Spatial Variations in Water-Holding Capacity as Evidence of the Need for Precision Irrigation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Estate Irrigation Practices
2.3. Meteorological Data Collection
2.4. Soil Sampling
2.5. Delineation of Irrigation Management Zone
2.6. Irrigation Requirement Simulation Using FAO Cropwat Version 8.0
3. Results and Discussion
3.1. Water Usage
3.2. Meteorological Data
3.3. Soil Data
3.4. Irrigation Management Zone
3.5. Crop Water Requirement (CWR)
3.6. Comparison between TNI and EID for Each IMZ
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Igor, A.S. World fresh water resources. In Water in Crisis: A Guide to the World’s Fresh Water Resources; Peter, H.G., Ed.; Oxford University Press: New York, NY, USA, 1993; pp. 13–24. [Google Scholar]
- UNFPA Annual Report 2020. Available online: https://www.unfpa.org/data/world-population-dashboard (accessed on 15 June 2021).
- Boretti, A.; Rosa, L. Reassessing the projections of the world water development report. NPJ Clean Water 2019, 2, 15. [Google Scholar] [CrossRef]
- Burek, P.; Satoh, Y.; Fisher, G.; Kahil, T.; Jimenez, L.N.; Scherzer, A.; Tramberend, S.; Wada, Y.; Eisner, S.; Florke, M.; et al. Water Futures and Solution, Fast Track Initiative; Working Paper, WP-16-006, Final Report; International Institute for Applied Systems Analysis (IIASA): Laxenburg, Austria, 2016. [Google Scholar]
- Ding, Y.; Tang, D.; Dai, H.; Wei, Y. Human-water harmony index: A new approach to assess the human water relationship. Water Resour. Manag. 2014, 28, 1061–1077. [Google Scholar] [CrossRef]
- Valipour, M.; Bateni, S.M.; Jun, C. Global surface temperature: A new insight. Climate 2021, 9, 81. [Google Scholar] [CrossRef]
- Wrachien, D.D.; Mudlagiri, B.G. Global Warming Impacts on Agriculture and Irrigation and Drainage Development. J. Agric. Aquac. 2019. Available online: https://escientificpublishers.com/global-warming-impacts-on-agriculture-and-irrigation-and-drainage-development-JAA-01-0007 (accessed on 13 July 2021).
- Harun, S.N.; Hanafiah, M.M. Estimating the country-level water consumption footprint of selected crop production. Appl. Ecol. Environ. Res. 2018, 16, 5381–5403. [Google Scholar] [CrossRef]
- Shahrizaila, A. Water Resource Users in Malaysia, Issues and Challenges. In Proceedings of the Malaysia Water Resources Management Forum. “Time for the Solution”, Perbadanan, Putrajaya, Malaysia, 26–27 November 2012. [Google Scholar]
- Zuraini, A.; Jaharudin, P.; Noorhaslinda, K.A.R.; Roseliza, M.A.; Haslina, M. Factors affecting water demand: Macro evidence in Malaysia. Jurnal Ekonomi Malaysia 2019, 53, 17–25. [Google Scholar]
- Department of Statistic Malaysia. Selected agriculture indicator. 2020. Available online: https://www.dosm.gov.my (accessed on 15 June 2021).
- Statista. Available online: https://www.statista.com/statistics/274127/world-palm-oil-usage-distribution/ (accessed on 15 June 2021).
- Lee, C.T.; Izwanizam, A. Lysimeter Studies and Irrigation of Oil Palm in Some Inland Soils of Peninsular Malaysia: Felda’s Experience. Planter 2013, 89, 15–29. [Google Scholar]
- Shahkhirat, M.N.; Umar, M.U.M.J.; Izwanizam, A.; Romzi, I.; Suhaidi, H. An Overview of Irrigation Approaches Implemented FELDA. In Proceedings of the 4th National Seminar on Oil Palm Mechanisation, Bangi, Malaysia, 23–24 October 2012. [Google Scholar]
- Mungkalasiri, J.; Wisansuwannakorn, R.; Paengjuntuek, W. Water footprint evaluation of oil palm fresh fruit bunches in Pathumthani and Chonburi, Thailand. Int. J. Environ. Sci. Dev. 2015, 6, 455–459. [Google Scholar] [CrossRef] [Green Version]
- Roundtable on Sustainable Palm Oil (RSPO). Principles and Criteria: For the Production of Sustainable Palm Oil. Revised 01 February 2020 with Updated Supply Chain Requirement for Mills. 56. Available online: https://www.rspo.org/resources/archive/1079 (accessed on 15 June 2021).
- Zulkifli, H.; Halimah, M.; Vijaya, S.; Choo, Y.M. Water footprint: Part 2, FFB production for oil palm planted in Malaysia. J. Oil Palm Res. 2014, 26, 282–291. [Google Scholar]
- Muaz, M.A.; Marlia, M.H. Water footprint assessment of oil palm in Malaysia: A preliminary study. AIP Conf. Proc. 2014, 1614, 803. [Google Scholar] [CrossRef]
- Bahagian Pengurusan dan Pemuliharaan Sumber Tanah. Panduan Mengenali Siri-Siri Tanah di Semenanjung Malaysia, 2nd ed.; Jabatan Pertanian: Kuala Lumpur, Malaysia, 2008; p. 75.
- Roslan, M.M.N.; Haniff, M.H. Water Deficit and Irrigation in Oil Palm: A Review of Recent Studies and Findings. Oil Palm Bull. 2004, 49, 1–6. [Google Scholar]
- FGVAS. Panduan 1; FGV Agri Services Sdn Bhd: Pahang, Malaysia, 2010; p. 122. [Google Scholar]
- Richards, L.A. Pressure Membrane Apparatus Construction and Use. Agric. Eng. 1947, 28, 451–454. [Google Scholar]
- Teh, B.S.C.; Jamal, T. Water Retention. In Soil Physics Analyses: Volume 1; Teh, B.S.C., Jamal, T., Eds.; University Putra Malaysia Press: Serdang, Malaysia, 2006; pp. 14–17. [Google Scholar]
- FAO. Crop Water Requirements and Irrigation Scheduling. In FAO Irrigation Manual Module 4; Savva, A.P., Frenken, K., Eds.; FAO: Rome, Italy, 2002; Available online: http://www.fao.org/3/ai593e/ai593e.pdf (accessed on 15 June 2021).
- Surre, C. Les Besoins en eau du palmier à huile: Calcul du Bilan de l’eau et ses Applications Pratiques. Oléagineux 1968, 23, 165–167. [Google Scholar]
- Malaysia Meteorological Department Annual Report. 2016. Available online: https://www.met.gov.my/content/pdf/penerbitan/laporantahunan/laporantahunan2016.pdf (accessed on 15 June 2021).
- Malaysia Meteorological Department Annual Report. 2017. Available online: https://www.met.gov.my/content/pdf/penerbitan/laporantahunan/laporantahunan2017.pdf (accessed on 15 June 2021).
- Jacquemard, J.C. Oil Palm: The Tropical Agriculturist; MacMillan Education Ltd.: Hong Kong, China, 1998; pp. 23–25. [Google Scholar]
- Shahkhirat, M.N.; Aimrun, W.; Yahya, A.K.; Fikri, A.A.; Razif, M.M. Quantitative Approach for Irrigation Requirement of Oil Palm: Case Study in Chuping, Northern Malaysia. J. Oil Palm Res. 2020, 33, 277–288. [Google Scholar] [CrossRef]
- FAO. Available online: http://www.fao.org/land-water/databases%20and-software/climwat-for-cropwat/en/ (accessed on 15 June 2021).
- Minasny, B.; McBratney, A.B. Limited effect of organic matter on soil available water capacity. Eur. J. Soil Sci. 2018, 69, 39–47. [Google Scholar] [CrossRef] [Green Version]
- Cambardella, C.A.; Moorman, T.B.; Novak, J.M.; Parkin, T.B.; Karlen, D.L.; Turco, R.F.; Konopka, A.E. Field-scale variability of soil properties in central Iowa soils. Soil Sci. Am. J. 1994, 58, 1501–1511. [Google Scholar] [CrossRef]
- Souza, E.G.; Schenatto, K.; Bazzi, C.L. Creating thematic maps and management zones for agriculture fields. In Proceedings of the 14th International Conference on Precision Agriculture, Montreal, QC, Canada, 24–27 June 2018; pp. 1–17. [Google Scholar]
- Liakos, V.; Vellidis, G.; Lacerda, L.; Tucker, M.; Porter, W.; Cox, C. Management Zone Delineation for Irrigation Based on Sentinel-2 Satellite Images and Field Properties. In Proceedings of the 14th International Conference on Precision Agriculture, Montreal, QC, Canada, 24–27 June 2018; pp. 1–11. [Google Scholar]
- Oldoni, H.; Bassoi, L.H. Delineation of irrigation management zones in a Quartzipsamment of the Brazilian semiarid region. Pesqui. Agropecu. Bras. 2016, 51, 1283–1294. [Google Scholar] [CrossRef] [Green Version]
- Andales, A.A.; Chávez, J.L.; Bauder, T.A. Irrigation Scheduling: The Water Balance Approach. Extension Fact Sheet, Colorado State University. 2011; p. 4. Available online: https://extension.colostate.edu/topic-areas/agriculture/irrigation-scheduling-the-water-balance-approach-4-707/ (accessed on 15 June 2021).
- Ruixiu, S. Irrigation Scheduling Using Soil Moisture Sensors. J. Agric. Sci. 2017, 10, 1–11. [Google Scholar] [CrossRef]
- Bittelli, M. Measuring soil water content: A review. HortTechnology 2011, 21, 293–300. [Google Scholar] [CrossRef]
- Evett, S.R.; Schwartz, R.C.; Tolk, J.A.; Howell, T.A. Soil profile water content determination: Spatiotemporal variability of electromagnetic and neutron probe sensors. Vadose Zone J. 2009, 8, 926–941. [Google Scholar] [CrossRef]
- McCready, M.S.; Dukes, M.D. Landscape Irrigation Scheduling efficiency and adequacy by various control technologies. Agric. Water Manag. 2011, 98, 697–704. [Google Scholar] [CrossRef]
- Irmak, S.; Rathje, W.R. Plant Growth and Yield as Affected by Wet Soil Conditions Due to Flooding or Over-Irrigation. Neb Guide Extension 2008. Institute of Agriculture and Natural Resources, University of Nebraska-Lincoln. 2008. Available online: https://extensionpublications.unl.edu/assets/pdf/g1904.pdf (accessed on 15 June 2021).
Month | Rainfall | MnT | MxT | RH | WS | SH | Month | Rainfall | MnT | MxT | RH | WS | SH |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
mm | °C | °C | % | m/s | Hours | mm | °C | °C | % | m/s | Hours | ||
2016 | 2017 | ||||||||||||
January | 40.1 | 23.8 | 33.0 | 81.9 | 1.5 | 5.7 | January | 281.1 | 23.1 | 31.3 | 85.2 | 1.1 | 5.7 |
February | 49.2 | 23.3 | 32.2 | 81.9 | 1.8 | 6.5 | February | 144.3 | 22.6 | 31.4 | 84.0 | 1.1 | 6.5 |
March | 6.8 | 24.2 | 35.0 | 75.4 | 1.5 | 6.8 | March | 135.6 | 23.4 | 32.6 | 82.5 | 1.0 | 6.8 |
April | 103.2 | 24.6 | 35.7 | 76.4 | 1.2 | 6.7 | April | 133.1 | 23.8 | 33.0 | 84.0 | 0.8 | 6.7 |
May | 189.6 | 24.4 | 34.0 | 83.6 | 1.0 | 6.6 | May | 118.8 | 23.9 | 32.3 | 81.5 | 1.1 | 6.6 |
June | 21.4 | 23.1 | 32.1 | 83.5 | 1.0 | 6.4 | June | 35.9 | 23.2 | 32.4 | 80.2 | 1.1 | 6.4 |
July | 67.8 | 22.7 | 32.7 | 82.2 | 1.1 | 6.3 | July | 111.7 | 23.0 | 32.0 | 78.2 | 1.3 | 6.3 |
August | 69.8 | 23.3 | 33.2 | 78.2 | 1.3 | 6.1 | August | 147.6 | 23.1 | 31.5 | 80.7 | 1.1 | 6.1 |
September | 68.9 | 23.2 | 33.3 | 79.8 | 1.2 | 5.7 | September | 57.7 | 23.3 | 32.0 | 80.8 | 1.1 | 5.7 |
October | 50.3 | 23.4 | 33.1 | 77.9 | 1.3 | 5.6 | October | 176.5 | 23.4 | 32.5 | 82.0 | 0.9 | 5.6 |
November | 151.4 | 22.2 | 30.6 | 86.3 | 1.0 | 5.1 | November | 612.5 | 23.3 | 31.0 | 85.6 | 0.9 | 5.1 |
December | 173.9 | 21.8 | 30.5 | 85.2 | 1.1 | 4.9 | December | 129.1 | 23.4 | 31.2 | 83.3 | 1.1 | 4.9 |
Depth | AWHC | BD | Clay | Silt | CS | FS | TS | OM | OC | |
---|---|---|---|---|---|---|---|---|---|---|
Depth | 1 | |||||||||
p-value | 0 | |||||||||
AWHC | 0.5535 | 1 | ||||||||
** | 0 | |||||||||
BD | −0.0525 | 0.0717 | 1 | |||||||
0.6439 | 0.5274 | 0 | ||||||||
Clay | 0.5297 | 0.1371 | −0.3011 | 1 | ||||||
** | 0.2254 | ** | 0 | |||||||
Silt | −0.048 | −0.2798 | −0.1618 | 0.2783 | 1 | |||||
0.6722 | * | 0.1515 | * | 0 | ||||||
CS | −0.1169 | −0.1558 | 0.2407 | −0.4384 | −0.1925 | 1 | ||||
0.3016 | 0.1675 | * | ** | 0.0871 | 0 | |||||
FS | −0.4021 | 0.0784 | 0.2519 | −0.8136 | −0.6495 | 0.0871 | 1 | |||
** | 0.4895 | * | ** | ** | 0.4421 | 0 | ||||
TS | −0.4033 | 0.0109 | 0.3162 | −0.8926 | −0.6529 | 0.4571 | 0.9259 | 1 | ||
** | 0.9238 | ** | ** | ** | ** | ** | 0 | |||
OM | −0.5564 | −0.3115 | −0.191 | −0.2966 | 0.0732 | −0.0526 | 0.2467 | 0.2003 | 1 | |
** | ** | 0.0897 | ** | 0.5189 | 0.6431 | * | 0.0748 | 0 | ||
OC | −0.0425 | −0.0012 | −0.214 | 0.3197 | −0.0892 | −0.3296 | −0.1239 | −0.2356 | 0.194 | 1 |
0.7081 | 0.9916 | 0.0567 | ** | 0.4316 | ** | 0.2735 | * | 0.0847 | 0 |
Zone | AWHC (mm) | n | Mean | Grouping 1 | Hectares (ha) |
---|---|---|---|---|---|
A | 126 to 167 | 9 | 140 | a | 7.62 |
B | 101 to 125 | 12 | 109 | b | 9.23 |
C | 79 to 100 | 7 | 86 | c | 6.57 |
Year | Rainfall (mm) | CWR (mm) |
---|---|---|
2016 | 992.4 | 666.8 |
2017 | 2083.4 | 260.2 |
Year | 2016 | 2017 | ||||
---|---|---|---|---|---|---|
Zone | TNI (mm) | EID | Surplus (+) or Deficit (−) in mm | TNI (mm) | EID | Surplus (+) or Deficit (−) in mm |
(mm Year−1) | (mm Year−1) | |||||
A | 428 | 322 | –106 | 68 | 130 | 62 |
B | 432 | 322 | –110 | 84 | 130 | 46 |
C | 432 | 322 | –110 | 96 | 130 | 34 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Norizan, M.S.; Wayayok, A.; Abdullah, A.F.; Mahadi, M.R.; Abd Karim, Y. Spatial Variations in Water-Holding Capacity as Evidence of the Need for Precision Irrigation. Water 2021, 13, 2208. https://doi.org/10.3390/w13162208
Norizan MS, Wayayok A, Abdullah AF, Mahadi MR, Abd Karim Y. Spatial Variations in Water-Holding Capacity as Evidence of the Need for Precision Irrigation. Water. 2021; 13(16):2208. https://doi.org/10.3390/w13162208
Chicago/Turabian StyleNorizan, Mohd Shahkhirat, Aimrun Wayayok, Ahmad Fikri Abdullah, Muhammad Razif Mahadi, and Yahya Abd Karim. 2021. "Spatial Variations in Water-Holding Capacity as Evidence of the Need for Precision Irrigation" Water 13, no. 16: 2208. https://doi.org/10.3390/w13162208
APA StyleNorizan, M. S., Wayayok, A., Abdullah, A. F., Mahadi, M. R., & Abd Karim, Y. (2021). Spatial Variations in Water-Holding Capacity as Evidence of the Need for Precision Irrigation. Water, 13(16), 2208. https://doi.org/10.3390/w13162208