC, USA, 2012. [Google Scholar]
- O’Sullivan, A. Europe’s Wetlands from the Migration Period to the Middle Ages. Settlement, Exploitation and Transformation, AD 400–1500. In The Oxford Handbook of Wetland Archaeology, 1st ed.; Menotti, F., O’Sullivan, A., Eds.; Oxford University Press: Oxford, UK, 2013; pp. 27–53. [Google Scholar]
- Diener, A.; Untermann, M. Wasserbau in Mittelalter und Neuzeit; Mitt. DGAMN: Paderborn, Germany, 2009. [Google Scholar]
- Dumont, A. Archéologie fluviale en Europe; Dossiers d’archéologie: Dijon, France, 2009. [Google Scholar]
- Conijn, A.; Lange, J.; Zube, C.; Mächtle, B.; Meier, T. Early Floods and Early Dikes: Research Strategy in Combing Geoarchaeological and Historical Sources in the Upper Rhine Valley; RGZM Tagungen; Schnell & Steiner: Mainz, Germany, 2019; Volume 38, pp. 245–263. [Google Scholar]
- Maavara, T.; Chen, Q.; van Meter, K.; Brown, L.E.; Zhang, J.; Ni, J.; Zarfl, C. River dam impacts on biogeochemical cycling. Nat. Rev. Earth Environ. 2020, 1, 103–116. [Google Scholar] [CrossRef]
- Demangeon, A.; Febvre, L. Le Rhin—Problèmes d’Histoire et d’Economie, 1st ed.; Colin: Paris, France, 1935. [Google Scholar]
- Rossiaud, J. Le Rhône au Moyen Âge: Histoire et Représentation d’un Fleuve Européen, 1st ed.; Aubier: Paris, France, 2007. [Google Scholar]
- Leguay, J. L’eau Dans la Ville au Moyen Age, 1st ed.; PU Rennes: Rennes, France, 2002. [Google Scholar]
- Scheutz, M.; Weigl, H. Verwaltetes Wasser im Österreich des Spätmittelalters und der Frühen Neuzeit; Forschungen zur Landeskunde von Niederösterreich; Verein f. Landeskde v. Niederösterr: St. Pölten, Austria, 2015; Volume 37. [Google Scholar]
- Knoll, M.; Lübken, U.; Schott, D. Rivers Lost, Rivers Regained. Rethinking City-River Relations, 1st ed.; University of Pittsburgh Press: Pittsburgh, PA, USA, 2017. [Google Scholar]
- Tvedt, T.; Jakobsson, E. A History of Water: Water Control and River Biographies, 1st ed.; Tauris: London, UK, 2006; Volume 1. [Google Scholar]
- Tvedt, T.; Coopey, R. A History of Water: Rivers and Society. From Early Civilizations to Modern Times, 1st ed.; Tauris: London, UK, 2010; Volume 2. [Google Scholar]
- Schmid, M.; Haidvogl, G. Coupling the long-term dynamics of natural and social systems: Towards an environmental history of the Danube. In Human Nature: Studies in History Ecology and Environmental History, 1st ed.; Szabó, P., Hédl, R., Eds.; Institute of Botany of the Academy of Sciences: Brno, Czech Republic, 2008; pp. 64–73. [Google Scholar]
- Blair, J. Waterways and Canal-Building in Medieval England, 1st ed.; Oxford University Press: Oxford, UK, 2007. [Google Scholar]
- Bütow, S. Straßen im Fluss. Schifffahrt, Flussnutzung und der Lange Wandel der Verkehrsinfrastruktur in der Mark Brandenburg und der Niederlausitz vom 13. bis zum 16. Jahrhundert, 1st ed.; Lukas: Berlin, Germany, 2015. [Google Scholar]
- Schenk, G.J. Knoten‘ in ‚Netzen‘? Überlegungen zur Hafenstadt als kritische Infrastruktur; RGZM Tagungen; Schnell & Steiner: Mainz, Germany, 2019; Volume 39, pp. 207–236. [Google Scholar]
- Cioc, M. The Rhine. An Eco-Biography, 1st ed.; Combined Academic Publ.: Seattle, WA, USA, 2002. [Google Scholar]
- Vadas, A. Long-Term perspectives on river floods. The Dominican Nunnery on Margaret Island (Budapest) and the Danube River. Interdiscip. Archaeol. 2013, 4, 73–82. [Google Scholar] [CrossRef]
- Schenk, G.J. Managing Natural Hazards: Environment, Society, and Politics in Tuscany and the Upper Rhine Valley in the Renaissance (1270–1570). In Historical Disasters in Context: Science, Religion, and Politics (Routledge Studies in Cultural History 15), 1st ed.; Janku, A., Schenk, G.J., Mauelshagen, F., Eds.; Taylor & Francis: New York, NY, USA, 2012; pp. 31–53. [Google Scholar]
- Labbé, T. Les Catastrophes Naturelles au Moyen Âge, XIIe-XVe Siècle, 1st ed.; CNRS Editions: Paris, France, 2017. [Google Scholar]
- Kiss, A. Floods and Long-Term Water-Level Changes in Medieval Hungary, 1st ed.; Springer: Cham, Germany, 2019. [Google Scholar]
- Squatriti, P. Working with Water in Medieval Europe. Technology and Resource-Use (Technology and Change in History 3), 1st ed.; Brill Academic: Leiden, The Netherlands, 2000. [Google Scholar]
- Rohr, C. Floods of the upper Danube River and its tributaries and their impact on urban economies (c. 1350–1600): The examples of the towns of Krems/Stein and Wels (Austria). Environ. Hist. 2013, 19, 133–148. [Google Scholar] [CrossRef] [Green Version]
- Campopiano, M.; Curtis, D. Medieval land reclamation and the creation of new societies: Comparing Holland and the Po Valley, c. 800–c.1500. J. Hist. Geogr. 2013, 44, 93–108. [Google Scholar]
- Schenk, G.J. Das Baby in der Wiege. Hochwasser zwischen Alltag und Katastrophe (ca. 1250–1550). Beobachtungen zur ‚fluvialen Anthroposphäre‘ im Kraichgau. In Wasser. Ressource—Gefahr—Leben (Kraichtaler Kolloquien 12), 1st ed.; Andermann, K., Schenk, G.J., Eds.; Thorbecke: Ostfildern, Germany, 2020; pp. 79–113. [Google Scholar]
- Galloway, J.A. Storm flooding, coastal defense and land use around the Thames estuary and tidal river c. 1250–1450. J. Mediev. Hist. 2009, 35, 171–188. [Google Scholar] [CrossRef]
- Ciriacono, S. Building on Water: Venice, Holland and the Construction of the European Landscape in Early Modern Times, 1st ed.; Berghahn: New York, NY, USA, 2006. [Google Scholar]
- Rückert, P. Hochwasser und Flussbau: Zur anthropogenen Gestaltung der Flusslandschaft am Oberrhein im späteren Mittelalter. Siedlungsforschung 2005, 23, 113–129. [Google Scholar]
- Haidvogl, G.; Hoffmann, R.; Pont, D.; Jungwirth, M.; Winiwarter, V. Historical ecology of riverine fish in Europe. Aquat. Sci. 2015, 77, 315–324. [Google Scholar] [CrossRef] [Green Version]
- Schenk, G.J. Lorsch und das Wasser. In Laureshamensia. Forschungsberichte des Experimentalarchäologischen Freilichtlabors Karolingischer Herrenhof Lauresham; Verwaltung der Staatlichen Schlösser und Gärten: Homburg v. d. Höhe, Germany, 2021; Volume 3, pp. 32–51. [Google Scholar]
- Hoffmann, R.C. An Environmental History of Medieval Europe, 1st ed.; Cambridge University Press: Cambridge, UK, 2014. [Google Scholar]
- Bauch, M.; Schenk, G.J. Teleconnections, Correlations, Causalities between Nature and Society? In The Crisis of the 14th Century: Teleconnections between Environmental and Societal Change? (Das Mittelalter. Perspektiven Mediävistischer Forschung. Beihefte 13), 1st ed.; Bauch, M., Schenk, G., Eds.; de Gruyter: Berlin, Germany, 2020; pp. 1–22. [Google Scholar]
- Fischer-Kowalski, M.; Weisz, H. Society as hybrid between material and symbolic realms: Toward a theoretical framework of society-nature interaction. Adv. Hum. Ecol. 1999, 8, 215–254. [Google Scholar]
- Schenk, G.J. Historical Disaster Experiences. First Steps toward a Comparative and Transcultural History of Disasters across Asia and Europe in the Preindustrial Era. In Historical Disaster Experiences, 1st ed.; Schenk, G.J., Ed.; Springer: Cham, Germany, 2017; pp. 3–44. [Google Scholar]
- Barry, A.; Born, G. Interdisciplinarity: Reconfigurations of the Social and Natural Sciences, 1st ed.; Taylor & Francis: New York, NY, USA, 2013. [Google Scholar]
- Izdebski, A.; Pickett, J.; Roberts, N.; Waliszewski, T.B. The environmental, archaeological and historical evidence for regional climatic changes and their societal impacts in the Eastern Mediterranean in Late Antiquity. Quat. Sci. Rev. 2016, 136, 189–208. [Google Scholar] [CrossRef]
- Haldon, J.; Mordechai, L.; Newfield, T.P.; Chase, A.F.; Izdebski, A.; Guzowski, P.; Labuhn, I.; Roberts, N. History meets palaeoscience: Consilience and collaboration in studying past societal responses to environmental change. Proc. Natl. Acad. Sci. USA 2018, 115, 3210–3218. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wittfogel, K. Oriental Despotism. A Comparative Study of Total Power, 1st ed.; Yale University Press: New Haven, CT, USA, 1957. [Google Scholar]
- Holenstein, A. Empowering Interactions: Looking at Statebuilding from Below. In Empowering Interactions, Political Cultures and the Emergence of the State in Europe 1300–1900, 1st ed.; Blockmans, W., Schlappi, D., Eds.; Taylor & Francis: Farnham, VA, USA, 2009; pp. 1–31. [Google Scholar]
- Edgeworth, M. Rivers as Material Infrastructure: A Legacy from the Past to the Future. In Water and Power in Past Societies, 1st ed.; Holt, E., Ed.; SUNY Press: Albany, NY, USA, 2018; pp. 243–257. [Google Scholar]
- Schulte, L.; Schillereff, D.; Santisteban, J. Pluridisciplinary analysis and multi-archive reconstruction of paleofloods: Societal demand, challenges and progress. Glob. Planet. Chang. 2019, 177, 225–238. [Google Scholar] [CrossRef] [Green Version]
- Foulds, S.A.; Brewer, P.A.; Macklin, M.G.; Haresign, W.; Betson, R.E.; Rassner, S.M.E. Flood-related contamination in catchments affected by historical metal mining: An unexpected and emerging hazard of climate change. Sci. Total Environ. 2014, 476/477, 165–180. [Google Scholar] [CrossRef] [PubMed]
- Ellis, E.C.; Kaplan, J.O.; Fuller, D.Q.; Vavrus, S.; Goldewijk, K.K.; Verburg, P.H. Used planet: A global history. Proc. Natl. Acad. Sci. USA 2013, 110, 7978–7985. [Google Scholar] [CrossRef] [Green Version]
- Syvitski, J.P.M.; Vörösmarty, C.J.; Kettner, A.J.; Green, P. Impact of humans on the flux of terrestrial sediment to the global coastal ocean. Science 2005, 308, 376–380. [Google Scholar] [CrossRef]
- Pears, B.; Brown, A.G.; Toms, P.S.; Wood, J.; Sanderson, D.; Jones, R. A sub-centennial-scale optically stimulated luminescence chronostratigraphy and late Holocene flood history from a temperate river confluence. Geology 2020, 48, 819–825. [Google Scholar] [CrossRef]
- Rockström, J.; Steffen, W.; Noone, K.; Persson, A.; Chapin, F.S., III; Lambin, E.F.; Lenton, T.M.; Scheffer, M.; Folke, C.; Schellnhuber, H.J.; et al. Planetary boundaries: Exploring the safe operating space for humanity. Ecol. Soc. 2009, 14, 32. [Google Scholar] [CrossRef]
- Gerrard, C.; Petley, D.N. A risk society? Environmental hazards, risk and resilience in the Later Middle Ages in Europe. Nat. Hazards 2013, 69, 1051–1079. [Google Scholar] [CrossRef] [Green Version]
- Steffen, W.; Richardson, K.; Rockström, J.; Cornell, S.E.; Fetzer, I.; Bennett, E.M.; Biggs, R.; Carpenter, S.R.; de Vries, W.; de Wit, C.A.; et al. Planetary boundaries: Guiding human development on a changing planet. Science 2015, 347, 1259855. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Verstraeten, G.; Lang, A.; Houben, P. Human impact on sediment dynamics—quantification and timing. Catena 2009, 77, 77–80. [Google Scholar] [CrossRef] [Green Version]
- Bond, G.; Kromer, B.; Beer, J.; Muscheler, R.; Evans, N.E.; Showers, W.; Hoffmann, S.; Lotti-Bond, R.; Hajdas, I.; Bonani, G. Persistent solar influence on North Atlantic climate during the Holocene. Science 2001, 294, 2130–2136. [Google Scholar] [CrossRef] [Green Version]
- Mayewski, P.A.; Rohling, E.C.; Stager, J.C.; Karlén, W.; Maasch, K.A.; Meeker, L.D.; Meyerson, E.A.; Gasse, F.; van Kreveld, S.; Holmgren, K.; et al. Holocene climate variability. Quat. Res. 2004, 62, 243–255. [Google Scholar] [CrossRef]
- Steinhilber, F.; Beer, J.; Fröhlich, C. Total solar irradiance during the Holocene. Geophys. Res. Lett. 2009, 36, L19704. [Google Scholar] [CrossRef] [Green Version]
- Zielhofer, C.; Köhler, A.; Mischke, S.; Benkaddour, A.; Mikdad, A.; Fletcher, W.J. Western Mediterranean hydro-climatic consequences of Holocene ice-rafted debris (Bond) events. Clim. Past 2019, 15, 463–475. [Google Scholar] [CrossRef] [Green Version]
- Magny, M. Holocene climate variability as reflected by mid-European lake-level fluctuations and its probable impact on prehistoric human settlements. Quat. Int. 2004, 113, 65–79. [Google Scholar] [CrossRef]
- Benito, G.; Sopena, A.; Sanchez-Moya, Y.; Machado, M.J.; Pérez-González, A. Palaeoflood record of the Tagus River (Central Spain) during the Late Pleistocene and Holocene. Quat. Sci. Rev. 2003, 22, 1737–1756. [Google Scholar] [CrossRef]
- Faust, D.; Zielhofer, C.; Baena, R.; Diaz del Olmo, F. High resolution fluvial record of late Holocene geomorphic changes in Tunisia: Climatic or human impact? Quat. Sci. Rev. 2004, 23, 1757–1775. [Google Scholar] [CrossRef]
- Herget, J.; Kapala, A.; Krell, M.; Rustemeier, E.; Simmer, C.; Wyss, A. The millennium flood of July 1342 revisited. Catena 2015, 130, 82–94. [Google Scholar] [CrossRef]
- Dreibrodt, S.; Lubos, C.; Terhorst, B.; Damm, B.; Bork, H.R. Historical soil erosion by water in Germany: Scales and archives. Quat. Int. 2010, 222, 80–95. [Google Scholar] [CrossRef]
- Kiss, A.; Nikolic, Z. Droughts, dry spells and low water levels in medieval Hungary (and Croatia) I: The great droughts of 1362, 1474, 1479, 1494 and 1507. J. Environ. Geogr. 2015, 8, 11–22. [Google Scholar] [CrossRef] [Green Version]
- Schenk, W.; Dix, A. Naturkatastrophen und Naturrisiken in der Vorindustriellen Zeit und ihre Auswirkungen auf Siedlungen und Kulturlandschaft (Siedlungsforschung 23), 1st ed.; Arkum: Bonn, Germany, 2005. [Google Scholar]
- Rohr, C. Extreme Naturereignisse im Ostalpenraum. Naturerfahrung im Spätmittelalter und am Beginn der Neuzeit (Umwelthistorische Forschungen 4), 1st ed.; Böhlau: Köln, Germany, 2007. [Google Scholar]
- Brazdil, R.; Kundzewicz, Z.; Benito, G. Historical hydrology for studying flood risk in Europe. Hydrol. Sci. J. 2006, 51, 739–764. [Google Scholar] [CrossRef]
- Fouquet, G.; Zeilinger, G. Katastrophen im Spätmittelalter, 1st ed.; Philipp von Zabern: Darmstadt, Germany, 2011. [Google Scholar]
- Wetter, O.; Pfister, C.; Weingartner, R.; Luterbacher, J.; Reist, T.; Trösch, J. The largest floods in the High Rhine basin since 1268 assessed from documentary and instrumental evidence. Hydrol. Sci. J. 2011, 56, 733–758. [Google Scholar] [CrossRef]
- Himmelsbach, I.; Glaser, R.; Schoenbein, D.; Rieman, D.; Martin, B. Reconstruction of flood events based on documentary data and transnational flood risk analysis of the Upper Rhine and its French and German tributaries since AD 1480. Hydrol. Earth Syst. Sci. 2015, 19, 4149–4164. [Google Scholar] [CrossRef] [Green Version]
- Deutsch, M.; Pörtge, K.-H. Hochwasser in Thüringen. Ursachen, Verlauf und Schäden Extremer Abflussereignisse (1500–2015), 1st ed.; Thüringer Landesanstalt für Umwelt und Geologie: Jena, Germany, 2017. [Google Scholar]
- Pfister, C. Learnng from Nature-Induced Disasters: Theoretical Considerations and Case studies from Western Europe. In Natural Disasters, Cultural Responses: Case Studies toward a Global Environmental History, 1st ed.; Mauch, C., Pfister, C., Eds.; Lexington: Lanham, MD, USA, 2009; pp. 17–40. [Google Scholar]
- Botter, G.; Basso, S.; Rodriguez-Iturbe, I.; Rinaldo, A. Resilience of river flow regimes. Proc. Natl. Acad. Sci. USA 2013, 110, 12925–12930. [Google Scholar] [CrossRef] [Green Version]
- Bauch, M. St. Mary Magdelene’s Flood (1342) at the intersection of environmental history and the history of infrastructures. NTM Z. Gesch. Wiss. Tech. Med. 2019, 27, 273–309. [Google Scholar]
- Glaser, R. Klimageschichte Mitteleuropas. 1200 Jahre Wetter, Klima, Katastrophen, 3rd ed.; wbg Academic: Darmstadt, Germany, 2013. [Google Scholar]
- De Souza, J.G.; Robinson, M.; Maezumi, S.Y.; Capriles, J.; Hoggarth, J.A.; Lombardo, U.; Novello, V.F.; Apaéstegui, J.; Whitney, B.; Urrego, D.; et al. Climate change and cultural resilience in late pre-Columbian Amazonia. Nat. Ecol. Evol. 2019, 3, 1007–1017. [Google Scholar] [CrossRef]
- Pears, B.; Brown, A.G.; Carroll, J.; Toms, P.S.; Wood, J.C.; Jones, R. Early medieval place-names and riverine flood histories. A new approach and new chronostratigraphic records for three English rivers. Eur. J. Archaeol. 2020, 20, 1–25. [Google Scholar] [CrossRef] [Green Version]
- Zschieschang, C. Ortsnamen und Gewässer—Eine komplexe Beziehung. Onomast. Investig. 2020, 2, 327–341. [Google Scholar]
- Zschieschang, C.; Maříková, M. (Eds.) Wassermühlen und Wassernutzung im Mittelalterlichen Ostmitteleuropa, 1st ed.; Steiner: Stuttgart, Germany, 2015. [Google Scholar]
- Smith-Guzmán, N.E. Cribra orbitalia in the ancient Nile Valley and its connection to malaria. Int. J. Paleopathol. 2015, 10, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Newfield, T.P. Malaria and malaria-like disease in the early Middle Ages. Early Mediev. Eur. 2017, 25, 251–300. [Google Scholar] [CrossRef]
- Kaiser, K.; Lorenz, S.; Germer, S.; Joschus, O.; Küster, M.; Libra, J.; Bens, O.; Hüttl, R. Late Quaternary evolution of rivers, lakes and peatlands in northeast Germany reflecting past climatic and human impact—An overview. E&G Quat. Sci. J. 2012, 61, 103–132. [Google Scholar]
- Mayr, C.; Matzke-Karasz, R.; Manthe, P.; Arnold, J.; Hänfling, C.; Hilber, J.; Spitzenberger, D.; Schmid, W.; Schönfeld, G. Environmental change in the vicinity of the Neolithic wetland settlement Pestenacker (S-Germany) during the last 6600 years. J. Archaeol. Sci. 2015, 54, 396–409. [Google Scholar] [CrossRef]
- Lechner, A. Palaeohydrologic conditions and geomorphic processes during the Postglacial in the Palatine Upper Rhine river floodplain. Z. Geomorph. 2009, 53, 217–245. [Google Scholar] [CrossRef]
- Dinin, M.; Brayshay, B. The contribution of a multiproxy approach in reconstructing floodplain development. Geol. Soc. Spec. Publ. 1999, 163, 179–195. [Google Scholar] [CrossRef]
- Ejarque, A.; Beauger, A.; Miras, Y.; Peiry, J.-L.; Voldoire, O.; Vautier, F.; Benbakkar, M.; Steiger, J. Historical fluvial palaeodynamics and multi-proxy palaeoenvironmental analyses of a palaeochannel, Allier River, France. Geodin. Acta 2015, 27, 25–47. [Google Scholar] [CrossRef] [Green Version]
- Kalis, A.; Merkt, J.; Wunderlich, J. Environmental changes during the Holocene climatic optimum in central Europe—human impact and natural causes. Quat. Sci. Rev. 2003, 22, 33–79. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Jones, P.J.; Matuzeviciute, G.M.; Hunt, H.V.; Lister, D.L.; An, T.; Przelomska, N.; Kneale, C.J.; Zhao, Z.; Jones, M.K. From ecological opportunism to multi-cropping: Mapping food globalisation in prehistory. Quat. Sci. Rev. 2019, 206, 21–28. [Google Scholar] [CrossRef] [Green Version]
- Stobbe, A. Die Holozäne Vegetationsgeschichte der Nördlichen Wetterau. (Dissertationes Botanicae 260), 1st ed.; Schweizerbart: Stuttgart, Germany, 1996. [Google Scholar]
- Leibundgut, C.; Vonderstrass, I. Traditionelle Bewässerung, ein Kulturerbe Europas, 1st ed.; Merkur: Langenthal, Germany, 2016. [Google Scholar]
- Freyhof, J. Freshwater Fish Diversity in Germany, Threats and Species Extinction. In Conservation of Freshwater Fishes: Options for the Future, 1st ed.; Collares-Pereira, M., Cowx, I.G., Coelho, M., Eds.; Wiley: Oxford, UK, 2002; pp. 3–22. [Google Scholar]
- Bartosiewicz, L.; Bonsall, C.; Sisu, V. Sturgeon Fishing in the Middle and Lower Danube Region. In The Iron Gates in Prehistory: New Perspectives (BAR International Series 1893), 1st ed.; Bonsall, C., Boronean, V., Radovanovi, I., Eds.; Archaeopress: Oxford, UK, 2008; pp. 39–54. [Google Scholar]
- Galik, A.; Haidvogl, G.; Bartosiewicz, L.; Guti, G.; Jungwirth, M. Fish remains as a source to reconstruct long-term changes of fish communities in the Austrian and Hungarian Danube. Aquat. Sci. 2015, 77, 337–354. [Google Scholar] [CrossRef] [Green Version]
- Larsen, A.; Alvarez, N.; Sperisen, C.; Lane, S.N. Biotic drivers of river and floodplain geomorphology—New molecular methods for assessing present-day and past biota. Earth Surf. Process. Landf. 2018, 43, 333–338. [Google Scholar] [CrossRef]
- Haidvogl, G.; Pont, D.; Dolak, H.; Hohensinner, S. Long-term evolution of fish communities in European mountainous rivers: Past log driving effects, river management and species introduction (Salzach River, Danube). Aquat. Sci. 2015, 77, 395–410. [Google Scholar] [CrossRef] [Green Version]
- Kunst, G.K.; Gemel, R. Zur Kulturgeschichte der Schildkröten unter besonderer Berücksichtigung der Bedeutung der Europäischen Sumpfschildkröte, Emys orbicularis (L.) in Österreich. Stapfia 2000, 69, 21–69. [Google Scholar]
- Pasda, K. Tierknochen als Spiegel Sozialer Verhältnisse im 8.-15. Jahrhundert in Bayern, 1st ed.; PraeHistorika: Erlangen, Germany, 2005. [Google Scholar]
- Mielzarek, C. Das Verschwinden der Biberpopulation an der Oder im 13. Jahrhundert. In Wassermühlen und Wassernutzung im mittelalterlichen Ostmitteleuropa, 1st ed.; Mariková, M., Zschieschang, C., Eds.; Steiner: Stuttgart, Germany, 2015; pp. 275–300. [Google Scholar]
- Lampen, A. Medieval fish weirs: The archaeological and historical evidence. Archaeofauna 1996, 5, 129–134. [Google Scholar]
- Miejac, E.; de Saulce, A.; Yeny, E. Les pêcheries de fleuves et de rivières. Aménagements médiévaux et modernes dans le centre et l’ouest de la France. In Pêches (Archéopages 26), 1st ed.; Jacob, J.P., Ed.; Inrap: Quétigny; France, 2009; pp. 38–46. [Google Scholar]
- Herzig, F.; Tschuch, M. Vom Wasser haben wir’s gelernt. Fischen und Mahlen im mittelalterlichen Wassertrüdingen. In Das archäologische Jahr in Bayern; Archaeological Society of Bavaria: Bavaria, Germany, 2018; pp. 108–112. [Google Scholar]
- Ansorge, J.; Frenzel, P.; Thomas, M. Cogs, Sand and Beer—A Palaeontological Analysis of Medieval Ballast Sand in the Harbour of Wismar (Southwestern Baltic Sea Coast, Germany). In Umweltarchäologie (Tagungen des Landesmuseums für Vorgeschichte Halle 6), 1st ed.; Bork, H.R., Meller, H., Gerlach, R., Eds.; Beier & Beran: Halle, Germany, 2011; pp. 161–173. [Google Scholar]
- Muigg, B.; Tegel, W.; Rohmer, P.; Eduard-Schmidt, U.; Büntgen, U. Dendroarchaeological evidence of early medieval water mill technology. J. Archaeol. Sci. 2018, 93, 17–25. [Google Scholar] [CrossRef]
- Munro, J.H. Industrial energy from watermills in the European economy, 5th to 18th Centuries: The limitations of power. MPRA Paper 2002, 34, 223–269. [Google Scholar]
- Reitemeier, A.; Petersen, N. Die Mühle und der Fluss. Juristische Wechselwirkungen. Das Mittelalter. Perspekt. Mediävistischer Forsch. 2017, 4, 276–290. [Google Scholar]
- Gimpel, J. The Medieval Machine. The Industrial Revolution of the Middle Ages, 1st ed.; Penguin Books: London, UK, 1977. [Google Scholar]
- Lucas, A. Wind, Water, Work. Ancient and Medieval Milling Technology (Technology and Change in History 8), 1st ed.; Brill: Leiden, The Netherlands, 2006. [Google Scholar]
- Franzke, J. Räder im Fluß. Die Geschichte der Nürnberger Mühlen, 1st ed.; Tümmel: Nürnberg, Germany, 1986. [Google Scholar]
- Buchty-Lemke, M.; Lehmkuhl, F. Impact of abandoned water mills on Central European foothills to lowland rivers: A reach scale example from the Wurm River, Germany. Geogr. Ann. A 2018, 100, 221–239. [Google Scholar] [CrossRef]
- Py, V.; Véron, A.; Edouard, J.L.; de Beaulieu, J.L.; Ancel, B.; Segard, M.; Durand, A.; Leveau, P. Interdisciplinary characterisation and environmental imprints of mining and forestry in the upper Durance valley (France) during the Holocene. Quat. Int. 2014, 353, 74–97. [Google Scholar] [CrossRef] [Green Version]
- Tolksdorf, J.F.; Elburg, R.; Schröder, F.; Knapp, H.; Herbig, C.; Westpfahlen, T.; Schneider, B.; Fülling, A.; Hemker, C. Forest exploitation for charcoal production and timber since the 12th century in an intact medieval mining site in the Niederpöbel Valley (Eastern Germany). J. Archaeol. Sci. Rep. 2015, 4, 487–500. [Google Scholar] [CrossRef]
- Raab, T.; Beckmann, S.; Richard, N.; Völkel, J. Reconstruction of floodplain evolution in former mining areas—The Vils River case study. Erde 2005, 136, 47–62. [Google Scholar]
- Buchty-Lemke, M.; Hagemann, L.; Maaß, A.L.; Schüttrumpf, H.; Schwarzbauer, J.; Lehmkuhl, F. Floodplain chronology and sedimentation rates for the past 200 years derived from trace element gradients, organic compounds, and numerical modeling. Environ. Earth Sci. 2019, 78, 445. [Google Scholar] [CrossRef]
- Hoffmann, R.C. A brief history of aquatic resource use in medieval Europe. Helgol. Mar. Res. 2005, 59, 22–30. [Google Scholar] [CrossRef]
- Barles, S. Urban metabolism and river systems. An historical perspective—Paris and the Seine, 1790–1970. Hydrol. Earth Syst. Sci. 2007, 11, 1757–1769. [Google Scholar] [CrossRef] [Green Version]
- Kohl, W. Zur Geschichte von Gewässerverschmutzung und Gewässerschutz seit dem Spätmittelalter. Schr. Ver. Verbreit. Nat. Kennt. Wien 2002, 137–140, 223–286. [Google Scholar]
- Jørgensen, D. Local government responses to urban river pollution in late medieval England. Water Hist. 2010, 2, 35–52. [Google Scholar] [CrossRef]
- Delile, H.; Pleuger, E.; Blichert-Toft, J.; Goiran, J.-P.; Fagel, N.; Gadhoum, A.; Abichou, A.; Jerbania, I.B.; Fentress, E.; Wilson, A.I. Economic resilience of Carthage during the Punic Wars: Insights from sediments of the Medjerda delta around Utica (Tunisia). Proc. Natl. Acad. Sci. USA 2019, 116, 9764–9769. [Google Scholar] [CrossRef] [Green Version]
- Esser, V.; Buchty-Lemke, M.; Schulte, P.; Podzun, L.S.; Lehmkuhl, F. Signatures of recent pollution profiles in comparable central European rivers. Catena 2020, 193, 104646. [Google Scholar] [CrossRef]
- Hoffmann, R.C.; Winiwarter, V. Making land and water meet: The cycling of nutrients between fields and ponds in pre-modern Europe. Agric. Hist. 2010, 84, 352–380. [Google Scholar] [CrossRef]
- Prell, M. Archäologie der Brücken: Vorgeschichte, Antike, Mittelalter, Neuzeit, 1st ed.; Pustet: Regensburg, Germany, 2011. [Google Scholar]
- Logel, T. Passages à gué sur le Rhin (Alsace/Bade) au haut Moyen Âge. In Territoire Fluvial et Société au Premier Moyen Âge (Ve-XIIe Siécle), 1st ed.; Peytremann, E., Ed.; Revue Archéologique de l’est: Dijon, France, 2016; pp. 213–234. [Google Scholar]
- Kröger, L. Crossing the River. Ferries as Part of the Maritime Landscape of the River Main (Germany). In Ships and Maritime Landscapes, 1st ed.; Gawronski, J., van Holk, A., Schokkenbroek, J., Eds.; Barkhuis: Eelde, The Netherlands, 2017; pp. 95–101. [Google Scholar]
- Bundesminister für Verkehr. Steinbrücken in Deutschland, 1st ed.; Beton: Düsseldorf, Germany, 1988. [Google Scholar]
- Harrison, D. The Bridges of Medieval England. Transport and Society 400–1800, 1st ed.; Oxford University Press: Oxford, UK, 2004. [Google Scholar]
- Fouquet, G. Brücken. Bau und Unterhalt im späten Mittelalter und in der frühen Neuzeit: Das Beispiel der Weidenhäuser Brücke in Marburg. In Weg und Steg: Aspekte des Verkehrswesens von der Spätantike bis zum Ende des Alten Reiches, 1st ed.; Andermann, K., Gallion, N., Eds.; Thorbecke: Ostfildern, Germany, 2018; pp. 47–73. [Google Scholar]
- Schenk, G.J. More Resilient with Mars or Mary? Constructing a Myth and Reclaiming Public Space after the Destruction of the Old Bridge of Florence 1333. In Strategies, Dispositions and Resources of Social Resilience, 1st ed.; Endress, M., Clemens, L., Rampp, B., Eds.; Springer: Wiesbaden, Germany, 2020; pp. 139–162. [Google Scholar]
- Feistner, E. Die Steinerne Brücke in Regensburg, 1st ed.; Schnell & Steiner: Regensburg, Germany, 2005. [Google Scholar]
- Gajdošová, J. The Charles Bridge: Ceremony and Propaganda in Medieval Prague, 1st ed.; Birkbeck: London, UK, 2015. [Google Scholar]
- Gerhold, D. London Bridge and its Houses, c. 1209–1761, 1st ed.; Oxbow: London, UK, 2019. [Google Scholar]
- Brown, S. The Medieval Exe Bridge, St. Edmund’s Church, and Excavation of Waterfront Houses (Devon Archaeological Society Monograph 1), 1st ed.; Devon Archaeological Society: Exeter, UK, 2019. [Google Scholar]
- Lübken, U. Der große Brückentod: Überschwemmungen als infrastrukturelle Konflikte im 19. und 20. Jahrhundert. Saeculum 2007, 58, 89–114. [Google Scholar] [CrossRef]
- van de Ven, G.P. Manmade Lowlands. In History of Water Management and Land Reclamation in the Netherlands, 1st ed.; Matrijs: Utrecht, The Netherlands, 1994. [Google Scholar]
- Groenewoudt, B.; van Doesburg, J. Medieval Reclamation and Land Use in the Netherlands. In The Archaeology of Medieval Europe, Eighth to Twelfth Centuries AD, 1st ed.; Graham-Campbell, J., Ed.; Aarhus University Press: Aarhus, Denmark, 2011; Volume 1, pp. 75–77. [Google Scholar]
- Blackbourn, D. The Conquest of Nature: Water, Landscape and the Making of Modern Germany; Reprint; Norton: London, UK, 2007. [Google Scholar]
- Schmid, M. Long-Term Risks of Colonization: The Bavarian ‘Donaumoos’. In Social Ecology. Society-Nature Relations across Time and Space, 1st ed.; Haberl, H., Fischer-Kowalski, M., Krausmann, F., Winiwarter, V., Eds.; Springer: Cham, Germany, 2016; pp. 391–415. [Google Scholar]
- Gläser, M. Mittelalterliche Baulandgewinnung in Lübeck. In Wasserbau in Mittelalter und Neuzeit (Mitteilungen der DGAMN 21), 1st ed.; Diener, A., Untermann, M., Eds.; Neumann: Heidelberg, Germany, 2009; pp. 59–64. [Google Scholar]
- Sarfatij, H. Tiel und Dordrecht: Archäologie und Handel in zwei Städten im niederländischen Rheingebiet (10. bis 17. Jahrhundert). In Lübecker Kolloquium zur Stadtarchäologie im Hanseraum, 1st ed.; Gläser, M., Ed.; Schmidt-Römhild: Lübeck, Germany, 1999; Volume 2, pp. 183–200. [Google Scholar]
- Oudhof, J.M.W.; Verhoeven, A.A.A.; Schuuring, I. Tiel rond 1000. Analyse van Vier Opgravingen in de Tielse Binnenstad, 1st ed.; Universiteit van Amsterdam: Amsterdam, The Netherlands, 2013. [Google Scholar]
- Jenisch, B. Flutkatastrophen in mittelalterlichen Städten am südlichen Oberrhein. In Erdbeben, Feuer, Wasser und andere Katastrophen, 1st ed.; Schneller, D., Lassau, G., Möhle, M., Eds.; Gesellschaft für Schweizerische Kunstgeschichte: Bern, Switzerland, 2019. [Google Scholar]
- Ettel, P.; Hack, A.T. (Eds.) Flusstäler, Flussschifffahrt, Flusshäfen: Befunde aus Antike und Mittelalter (RGZM Tagungen 39), 1st ed.; Schnell & Steiner: Mainz, Germany, 2019. [Google Scholar]
- Mirschenz, M.; Gerlach, R.; Bemmann, J.; Brosseder, U.; Joachim, H.E. (Eds.) Der Rhein als europäische Verkehrsachse III. In Bonner Beiträge zur vor- und Frühgeschichtlichen Archäologie, 1st ed.; Universität Bonn: Bonn, Germany, 2019; Volume 22. [Google Scholar]
- Ellmers, D. Techniken und Organisationsformen zur Nutzung der Binnenwasserstraßen im hohen und späten Mittelalter. In Straßen- und Verkehrswesen im Hohen und Späten Mittelalter, 1st ed.; Konstanzer Arbeitskreis für mittelalterliche Geschichte, Ed.; Thorbecke: Ostfildern, Germany, 2007; pp. 161–184. [Google Scholar]
- Eißing, T. Anlagen für den Holztransport zum, am und auf dem Fluss: Die gebundene und die ungebundene Flößerei. Forum IFL 2011, 15, 17–30. [Google Scholar]
- Horst, T. Die Darstellung von Flüssen auf Karten des Mittelalters und der Renaissance: Ein Überblick. In Flusstäler, Flussschifffahrt, Flusshäfen: Befunde aus Antike und Mittelalter (RGZM Tagungen 39), 1st ed.; Ettel, P., Hack, A., Eds.; Schnell & Steiner: Mainz, Germany, 2019; pp. 139–158. [Google Scholar]
- Mehler, N. Marine Trade and Transport Related Crafts and their Actors: People without Archaeology? In Everyday Products in the Middle Ages: Crafts, Consumption and the Individual in Northern Europe c. 800–1600, 1st ed.; Hansen, G., Ashby, S., Baug, I., Eds.; Oxbow Books: Oxford, UK, 2015; pp. 360–375. [Google Scholar]
- Brandl, M.; Martinez, M.M.; Hauzenberger, C.; Filzmoser, P.; Nymoen, P.; Mehler, N. A multi-technique analytical approach to sourcing Scandinavian flint: Provenance of ballast flint from the shipwreck ‘Leirvigen 1’. PLoS ONE 2018, 13, e0200647. [Google Scholar] [CrossRef]
- Brock, A. Floodplain occupation and landscape modification in early Rome. Quat. Int. 2017, 460, 167–174. [Google Scholar] [CrossRef]
- Hoffmann, R.C. Economic development and aquatic ecosystems in medieval Europe. Am. Hist. Rev. 1996, 101, 631–669. [Google Scholar] [CrossRef]
- Milne, G. Timber Building Techniques in London, c 900–1400: An Archaeological Study of Waterfront Installations and Related Material (London and Middlesex Archaeological Society Special Paper 15), 1st ed.; The Museum of London and the London & Middlesex Archaeological Society: London, UK, 1992. [Google Scholar]
- Wollenberg, D.; Nießen, I. How to Identify a Harbour in the Archaeological Record in Medieval Urban Contexts? A Case Study of Regensburg, Frankfurt/Main and Speyer. In Inland Harbours in Central Europe: Nodes between Northern Europe and the Mediterranean Sea (RGZM Tagungen), 1st ed.; Foucher, M., Dumont, A., Werther, L., Wollenberg, D., Eds.; Schnell & Steiner: Mainz, Germany, 2019; Volume 38, pp. 141–164. [Google Scholar]
- Fournier, P.; Lavaud, S. (Eds.) Eaux et Conflits Dans l’Europe Médiévale et Moderne, 1st ed.; Presses Universitaires du Mirail: Toulouse, France, 2012. [Google Scholar]
- Magnusson, R.J. Water Technology in the Middle Ages: Cities, Monasteries, and Waterworks after the Roman Empire, 1st ed.; Johns Hopkins University Press: Baltimore, MD, USA, 2001. [Google Scholar]
- Vadas, A. Border by the river—But where is the river? Hydrological changes and borders in Medieval Hungary. Hung. Hist. Rev. 2019, 8, 336–360. [Google Scholar]
- Getzler, J. A History of Water Rights at Common Law, 1st ed.; Oxford University Press: Oxford, UK, 2004. [Google Scholar]
- Menotti, F.; O’Sullivan, A. (Eds.) The Oxford Handbook of Wetland Archaeology, 1st ed.; Oxford University Press: Oxford, UK, 2013. [Google Scholar]
- Hausmann, J.; Zielhofer, C.; Berg-Hobohm, S.; Dietrich, P.; Heymann, R.; Werban, U.; Werther, L. Direct push sensing in wetland (geo)archaeology: High-resolution reconstruction of buried canal structures (Fossa Carolina, Germany). Quat. Int. 2018, 473, 21–36. [Google Scholar] [CrossRef]
- Zielhofer, C.; Rabbel, W.; Wunderlich, T.; Vött, A.; Berg, S. Integrated geophysical and (geo)archaeological explorations in wetlands. Quat. Int. 2018, 473, 1–2. [Google Scholar] [CrossRef]
- Notebaert, B.; Verstraeten, G.; Govers, G.; Poesen, J. Qualitative and quantitative applications of LiDAR imagery in fluvial geomorphology. Earth Surf. Process. Landf. 2008, 34, 217–231. [Google Scholar] [CrossRef]
- Schmidt, J.; Werther, L.; Zielhofer, C. Shaping pre-modern digital terrain models: The former topography at Charlemagne’s canal construction site. PLoS ONE 2018, 13, e0200167. [Google Scholar] [CrossRef]
- Schmidt, J.; Völlmer, J.; Werther, L.; Werban, U.; Dietrich, P.; Berg, S.; Ettel, P.; Linzen, S.; Stele, A.; Zielhofer, C. 3D modelling of Charlemagne’s summit canal (SW Germany)—merging remote sensing and geoarchaeological subsurface data. Remote Sens. 2019, 11, 1111. [Google Scholar] [CrossRef] [Green Version]
- van der Meulen, B.; Cohen, K.M.; Pierik, H.J.; Zinsmeister, J.J.; Middelkoop, H. LiDAR-derived high-resolution palaeo-DEM construction workflow and application to the early medieval Lower Rhine valley and upper delta. Geomorphology 2020, 370, 107370. [Google Scholar] [CrossRef]
- Rabiger-Völlmer, J.; Schmidt, J.; Linzen, S.; Werban, U.; Dietrich, P.; Wilken, D.; Wunderlich, T.; Berg, S.; Werther, L.; Zielhofer, C. Non-invasive prospection techniques and direct push sensing as high-resolution validation tools in wetland geoarchaeology. J. Appl. Geophy. 2020, 173, 103928. [Google Scholar] [CrossRef]
- Fischer, P.; Wunderlich, T.; Rabbel, W.; Vött, A.; Willershäuser, T.; Baika, K.; Rigakou, D.; Metallinou, G. Combined electrical resistivity tomography (ERT), direct-push electrical conductivity (DP-EC) logging and coring—A new methodological approach. Archaeol. Prospect. 2016, 23, 213–228. [Google Scholar] [CrossRef]
- Kirchner, A.; Zielhofer, C.; Werther, L.; Schneider, M.; Linzen, S.; Wilken, D.; Wunderlich, T.; Rabbel, W.; Meyer, C.; Schmidt, J.; et al. A multidisciplinary approach in wetland (geo)archaeology: Survey of the missing southern canal connection of the Fossa Carolina (SW Germany). Quat. Int. 2018, 473, 3–20. [Google Scholar] [CrossRef]
- Reischer, M.; Christensen, A.G.; De Weirdt, F.; Bruns, S.; Dideriksen, K. Capabilities of an optical direct push probe for 2D-subsurface imaging. J. Contam. Hydrol. 2020, 232, 103636. [Google Scholar] [CrossRef] [PubMed]
- Wunderlich, T.; Wilken, D.; Erkul, E.; Rabbel, W.; Vött, A.; Fischer, P.; Hadler, H.; Heinzelmann, M. The river harbour of Ostia Antica—Stratigraphy, extent and harbour infrastructure from combined geophysical measurements and drillings. Quat. Int. 2018, 473, 55–65. [Google Scholar] [CrossRef]
- Brisset, E.; Guiter, F.; Miramont, C.; Troussier, T.; Sabatier, P.; Poher, Y.; Cartier, R.; Arnaud, F.; Malet, E.; Anthony, E.J. The overlooked human influence in historic and prehistoric floods in the European Alps. Geology 2017, 45, 347–350. [Google Scholar] [CrossRef] [Green Version]
- Oksanen, E. Inland Navigation in England and Wales Before AD 1348 (GIS Database); Archaeology Data Service: York, UK, 2019. [Google Scholar] [CrossRef]
- van Lanen, R.J.; Kosian, M.C. What wetlands can teach us: Reconstructing historical water-management systems and their present-day importance through GIScience. Water Hist. 2020, 12, 151–177. [Google Scholar] [CrossRef]
- Sonnlechner, C.; Hohensinner, S.; Haidvogl, G. Floods, fights and a fluid river. The Viennese Danube in the sixteenth century. Water Hist. 2013, 5, 173–194. [Google Scholar] [CrossRef] [Green Version]
- Werther, L. Komplexe Systeme im Diachronen Vergleich. Ausgewählte Aspekte der Entwicklung von drei Süddeutschen Kleinräumen Zwischen Früh- und Hochmittelalter (RGZM Monographien 127), 1st ed.; Schnell & Steiner: Regensburg, Germany, 2015. [Google Scholar]
- Engel, T.; Kunz, A.; Müller, H.; Werther, L. Towards a Virtual Research Environment for Ancient Harbour Data. In Harbours as Objects of Interdisciplinary Research—Archaeology + History + Geoscience (RGZM Tagungen 34), 1st ed.; Daim, F., von Carnap-Bornheim, C., Ettel, P., Warnke, U., Eds.; Schnell & Steiner: Mainz, Germany, 2018; pp. 59–69. [Google Scholar]
- Hoffmann, T.; Erkens, G.; Cohen, K.M.; Houben, P.; Seidel, J.; Dikau, R. Holocene floodplain sediment storage and hillslope erosion within the Rhine catchment. Holocene 2007, 17, 105–118. [Google Scholar] [CrossRef]
- Hijma, M.; Cohen, K.M. Holocene transgression of the Rhine river mouth area, The Netherlands/Southern North Sea: Palaeogeography and sequence stratigraphy. Sedimentology 2011, 58, 1453–1485. [Google Scholar] [CrossRef]
- Haidvogl, G.; Guthyne-Horvath, M.; Gierlinger, S.; Hohensinner, S.; Sonnlechner, C. Urban land for a growing city at the banks of a moving river. Vienna’s spread into the Danube island Unterer Werd from the late 17th to the beginning of the 20th century. Water Hist. 2013, 5, 195–217. [Google Scholar] [CrossRef] [Green Version]
- Schlummer, M.; Hoffmann, T.; Dikau, R.; Eickmeier, M.; Fischer, P.; Gerlach, R.; Holzkämpfer, J.; Kalis, A.J.; Kretschmer, I.; Lauer, F.; et al. Upscaling approaches for late Quaternary archaeological and environmental data. Earth-Sci. Rev. 2014, 131, 22–48. [Google Scholar] [CrossRef]
- Frings, R.M.; Hillebrand, G.; Gehres, N.; Banhold, K.; Schriever, S.; Hoffmann, T. From source to mouth: Basin-scale morphodynamics of the Rhine River. Earth-Sci. Rev. 2019, 196, 102830. [Google Scholar] [CrossRef]
- Cooper, A.; Green, C. Embracing the complexities of ‘big data’ in archaeology: The case of the English Landscape and Identities project. J. Archaeol. Method Theory 2015, 23, 271–304. [Google Scholar] [CrossRef]
- McCoy, M. Geospatial big data and archaeology: Prospects and problems too great to ignore. J. Archaeol. Sci. 2017, 84, 74–94. [Google Scholar] [CrossRef]
- Werther, L.; Kröger, L. Medieval inland navigation and the shifting fluvial landscape between Rhine and Danube (Germany). Post Class. Archaeol. 2017, 7, 65–96. [Google Scholar]
- Werther, L.; Foucher, M.; Müller, H. (Eds.) European Harbour Data Repository. Digital Library Thuringia, 2018–2020. Available online: https://www.db-thueringen.de/receive/dbt_mods_00035240 (accessed on 7 June 2021).
- Doi, H.; Inui, R.; Akanatsu, Y.; Kanno, K.; Yamanaka, H.; Takahara, T.; Minamoto, T. Environmental DNA analysis for estimating the abundance and biomass of stream fish. Freshw. Biol. 2017, 62, 30–39. [Google Scholar] [CrossRef]
- Kuwae, M.; Tamai, H.; Doi, H.; Sakata, M.K.; Minamoto, T.; Suzuki, Y. Sedimentary DNA tracks decadal-centennial changes in fish abundance. Commun. Biol. 2020, 3, 558. [Google Scholar] [CrossRef]
- Domaizon, I.; Winegardner, A.; Capo, E.; Gauthier, J.; Gregory-Eaves, I. DNA-based methods in paleolimnology: New opportunities for investigating long-term dynamics of lacustrine biodiversity. J. Paleolimnol. 2017, 58, 1–21. [Google Scholar] [CrossRef]
- Capo, E.; Giguet-Covex, C.; Rouillard, A.; Nota, K.; Heintzman, P.D.; Vuillemin, A.; Ariztegui, D.; Arnaud, F.; Belle, S.; Bertilsson, S.; et al. Lake sedimentary DNA research on past terrestrial and aquatic biodiversity: Overview and recommendations. Quat. Int. 2021, 4, 6. [Google Scholar]
- Clarke, C.L.; Edwards, M.E.; Brown, A.G.; Gielly, L.; Lammers, Y.; Heintzman, P.D.; Ancin-Murguzur, F.J.; Bråthen, K.-A.; Goslar, T.; Alsos, I.G. Holocene floristic diversity and richness in Northeast Norway revealed by sedimentary ancient DNA and pollen. Boreas 2018, 48, 299–316. [Google Scholar] [CrossRef] [Green Version]
- Matisoo-Smith, E.; Roberts, K.; Welikala, N.; Tannock, G.; Chester, P.; Feek, D.; Flenley, J. Recovery of DNA and pollen from New Zealand lake sediments. Quat. Int. 2008, 184, 139–149. [Google Scholar] [CrossRef]
- Stager, J.C.; Sporn, L.A.; Johnson, M.; Regalado, S. Of paleo-genes and Perch: What if an ‘Alien’ is actually a native? PLoS ONE 2015, 10, e0119071. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Flammer, P.G.; Dellicour, S.; Preston, S.G.; Rieger, D.; Warren, S.; Tan, C.K.W.; Nicholson, R.; Přichystalová, R.; Bleicher, N.; Wahl, J.; et al. Molecular archaeoparasitology identifies cultural changes in the medieval Hanseatic trading centre of Lübeck. Proc. Royal Soc. B 2018, 285, 20180991. [Google Scholar] [CrossRef] [Green Version]
- Briggs, L. Ancient DNA research in maritime and underwater archaeology: Pitfalls, promise and future directions. Open Quat. 2020, 6, 3. [Google Scholar] [CrossRef] [Green Version]
- Star, B.; Boessenkool, S.; Gondek, A.T.; Nikolina, E.A.; Hufthammer, A.K.; Pampoulie, C.; Knutsen, H.; André, C.; Nistelberger, H.M.; Dierking, J.; et al. Ancient DNA reveals the Arctic origin of Viking Age cod from Haithabu, Germany. Proc. Natl. Acad. Sci. USA 2017, 114, 9152–9157. [Google Scholar] [CrossRef] [Green Version]
- Živaljević, I.; Popović, D.; Snoj, A.; Marić, A.S. Ancient DNA analysis of cyprinid remains from the Mesolithic-Neolithic Danube Gorges reveals an extirpated fish species Rutilus frisii (Nordmann, 1840). J. Archaeol. Sci. 2017, 79, 1–9. [Google Scholar] [CrossRef]
- Tarolli, P.; Sofia, G. Human topographic signatures and derived geomorphic processes across landscapes. Geomorphology 2016, 255, 140–161. [Google Scholar] [CrossRef] [Green Version]
- Hooke, R.L.; Martín-Duque, J.F. Land transformation by humans. A review. GSA Today 2012, 12, 4–10. [Google Scholar] [CrossRef]
- Foley, S.F.; Gronenborn, D.; Andreae, M.O.; Kadereit, J.W.; Esper, J.; Scholz, D.; Pöschl, U.; Jacob, D.E.; Schöne, B.R.; Schreg, R.; et al. The Palaeoanthropocene—The beginnings of anthropogenic environmental change. Anthropocene 2013, 3, 83–88. [Google Scholar] [CrossRef]
- Fuller, I.C.; Macklin, M.G.; Richardson, J.M. The geography of the Anthropocene in New Zealand: Differential river catchment response to human impact. Geogr. Res. 2015, 53, 255–269. [Google Scholar] [CrossRef]
- Brown, A.G.; Tooth, S.; Bullard, J.E.; Thomas, D.S.G.; Chiverrell, R.C.; Plater, A.J.; Murton, J.; Thorndycraft, V.R.; Tarolli, P.; Rose, J.; et al. The geomorphology of the Anthropocene: Emergence, status and implications. Earth Surf. Process. Landf. 2016, 42, 71–90. [Google Scholar] [CrossRef] [Green Version]
- Kelly, J.M.; Scarpino, P.V.; Berry, H.; Syvitski, J.; Meybeck, M. (Eds.) Rivers of the Anthropocene, 1st ed.; University of California Press: Oakland, CA, USA, 2018. [Google Scholar]
- Lewin, J.; Macklin, M.G. Floodplain catastrophes in the UK Holocene: Messages for managing climatic change. Hydrol. Process. 2010, 24, 2900–2911. [Google Scholar] [CrossRef]
- Leopold, L.B.; Wolman, M.G. River channel patterns: Braided, meandering and straight. Geol. Surv. Prof. Pap. 1957, 282, 1–85. [Google Scholar]
- River Restoration Centre. Handbook of River Restoration Techniques. 2020. Available online: https://www.therrc.co.uk/manual-river-restoration-techniques (accessed on 8 June 2021).
- Kondolf, M. River restoration and meanders. Ecol. Soc. 2006, 11, 42. [Google Scholar] [CrossRef]
- Moss, T.; Monstadt, J. Restoring Floodplains in Europe, 1st ed.; IWA Publishing: London, UK, 2008. [Google Scholar]
- Hein, T.; Funk, A.; Pletterbauer, F.; Graf, W.; Zsuffa, I.; Haidvogel, G.; Schinegger, R.; Weigelhöfer, G. Management challenges related to long-term ecological impacts, complex stressor interactions, and different assessment approaches in the Danube River Basin. River Res. Appl. 2019, 35, 500–509. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Werther, L.; Mehler, N.; Schenk, G.J.; Zielhofer, C. On the Way to the Fluvial Anthroposphere—Current Limitations and Perspectives of Multidisciplinary Research. Water 2021, 13, 2188. https://doi.org/10.3390/w13162188
Werther L, Mehler N, Schenk GJ, Zielhofer C. On the Way to the Fluvial Anthroposphere—Current Limitations and Perspectives of Multidisciplinary Research. Water. 2021; 13(16):2188. https://doi.org/10.3390/w13162188
Chicago/Turabian StyleWerther, Lukas, Natascha Mehler, Gerrit Jasper Schenk, and Christoph Zielhofer. 2021. "On the Way to the Fluvial Anthroposphere—Current Limitations and Perspectives of Multidisciplinary Research" Water 13, no. 16: 2188. https://doi.org/10.3390/w13162188
APA StyleWerther, L., Mehler, N., Schenk, G. J., & Zielhofer, C. (2021). On the Way to the Fluvial Anthroposphere—Current Limitations and Perspectives of Multidisciplinary Research. Water, 13(16), 2188. https://doi.org/10.3390/w13162188