Glacial Change and Its Hydrological Response in Three Inland River Basins in the Qilian Mountains, Western China
Abstract
:1. Introduction
2. Methods and Data
2.1. Study Area
2.2. Glacier Degree-Day Model
2.3. Data and Parameters
- Meteorological Data: There are a total of 26 national meteorological stations in and around the study area, and the records are used to interpolate the temperature and precipitation by the method of Chen Rensheng [41]. After separation of solid and liquid precipitation, the snow and rain are calibrated separately, taking into account the systematic errors in the observations of the original data, and the calibration parameter is the same as Chen Rensheng [44].
- Data for calibration and validation: The DDFi of each glacier is calibrated by the area change between CGI-I and CGI-II. The model is validated by five long-term observed glaciers which include Ningchan River Glacier No.3, Shuiguan River Glacier No.4, Qiyi Glacier, Bayi Glacier and Laohugou Glacier No.1 in the study region. Data from six stations and CHOICE [46] were used to verify estimated temperature, PDD and precipitation (including separated rain and snow).
- Data for Projection: The future meteorological data grid is 0.5° × 0.5°, and the bias was corrected by the China National Climate Center including five GCMs from the CMIP5 archive: HadGEM2-ES, IPSL-CM5A-LR, MIROC-ESM-CHEM, GFDL-ESM2 M and NorESM1-M under three RCP scenarios: RCP2.6, 4.5 and 8.5 [47,48]. Climate projection data were downscaled by SDSM with the method of Khadka [49].
2.4. Model Validation
3. Results
3.1. Regional Climate Change
3.2. Changes of Glacier Area
3.3. Changes of Glacier Runoff
3.4. “Peak Point” of Glacier Runoff
3.5. Contribution of Glacier Runoff
4. Discussion
4.1. Glacial Runoff Features Shaped by Climate
4.2. Scale Differences in the Representation of Glacial Runoff Results
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Radić, V.; Hock, R. Glaciers in the Earth’s hydrological cycle: Assessments of glacier mass and runoff changes on global and regional scales. Surv. Geophys. 2014, 35, 813–837. [Google Scholar] [CrossRef]
- Milner, A.M.; Khamis, K.; Battin, T.J.; Brittain, J.E.; Barrand, N.E.; Füredere, L.; Cauvy-Fraunie’, S.; Gislason, G.M.; Jacobsen, D.; Hannah, D.M.; et al. Glacier shrinkage driving global changes in downstream systems. Proc. Natl. Acad. Sci. USA 2017, 114, 9770–9778. [Google Scholar] [CrossRef] [Green Version]
- Huss, M.; Hock, R. Global-scale hydrological response to future glacier mass loss. Nat. Clim. Chang. 2018, 8, 135–140. [Google Scholar] [CrossRef] [Green Version]
- Ding, Y.; Zhan, Q.; Wu, J.; Zhang, S.; Wang, S.; Chang, Y.; Li, X.; Shangguan, D.; Han, H.; Qin, J.; et al. The future changes of Chinese cryospheric hydrology and their impacts on water security in arid areas. J. Glacio. Geocryo. 2020, 42, 23–32. (In Chinese) [Google Scholar]
- Hugonnet, R.; McNabb, R.; Berthier, E.; Menounos, B.; Nuth, C.; Girod, L.; Kääb, A. Accelerated global glacier mass loss in the early twenty-first century. Nature 2021, 592, 726–731. [Google Scholar] [CrossRef] [PubMed]
- Zemp, M.; Huss, M.; Thibert, E.; Eckert, N.; McNabb, R.; Huber, J.; Barandun, M.; Machguth, H.; Nussbaumer, S.U.; Gärtner-Roer, I.; et al. Global glacier mass changes and their contributions to sea-level rise from 1961 to 2016. Nature 2019, 568, 382–386. [Google Scholar] [CrossRef]
- Dyurgerov, M.; Bring, A.; Destouni, G. Integrated assessment of changes in freshwater inflow to the Arctic Ocean. J. Geophys. Res. Atmos. 2010, 115, D12. [Google Scholar] [CrossRef]
- Nummelin, A.; Ilicak, M.; Li, C.; Smedsrud, L.H. Consequences of future increased Arctic runoff on Arctic Ocean stratification, circulation, and sea ice cover. J. Geophys. Res. Oceans 2016, 121, 617–637. [Google Scholar] [CrossRef] [Green Version]
- Neal, E.G.; Hood, E.; Smikrud, K. Contribution of glacier runoff to freshwater discharge into the Gulf of Alaska. Geophys. Res. Lett. 2010, 37, L06404. [Google Scholar] [CrossRef] [Green Version]
- Huss, M. Present and future contribution of glacier storage change to runoff from macroscale drainage basins in Europe. Water Resour. Res. 2011, 47, W07511. [Google Scholar] [CrossRef] [Green Version]
- Schaner, N.; Voisin, N.; Nijssen, B.; Lettenmaier, D.P. The contribution of glacier melt to streamflow. Environ. Res. Lett. 2012, 7, 034029. [Google Scholar] [CrossRef]
- Jones, D.B.; Harrison, S.; Anderson, K.; Whalley, W.B. Rock glaciers and mountain hydrology: A review. Earth-Sci. Rev. 2019, 193, 66–90. [Google Scholar] [CrossRef]
- Pritchard, H.D. Asia’s glaciers are a regionally important buffer against drought. Nature 2017, 545, 169–174. [Google Scholar] [CrossRef] [PubMed]
- Pritchard, H.D. Asia’s shrinking glaciers protect large populations from drought stress. Nature 2019, 569, 649–654. [Google Scholar] [CrossRef] [PubMed]
- Shean, D.E.; Bhushan, S.; Montesano, P.; Rounce, D.R.; Arendt, A.; Osumanoglu, B. A systematic, regional assessment of high mountain Asia glacier mass balance. Front. Earth Sci. 2020, 7, 363. [Google Scholar] [CrossRef] [Green Version]
- Hodson, A.J.; Gurnell, A.M.; Washington, R.; Tranter, M.; Clark, M.J.; Hagen, J.O. Meteorological and runoff time-series characteristics in a small, high-Arctic Glaciated Basin, Svalbard. Hydrol. Process. 1998, 12, 509–526. [Google Scholar] [CrossRef]
- Takahashi, S.; Sugiura, K.; Kameda, T.; Enomoto, H.; Kononov, Y.; Aranicheva, M.D.; Kapistin, G. Response of glaciers in the Suntar-Khayata range, eastern Siberia, to climate change. Ann. Glaciol. 2011, 52, 185–192. [Google Scholar] [CrossRef] [Green Version]
- Liljedahl, A.K.; Gädeke, A.; O’Neel, S.; Gatesman, T.A.; Douglas, T.A. Glacierized headwater streams as aquifer recharge corridors, subarctic Alaska. Geophys. Res. Lett. 2017, 44, 6876–6885. [Google Scholar] [CrossRef] [Green Version]
- Ayala, Á.; Farías-Barahona, D.; Huss, M.; Pellicciotti, F.; McPhee, J.; Farinotti, D. Glacier runoff variations since 1955 in the Maipo River basin, in the semiarid Andes of central Chile. Cryosphere 2020, 14, 2005–2027. [Google Scholar] [CrossRef]
- Salzmann, N.; Huggel, C.; Rohrer, M.; Stoffel, M. Data and knowledge gaps in glacier, snow and related runoff research-A climate change adaptation perspective. J. Hydrol. 2014, 518, 225–234. [Google Scholar] [CrossRef] [Green Version]
- Bliss, A.; Hock, R.; Radić, V. Global response of glacier runoff to twenty-first century climate change. J. Geophys. Res. Earth 2014, 119, 717–730. [Google Scholar] [CrossRef]
- Brunner, M.I.; Farinotti, D.; Zekollari, H.; Huss, M.; Zappa, M. Future shifts in extreme flow regimes in Alpine regions. Hydrol. Earth Syst. Sci. 2019, 23, 4471–4489. [Google Scholar] [CrossRef] [Green Version]
- Miles, E.; McCarthy, M.; Dehecq, A.; Marin, K.; Fugger, S.; Pellicciotti, F. Health and sustainability of glaciers in High Mountain Asia. Nat. Commun. 2021, 12, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Zemp, M. Global Glacier Changes: Facts and Figures; UNEP/Earthprint: Nairobi, Kenya, 2008. [Google Scholar]
- Kogutenko, L.; Severskiy, I.; Shahgedanova, M.; Lin, B. Change in the extent of glaciers and glacier runoff in the chinese Sector of the Ile River Basin between 1962 and 2012. Water 2019, 11, 1668. [Google Scholar] [CrossRef] [Green Version]
- Van Pelt, W.J.J.; Pohjola, V.A.; Pettersson, R.; Ehwald, L.E.; Reijmer, G.H.; Boot, W.; Jakobs, C.L. Dynamic response of a High Arctic glacier to melt and runoff variations. Geophys. Res. Lett. 2018, 45, 4917–4926. [Google Scholar] [CrossRef] [Green Version]
- Luo, Y.; Wang, X.; Piao, S.; Sun, L.; Ciais, P.; Zhang, Y.; Ma, C.; Gan, R.; He, C. Contrasting streamflow regimes induced by melting glaciers across the Tien Shan-Pamir-North Karakoram. Sci. Rep. 2018, 8, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Xu, C.; Hao, Z.; Zhang, L.; Ju, Q.; Lai, X. Variation of melt water and rainfall runoff and their impacts on streamflow changes during recent decades in two Tibetan Plateau Basins. Water 2020, 12, 3112. [Google Scholar] [CrossRef]
- Zhang, S.; Gao, X.; Zhang, X. Glacial runoff likely reached peak in the mountainous areas of the Shiyang River Basin, China. J. Mt. Sci. 2015, 12, 382–395. [Google Scholar] [CrossRef]
- Shafeeque, M.; Luo, Y.; Wang, X.; Sun, L. Altitudinal distribution of meltwater and its effects on glacio-hydrology in glacierized catchments, central Asia. J. Am. Water. Resour. As. 2020, 56, 30–52. [Google Scholar] [CrossRef]
- Engelhardt, M.; Schuler, T.V.; Andreassen, L.M. Contribution of snow and glacier melt to discharge for highly glacierised catchments in Norway. Hydrol. Earth Syst. Sci. 2014, 18, 511–523. [Google Scholar] [CrossRef] [Green Version]
- Annual Hydrolocgical Report, China. Hydrological Data of Inland Rivers. Inland Rivers of Hexi Region in Gansu Province; Department of Hydrology, Ministry of Water Resources: Beijing, China, 2019; Volume 10, No. 5.
- Shi, Y.; Shen, Y.; Hu, R. Preliminary study on signal, impact and foreground of climatic shift from warm-dry to warm-humid in Northwest China. J. Glaciol. Geocryol. 2002, 24, 219–226. (In Chinese) [Google Scholar]
- Wang, L.; Chen, R.; Han, C.; Wang, X.; Liu, G.; Song, Y.; Yang, Y.; Liu, J.; Liu, Z.; Liu, X.; et al. Change characteristics of precipitation and temperature in the Qilian Mountains and Hexi Oasis, Northwestern China. Environ. Earth Sci. 2019, 78, 1–13. [Google Scholar] [CrossRef]
- Hock, R. Temperature index melt modelling in mountain areas. J. Hydrol. 2003, 282, 104–115. [Google Scholar] [CrossRef]
- Hock, R. Glacier melt: A review of processes and their modelling. Prog. Phys. Geog. 2005, 29, 362–391. [Google Scholar] [CrossRef]
- Bahr, D.B.; Meier, M.F.; Peckham, S.D. The physical basis of glacier volume-area scaling. J. Geophys. Res. Solid Earth 1997, 102, 20355–20362. [Google Scholar] [CrossRef]
- Guo, W.; Liu, S.; Xu, J.; Wu, L.; Shangguan, D.; Yao, X.; Jiang, Z. The second Chinese glacier inventory: Data, methods and results. J. Glaciol. 2015, 61, 357–372. [Google Scholar] [CrossRef] [Green Version]
- Berthier, E.; Arnaud, Y.; Kumar, R.; Ahmad, S.; Wagnon, P.; Chevallier, P. Remote sensing estimates of glacier mass balances in the Himachal Pradesh (Western Himalaya, India). Remote. Sens. Environ. 2007, 108, 327–338. [Google Scholar] [CrossRef] [Green Version]
- Han, C. Preliminary Study of Hydroligical Process in Alpine Cold Desert. Master’s Thesis, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou, China, 2010. (In Chinese). [Google Scholar]
- Chen, R.; Wang, G.; Yang, Y.; Liu, J.; Han, C.; Song, Y.; Kang, E. Effects of cryospheric change on alpine hydrology: Combining a model with observations in the upper reaches of the Hei River, China. J. Geophys. Res. Atmo. 2018, 123, 3414–3442. [Google Scholar] [CrossRef]
- Huss, M.; Hock, R. A new model for global glacier change and sea-level rise. Front. Earth Sci. 2015, 3, 1–22. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Liu, S.; Ding, Y. Observed degree-day factors and their spatial variation on glaciers in western China. Ann. Glaciol. 2006, 43, 301–306. (In Chinese) [Google Scholar] [CrossRef] [Green Version]
- Chen, R.; Kang, E.; Ding, Y. Some knowledge on and parameters of China’s alpine hydrology. Adv. Water Sci. 2014, 25, 307–317. (In Chinese) [Google Scholar]
- Shi, Y.; Liu, C.; Kang, E. The glacier inventory of China. Ann. Glaciol. 2009, 50, 1–4. [Google Scholar] [CrossRef] [Green Version]
- Han, C.; Chen, R.; Liu, Z.; Yang, Y.; Liu, J.; Song, Y.; Wang, L.; Liu, G.; Guo, S.; Wang, X. Cryospheric hydrometeorology observation in the Hulu catchment (CHOICE), Qilian Mountains, China. Vadose Zone J. 2018, 17, 1–18. [Google Scholar] [CrossRef]
- Hempel, S.; Frieler, K.; Warszawski, L.; Pointek, F. A trend-preserving bias correction–the ISI-MIP approach. Earth Syst. Dynam. 2013, 4, 219–236. [Google Scholar] [CrossRef] [Green Version]
- Su, B.; Huang, J.; Zeng, X.; Gao, C.; Jiang, T. Impacts of climate change on streamflow in the upper Yangtze River Basin. Climatic Change 2017, 141, 533–546. [Google Scholar] [CrossRef]
- Khadka, D.; Babel, M.S.; Shrestha, S.; Tripathi, N.K. Climate change impact on glacier and snow melt and runoff in Tamakoshi Basin in the Hindu Kush Himalayan (HKH) region. J. Hydrol. 2014, 511, 49–60. [Google Scholar] [CrossRef]
- Liu, Y.; Qin, X.; Zhang, T.; Zhang, M.; Du, W. Variation of the Niqngchan River Glacier No.3 in the Lenglongling range, east Qilian Mountains. J. Glaciol. Geocryol. 2012, 34, 1031–1036. (In Chinese) [Google Scholar]
- Cao, B. Glacier Changes in the Lenglongling Mountain, Eastern Qilian Mountain; Lanzhou University: Lanzhou, China, 2013. (In Chinese) [Google Scholar]
- Wang, S.; Yao, T.; Pu, J. Spatial and temporal variations in mass balance of Qiyi Glacier in Qilian Mountains. J. Nat. Resour. 2020, 35, 399–412. (In Chinese) [Google Scholar]
- Liu, Y.; Qin, X.; Chen, J.; Li, Z.; Wang, J.; Du, W.; Guo, W. Variations of Laohugou Glacier No. 12 in the western Qilian Mountains, China, from 1957 to 2015. J. Mt. Sci. 2018, 15, 25–33. [Google Scholar] [CrossRef]
- Fang, G.; Yang, J.; Chen, Y.; Li, Z.; Ji, H.; Maeyer, P.D. How hydrologic processes differ spatially in a large basin: Multisite and multiobjective modeling in the Tarim River Basin. J. Geophys. Res. Atmos. 2018, 123, 7089–7113. [Google Scholar] [CrossRef]
- Li, K.; Chen, R.; Liu, G. Cryosphere water resources simulation and service function evaluation in the Shiyang River Basin of Northwest China. Water 2021, 13, 114. [Google Scholar] [CrossRef]
Basin | Subbasin | Average Glacier Area (km2) | Total Glacier Area (km2) | Basin Area (km2) | Mean Runoff (×108 m3 a−1) |
---|---|---|---|---|---|
SYRB | Zamu | 0.27 | 3.75 | 851 | 2.30 |
Jinta | 0.31 | 6.72 | 841 | 1.28 | |
Xiyin | 0.49 | 19.77 | 1454 | 3.17 | |
Dongda | 0.55 | 34.4 | 1546 | 2.99 | |
HHRB | Heihe | 0.28 | 58.9 | 10,009 | 16.62 |
Liyuan | 0.28 | 16.28 | 1080 | 1.81 | |
Hongshui | 0.65 | 125.62 | 1581 | 2.50 | |
Taolai | 0.42 | 137.89 | 7480 | 6.27 | |
SLRB | Shiyou | 0.38 | 6.38 | 656 | 0.29 |
Shule | 1.07 | 469.52 | 10,961 | 10.32 | |
Danghe | 0.78 | 233.83 | 14,325 | 3.60 | |
Dahaerteng | 2.25 | 301.44 | 6112 | 2.98 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, G.; Chen, R.; Li, K. Glacial Change and Its Hydrological Response in Three Inland River Basins in the Qilian Mountains, Western China. Water 2021, 13, 2213. https://doi.org/10.3390/w13162213
Liu G, Chen R, Li K. Glacial Change and Its Hydrological Response in Three Inland River Basins in the Qilian Mountains, Western China. Water. 2021; 13(16):2213. https://doi.org/10.3390/w13162213
Chicago/Turabian StyleLiu, Guohua, Rensheng Chen, and Kailu Li. 2021. "Glacial Change and Its Hydrological Response in Three Inland River Basins in the Qilian Mountains, Western China" Water 13, no. 16: 2213. https://doi.org/10.3390/w13162213
APA StyleLiu, G., Chen, R., & Li, K. (2021). Glacial Change and Its Hydrological Response in Three Inland River Basins in the Qilian Mountains, Western China. Water, 13(16), 2213. https://doi.org/10.3390/w13162213